Sustainability of sugarcane production evaluated based on N2 fixation and organic matter cycle

S. ANDO¹, S. MEUNCHANG², S. THIPPAYARUGS³, P. PRASERSAK⁴, N. MATSUMOTO⁵ and T. YONEYAMA⁶

 ¹Crop Production and Environment Division, JIRCAS (Present address: National Institute of Livestock and Grassland Sciences, National Agricultural Research Organization (NARO), Japan)
²Soil Science Division, DOA, Thailand
³Khon Kaen Field Crops Research Center, DOA, Thailand
⁴Suphan Buri Field Crops Research Center, DOA, Thailand
⁵Crop Production and Environment Division, JIRCAS
⁶Graduate School of Agricultural and Life Sciences, The University of Tokyo

Key words: N₂ fixation, natural ¹⁵N abundance method, organic matter cycle, sugarcane

Objectives

In Northeast Thailand, infertile sandy soil with limited ability to supply and retain nutrients is distributed over large areas. Crops with the ability to fix atmospheric nitrogen endophytically could contribute toward the establishment of sustainable agriculture in these areas, and taking this into consideration, analyses on N_2 fixation in sugarcane and the organic matter cycle of sugarcane production were conducted to evaluate their sustainability.

Results

Possible N input by N_2 fixation in sugarcane planted in the research fileds was estimated by the natural ¹⁵N abundance (¹⁵N) method using cassava as a presumed non-N₂-fixing reference plant. All seven varieties of sugarcane planted in the fields of the research centers showed clearly lower ¹⁵N values than those of cassava. Average of N input by N₂ fixation in the seven sugarcane varieties was 29% (Fig. 1).

Possible N input by N_2 fixation in field-grown sugarcane was also estimated by the natural ¹⁵N abundance (¹⁵N) method using neighboring weeds growing inside the sugarcane fields as presumed non-N₂-fixing reference plants. Of the total of 54 sugarcane samples, ¹⁵N values of 19 samples were markedly lower than those of all neighboring plants. Average contribution of N₂ fixation to total plant N of these 19 sugarcane samples was estimated to be 32% (Table 1).

In order to determine the organic matter cycle of sugarcane production, only the stems were removed from the field and most of the other parts remained as residues. Thus, most of the nutrients contained in the residues were returned to the field. In the process of sugar refining at sugar mills, bagasse, filter cake and molasses are discharged as by-products. The main element of the sugar, bagasse and molasses taken out of this organic matter cycle is carbon, on the other hand, filter cake contains large amounts of nutrients. In order to maintain a sustainable cycle of nutrients, the leaves of sugarcane should not be burned during harvesting and filter cake should be properly returned to the field (Fig. 2).

Fig. 1. Estimation of N_2 fixation in different varieties of sugarcane planted in research fields based on the natural ${}^{15}N$ abundance method.

Table 1.	Estimation of N2 fixation in field-grown sugarcane
	in Thailand.

Regions	No. of samples	No. of positive samples ^a	%Ndfa⁵ of positive
Norheast	21	7	28
Central	33	11	35
Toral	54	19	32

^aNumber of samples with ¹⁵N values lower than those of all neighboring plants.

^bEstimated % nitrogen derived from N₂ fixation.

Fig. 2. Organic matter cycle of sugarcane production.

Reference

S. Ando, S. Meunchang, S. Thippayarugs, P. Prasertsak, N. Matsumoto and T. Yoneyama (2002) : Sustainability of sugarcane production evaluated based on organic matter cycle and nitrogen fixation. Proceedings of the 17th World Congress of Soil Science, Paper No. 1948, 1-8.

E-mail address: shotaro@affrc.go.jp