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JIRCAS and the International Center for
Maize and Wheat Improvement have jointly
developed biological nitrification inhibition
(BNI)-enabled wheat that inhibits
nitrification by 30% (“BNI30%”). Aiming for
carbon neutrality by 2050, the team is now
developing BNI wheat with a 40% reduction
in nitrification (“BNI40%7”). A life cycle
assessment (Fig. 1) showed that “BNI30%”
could reduce GHG emissions by 12.3% and
nitrogen (N) fertilization by 11.7%, and
improve N-use efficiency by 12.5% by 2030
(Fig. 2, 30%). Also, N fertilizer-induced GHG
emissions could be reduced by 9.5% across
wheat-harvested areas worldwide by 2050 if
“BNI40%” is introduced only to  areas
suitable for BNI wheat (Fig. 3).
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Fig. 1. Life Cycle Greenhouse Gas (GHG) emissions when

nitrogen fertilizer-induced GHG emissions are reduced by

BNI-enabled wheat
DGHG emissions from production of agricultural inputs such as
fertilizer; @GHG emissions from fuel consumption when machinery
is used for land preparation, cultivation and harvesting; @ N,O
emissions from nitrogen fertilization; and the sum of D, @ and @ is
called “Life cycle greenhouse gas emissions”. Nitrogen fertilizer-
induced GHG emissions (GHG emissions from nitrogen fertilizer
production and N,O emissions from nitrogen fertilization, marked in
red in Fig. 1) are reduced when nitrogen fertilization is reduced by
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Fig. 2. Changes in life cycle GHG emissions, nitrogen
fertilizer application rates, nitrogen-use efficiency, and
nitrification inhibition rates caused by introduction of BNI-
enabled wheat.
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Fig. 3.Reduction in nitrogen fertilizer-induced GHG
emissions when BNI-enabled wheat is introduced only to the
area suitable for BNI-enabled wheat.

Reference: Leon et al. (2022) Environmental Science and Pollution Research 29: 7153-7169
https:/ /doi.org/10.1007/s11356-021-16132-2
Figures reprinted /modified with permission.
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