糯小麦育成を可能とするWxタンパク質を欠失した変異体の発見

[要約] <u>アミロース</u>合成に関係する<u>Wxタンパク質</u>の欠失性を世界の<u>小麦遺伝資源</u>を用いて明らかにした。新しく発見された欠失変異体は、糯小麦育成を可能にした。

国際農林水産業研究センター 沖縄支所 世代促進研究室					連絡先	09808(2)2306	
部会名	国際農業	専門	遺伝資源	対象	小麦		分類	2

「背景・ねらい」

麵用小麦の高品質化においては,麵の粘弾性を高めることが一つの課題である。小麦澱粉中のアミロース含量が低いほど麵の粘弾性が増し,食味がよくなるとされている。本研究では,アミロース合成に関わる酵素であるwaxy(Wx)タンパク質の小麦遺伝資源における欠失変異をSDSゲル電気泳動法(SDS—PAGE)と二次元電気泳動法を用いて解析した。特に,糯小麦育成を可能とする新変異体の発見をめざした。

[成果の内容・特徴]

① 小麦には3種類のWxタンパク質(Wx-A1, Wx-B1, Wx-D1)が存在する。したがって,各Wxタンパク質の有無に基づけば,小麦を表1に示した8つのtypeに分類できる。このうち,Wx-A1タンパク質を欠く小麦はトルコ,日本および朝鮮半島に比較的高頻度で存在した。Wx-B1タンパク質を欠失した小麦はオーストラリアとインドに多く発見された。一方,Wx-D1タンパク質を欠く小麦は中国に1品種のみ発見された(表2)。

Wx-A1とWx-B1 タンパク質を二重に欠くtype 7 の小麦は日本に 9 品種あったが、type 5、type 6 およびすべてのWx タンパク質を欠くtype 8 の小麦は存在しなかった。

- ② 日本の小麦133品種のアミロース含量 (黒田ら 1989年) を表 1 に基づいて分類したところ,アミロース含量はtype 1 > type 2 > type 3 > type 7 であった(図 1)。
- ③ 3種のWxタンパク質をそれぞれコードする遺伝子 (Wx-A1, Wx-B1, Wx-D1) は異なる 染色体に座乗する。したがって,日本のみに存在したtype 7 と中国のtype 4 の小麦の交雑後代から,表 1 のすべてのtypeが育成できる。type 4 の発見はすべてのWxタンパク質を欠き,アミロースを含まない糯小麦の育成を可能にした。

「成果の活用面・留意点]

新しく発見されたWxタンパク質欠失変異体は糯小麦育成のために活用できる。同時に育成可能な $type1 \sim 7$ の小麦は6Wxタンパク質の欠失とアミロース量との関係の解明に利用できる。

[具体的データ]

表1:Wxタンパク質の有無に基づいたパン小麦の分類

type	Wx-A1	₩x-B1	Wx-D1
1	+	+	+
2	=	+	+
3	+	***	+
4	+	+	-
5	+		-
6	-	+	-
7	=	==	+
8	=	 	-

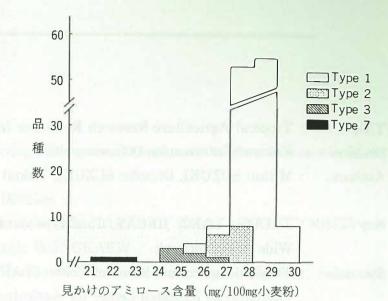


図1:日本の小麦品種のアミロース含量とWxタンパク質の欠失性

表2:小麦における各Wxタンパク質を欠いた品種数

国・地域	調査品	· · · · · · · · · · · · · · · · · · ·	W x - A 1	₩x-B1	W x -D 1
日本	462	(333)	7 5	16	0
朝鮮半島	93		10	1	0
中国	308	(171)	3	12	1
インド	50		3	25	0
パキスタン	85		0	13	0
アフガニスタン	59		0	13	0
トルコ	156		8 1	0	0
オーストラリア	127		1	5 1	0
北米 (米・カナダ)	315	(172)	3	19	0
西欧 (英・独・仏・伊)	172		1	4	0
旧ソ連	133		0	5	0
	1,960	(1,551)	177	159	1

^{*} Wx-A1タンパク質の欠失性はすべての品種 (1,960)を、Wx-B1 とWx-D1は1,551品種(日本、中国および北米は括弧内の品種数、他の国はすべて)を調べた。

[その他]

研究課題名:Wxタンパク質を欠失した小麦遺伝資源の探索

予算区分:科振調·重点基礎

研究期間:元成5年度(平成5年)

研究担当者:山守 誠・長峰 司 (国研セ)、中村俊樹 (東北農試)

発表論文等: Yamamori et al., Waxy protein deficiency and chromosomal location of coding genes in common wheat. Theor. Appl. Genet. (in press) (1994).