Evaluation of antioxidant activity of indigenous vegetables from South and Southeast Asia

T. SATO¹, M. NAGATA² and L. M. ENGLE³

¹Biological Resources Division, JIRCAS

(Present address: National Institute of Vegetable and Tea Science, National Agriculture and Bio-oriented Research Organization, Japan) ²National Institute of Vegetable and Tea Science, National Agriculture and Bio-oriented Research Organization, Japan ³Asian Vegetable Research and Development Center, Taiwan

Key wards: antioxidant activity, indigenous vegetables, vitamin C, total phenol

Objectives

More than eight hundred million people currently suffer from hunger and malnourishment. Improving the production of principal food crops such as rice, wheat, corn and root crops has thus become one of the most important research subjects in the field of agriculture. Yet, sufficient levels of micronutrients and vitamins are also essential for maintaining good health, especially for pregnant women and preschool children in rural areas. Since vegetables can provide high levels of micronutrients, vitamins and fiber, producing more vegetable varieties has become an important task. To help develop vegetable variety, indigenous vegetables that are under-utilized globally but sufficiently adopted to local areas in growth and taste preferences (Fig. 1) can be of great value. The purpose of this study, conducted in collaboration with the Asian Vegetable Research and Development Center (AVRDC), has been to select the most superior indigenous leaf vegetables based on functional properties.

Results

To complete this objective, various accessions of indigenous vegetables from South and Southeast Asia were evaluated for their antioxidant activity, levels of ascorbic acid (vitamin C), and total phenol count. Antioxidant activity was assayed by a modified thiocyanate method using ethanol extracts; total phenolic compounds were determined by the Folin-Denis method using the same ethanol extracts; and ascorbic acid content was evaluated by RQflex and use of analytical test strips. These methods do not require the use of expensive analytical instruments such as high performance liquid chromatography (HPLC).

Among the twenty tested vegetable varieties, the top nine were determined to have young shoots and leaves with extremely strong antioxidant activity. These include Chinese mahogany (*Toona sinensis*), Horseradish tree (*Moringa* spp.), Feather cockscomb (*Celosia argentea*), Perilla (*Perilla frutescens*), Pigeon pea (*Cajanus cajan*), Black nightshade (*Solanum nigrum* or *S. americanum*), Ailanthus (*Zanthoxylum ailanthoides*), Capsicum pepper (*Capsicum annuum*) and White jute (*Corchorus* spp.). These vegetables also had a tendency to have higher ascorbic acid and total phenol contents (Table 1). Antioxidant activity, ascorbic acid and total phenol contents differed not only among vegetable species but also among accessions (Table 2).

For the selection of superior indigenous vegetables, evaluation of antioxidant activity, ascorbic acid and total phenol contents can be used as a novel index together with morphological and ecological characterization, and yield evaluation.

Fig. 1. Genetic diversity of Amaranth or Chinese spinach (Amaranthus spp.).

Table 1. The highest rated indigenous leafy vegetables in tems of antioxidant activity, ascorbic acid and total phenol contents at the AVRDC.

Indigenous leafy vegetables/ Young shoots of fruit vegetables	Scientific name	Antioxidant activity ¹	Ascorbic acid content ²	Total phenol content ³
(Antioxidant activity : Strong)				
1 Chinese mahogany	Toona sinensis	128	(125)	(3,784)
2 Leaf of horseradish tree (Mo13)	Moringa oleifera	115	(287)	(691)
3 Feather cockscomb (purple)	Celosia argentea	114	(134)	(947)
4 Perilla	Perilla frutescens	114	84	(727)
5 Leaf of pigeon pea	Cajanus cajan	113	(259)	(833)
6 Leaf of horseradish tree	Moringa spp.	113	(245)	(713)
7 Leaf of black nightshade	Solanum nigrum	112	(146)	432
8 Ailanthus	Zanthaxylum ailanthoides	111	82	(2,134)
9 Leaf of capsicum pepper (purple)	Capsicum annuum	108	(226)	(1,158)
10 White jute	Corchorus spp.	107	(153)	503
11 Leaf of African eggplant	Solanum macrocarpon	105	120	537
12 Leaf of Chinese wolfberry	Lycium chinense	105	116	597
13 Parsley	Petroselinum crispum	104	(132)	271
14 Leaf of capsicum pepper	Capsicum spp.	99	(128)	(817)
15 Basil	Ocinum basilicum	99	28	302
16 Water convolvulus	Ipomoea aquatica	99	45	(726)
17 Gynura	Gynura bicolor	97	35	313
18 Madeira-vine	Anredera cordifolia	97	59	232
19 Dandelion	Taraxacum officinale	96	27	137
20 Sweet potato vine	Ipomoea batatas	96	35	684
(Antioxidant activity : Weak)				

Data in parenthese represent the top ten vegetables in terms of ascorbic acid and total phenol content. ¹ Relative value against 10 mM BHA positive control (%). ² Ascorbic acid content (mg/100g FW). ³ Total phenol contant (mg chlorogenic acid equivalent/100g FW).

Table 2. Diversity of antioxidant activity, ascorbic acid and total phenol contents in young shoots and leaves of indigenous vegetables from South and Southeast Asia.

Inc	ligenous vegetables (Scientific name)	No. of	Antioxidant activity ¹	Ascorbic acid ²	Total phenol content ³
		accessions	Max – Min	Max – Min	Max – Min
1	Perilla (Perilla frutescens)	7	118 - 110	98 - 67	1,039 - 479
2	Pigeon pea (Cajanus cajan)	51	116 - 86	259 - 78	1,348 - 757
3	Horseradish tree (Moringa spp.)	26	118 - 92	323 - 158	983 - 566
4	Black nightshade (Solanum nigram)	18	116 - 108	178 - 128	570 - 357
5	White jute (Corchorus spp.)	49	110 - 100	216 - 70	666 - 318
6	Water convolvulos (Ipomoea aquatica)	72	116 - 80	68 - 31	1,324 - 478
7	Capsicum pepper (Capsicum spp.)	22	108 - 93	226 - 82	1,158 - 428
8	Basil (Ocimum basilicum)	11	107 - 87	31 - 23	481 - 182
9	Spider flower (<i>Cleome gynandra</i>)	17	97 - 91	160 - 113	322 - 243
10	Garland chrysanthemum (<i>Chrysanthemum coronarium</i>)	20	96 - 89	57 - 35	343 - 210
11	Amaranth (Amaranthus spp.)	100	103 - 33	135 - 28	452 - 124
12	Malaber spinach (Basella alba)	78	94 - 35	154 - 53	547 - 211

 1 Final concentration of BHA was 40 μ M and that of sample was 2 mg (FW)/mL. Antioxidant activity (AOA) : AOA (%) of sample/AOA (%) of 10mM BHA \times 100. 2 Ascorbic acid content (mg/100g FW). 3 Total phenol contant (mg chlorogenic acid equivalent/100g FW).

E-mail address: ryutoku@affrc.go.jp