Evaluation of CFD Accuracy for the Ventilation Study of a Naturally Ventilated Broiler House

JARQ : Japan Agricultural Research Quarterly
ISSN 00213551
書誌レコードID(総合目録DB) AA0068709X
本文フルテキスト
41-01-08.pdf846.39 KB

Using the CFD model, a new ventilation system design will be found later taking into consideration the ventilation efficiency such as uniformity, stability, and suitability of environmental factors in a naturally ventilated broiler house. Because conducting a field experiment for the ventilation study presented so many difficulties, a reliable 3-dimentional computational fluid dynamics (CFD) model had to be developed to investigate the natural ventilation. Before investigating its accuracy, a wind tunnel and particle image velocimetry (PIV) test was initially conducted to find their best experimental conditions and improve the PIV accuracy13,15. A 1/20 scale model of a naturally ventilated broiler house was used to get qualitative and quantitative airflow distribution in the broiler house using the PIV and CFD. To improve the CFD accuracy, the PIV and CFD computed airflows in the broiler house were compared, particularly on the distribution, local air velocity, and turbulent intensity in the house. The quality of the mesh density and the design of the boundary condition, especially the wind velocity and turbulence profiles, were found to be very important for getting accurate results. Assuming the PIV results were accurate, the most accurate CFD results were obtained when using a RNG k-ε turbulence numerical model. The average error of the CFD computed air velocity when using the RNG k-ε models was -6.2%.

刊行年月日
作成者 LEE In-Bok SASE Sadanori SUNG Si-Heung
著者キーワード

aerodynamics

computational fluid dynamics

natural ventilation

particle image velocimetry

wind tunnel

公開者 Japan International Research Center for Agricultural Sciences
オンライン掲載日
国立情報学研究所メタデータ主題語彙集(資源タイプ) Journal Article
41
1
開始ページ 53
終了ページ 64
DOI 10.6090/jarq.41.53
権利 Japan International Research Center for Agricultural Sciences
言語 eng

関連する刊行物