
4. Productivity and Water Efficiency of Triple Cropping of Rice (1977–1978)

Takashi HARAKI Vichien SASIPRAP

To compare the efficiency of multiple cropping systems in paddy field consisting of rice and upland crops with that of continuous rice cropping, a trial of triple cropping of rice was made in 1977—1978. The experiment was carried out to evaluate the productivity and water efficiency of triple cropping of rice with reference to rice varieties and some cultural practices such as planting cycle, water management, fertilizer application and planting density.

Material and methods

1. Planting cycle $(P_1 \text{ and } P_2)$

 Water management (w) and w₂/W₁: Continuously flooeded W₂: Non-flooded for 6 to 10 days starting from 30 days after transplanting.
 Rate of fertilizer application in kg/ha (F₁ and F₂) F₁: Standard Basal dressing N-20, P₂O₅-25

F_1 : Standard	Basal dressing	N-20, P_2O_5-25
	Top dressing	N-20
F ₂ : High level	Basal dressing	N-30, P ₂ O ₅ -37.5
2 0	Top dressing	N-30

As for fertilizers, ammophos was used for basal dressing, and ammonium sulphate was applied for top dressing at 40 to 42 days after transplanting.

4. Variety $(V_1 \text{ and } V_2)$ V_1 : RD 7 V₂: RD 11 (WP153)

Both the varieties are non-photosensitive.

- 5.
- Planting density $(D_1 \text{ and } D_2)$

D₁: Standard, 25 cm × 25 cm, 16 hills/m², 3 seedlings/hill

D₂: Desnse, 25 cm × 25 cm × 20 cm, 20 hills/m², 3 seedlings/hill.

6. Design and plot size

Split plot design with one replication was applied. The orthogonal table was employed for statistical analysis of the data. The size of each plot was 69.6 m² (8.7 m \times 8.0 m) and the number of plots was 96 (planting cycle 2 \times transplanting time 3 \times water management 2 \times rate of fertilizer application 2 \times variety 2 \times planting density 2).

Results

1. Comparison between planting cycle P_1 and P_2

1) Grain yield

Total grain yield of three crops as an average of 16 treatments (W·2 × F·2 × V·2 × D·2) in P₁ and P₂ planting cycle was 13.69 and 12.12 ton per hectare. It means that P₁ yielded by 12.9% more than P₂ (Table 4-1). Such a clear difference of yields between P₁ and P₂ was also observed in both the varieties, RD 7 and RD 11. The highest yield among all, 15.87 ton per hectare, was obtained in the plot of P₁-W₁-F₂-V₂-D₂. Among P₂ plots, the highest yield was 13.17 ton/ha in the similar treatment, P₂-W₁-F₂-V₂-D₂ (Table 4-2).

2) Yield components

The number of spikelets per m^2 of P_1 was more than that of P_2 , but the degree of ripening (grain yield per 1000 spikelets) of P_1 was the same or slightly less than that of P_2 . Therefore, it can be assumed that the higher yield of P_1 was not due to the increase of degree of ripening but due to the increase of number of spikelets per unit area.

3) Nitrogen absorption

The amount of nitrogen absorption in P_1 at heading time was more than in P_2 . The similar trend was observed in both the varieties, RD 7 and RD 11 (Table 4-1).

2. Comparison among transplanting times

1) Grain yield

The highest grain yield was obtained in P_2 -1, the first crop of planting cycle P_2 , which was transplanted on March 15 (Table 4-2).

The grain yield of both the plots P_1 -3 (transplanted on September 9) and P_1 -1 (Transplanted on January 13) were also considerably high, but P_2 -2 (transplanted on July 15) showed the lowest yield among the treatments. The trends observed in the grain yield were somewhat different according to the rice varieties. The orders of the mean yield in each variety were as follows:

RD 7: $P_1-3>P_2-1>P_1-1>P_1-2>P_2-2>P_2-3$

RD 11: P₂-1>P₁-1>P₁-3>P₁-2>P₂-3>P₂-2

2) Relationships between yield and yield components

A significant positive correlation between yield and number of spikelets per m^2 with reference to transplanting time was found (RD 7 r = 0.970**, significant at 1% level; RD 11 r = 0.736⁺, significant at 10% level), but there was

no significant correlation between yield and degree of ripening.

3) Relationship between yield and nitrogen absorption with reference to transplanting time

A significant positive correlation between yield and nitrogen absorption per m^2 at heading time was obtained in both the varieties (RD 7 $r = 0.886^*$; RD 11 $r = 0.848^*$, both significant at 5% level).

4) Relationships between yield or yield components and weather factors due to different transplanting time

In the variety of RD 11, a close positive correlation between degree of ripening and the average of difference between maximum and minimum air temperature during ripening period was found ($r = 0.996^{***}$, significant at 0.1% level). In the variety of RD 7, there was no significant correlation between degree of ripening and any weather factor; however, a close negative correlation between degree of ripening and number of spikelets per m² ($r = -0.863^{*}$), and a positive correlation between degree of ripening and number of spikelets per m² ($r = -0.863^{*}$), and a positive correlation between degree of ripening and nitrogen content of plants at heading time ($r = 0.939^{*}$), except P₁-1 which was somewhat damaged by birds, were obtained. In both the varieties, RD 7 and RD 11, a positive correlation between grain yield and average daily solar radiation during the period from transplanting to harvesting was observed (RD 7 $r = 0.723^{+}$ RD 11 $r = 0.728^{+}$, both significant at 10% level).

3. Relationship between yield and cultural practices

The effects of some cultural practices such as water management, rate of fertilizer application and planting density were examined. Judging from the analysis of variance, it can be said that drainage for 6 to 10 days in the middle growth stage decreased grain yield in P₁-2, P₁-3 and P₂-3, while in only P₂-2 increased the yield. The difference of grain yields due to different rates of fertilizer application was also clear in P₁-2, P₁-3, P₂-1 and P₂-3, where high level of fertilizer application yielded better. As for planting density a significant difference at 10% level was seen in P₁-3 and P₂-2.

- 4. Varietal differences
 - 1) Growing period and heading time

Variety RD 7 took 115 to 133 days from seeding to harvesting and 91 to 108 days from transplanting to harvesting, while RD 11 took 132 to 139 days and 108 to 114 days, respectively (Table 4-3). The heading time of RD 11 was delayed 1 to 18 days as compared with RD 7. Thus, in case of triple cropping of rice there were only a few day intervals from harvesting to the transplanting of succeeding rice crop.

2) Yield and yield components

In the most plots, number of spikelets per unit area of RD 7 was more than that of RD 11 while the degree of ripening of RD 7 was less than RD 11. The total grain yield of the 1st, 2nd and 3rd crop of RD 11 in P_2 was slightly higher than that of RD 7 (significant at 10% level).

3) Nitrogen absorption

As compared with RD 7, RD 11 absorbed 40 percent more amount of nitrogen at heading time. Number of spikelets which were produced per mg of nitrogen absorbed by plant, was less in RD 11 than in RD 7. These two factors seemed effective on relatively higher values of the degree of ripening and grain yield of RD 11.

5. Water consumption

The amount of evaporation and transpiration have been checked during rice growing period in the plot of W_1 - F_1 - V_1 - D_1 .

1) Evaporation and transpiration

The total evaporation of P_1 was less than that of P_2 ; on the contrary, the total transpiration of P_1 was larger than P_2 . The total evapotranspiration of the both were almost the same (Table 4-4).

2) Water requirement

The water requirement of P_1 which is defined as the water required to produce 1 gr. of dry matter, was less than P_2 . Therefore, the efficiency of water utilization of P_1 might be higher in comparison with P_2 .

The climatic conditions and water consumption in each crop are shown in Table 4-5 to 9 and 4-10 to 15, respectively.

Discussion

In this experiment, 15.87 ton per hectare of grain yield as a total of three crops in a year was obtained with the application of 40 to 60 kg per hectare of nitrogen to each crop which was similar to the amount recommended to farmers by the government. It suggested that there would be a possibility to gain higher yields in triple cropping of rice with application of more fertilizer.

Planting cycle is also very important factor to increase the total grain yield in triple cropping of rice. In decision of the planting cycle in this experiment, the weather conditions such as solar radiation and air temperature during ripening period were taken into consideration. Although the grain yield in P_1 cycle was higher than P_2 , it is difficult in this experiment to conclude which cycle is better. However, it should be noted that P_1 cycle starting in January and ending in December coincides with the duration of the trial of four crops a year at IRRI (Yoshida et al. 1972) where high grain yield of 25.65 ton per hectare was obtained.

The difference between RD 7 and RD 11 was noticed in yield and other items. In the most cases, the grain yield of RD 11 was higher than RD 7; only in P_2 -2 was the grain yield of RD 11 lower owing to severe prevalence of narrow brown leaf spot (*Cercospora oryzae* Miyake). In both the varieties positive correlations between grain yield and solar radiation during the period from transplanting to harvesting were observed (significant at 10% level).

The difference in degree of ripening between two varieties was prominent; the factors affecting the degree of ripening was different according to varieties. In case of RD 11, the degree of ripening was affected by the average difference between maximum and minimum air temperature during the ripening period; in case of RD 7 it was not affected by those factors but affected by the nitrogen content (positively) and the number of spikelets per m² (negatively). From these results it is most likely that the degree of ripening of RD 7 was affected by the level of nitrogen content as well as the competitive distribution of carbohydrates in rice plant which resulted from relatively abundant number of spikelets.

The varietal difference in the amount of nitrogen absorbed by top part of plant was also remarkable. The same trend was confirmed by authors among other RD varieties in another experiment; for example, the amount of nitrogen absorbed by RD 5 was around twice as much as that of RD 7. These facts lead to a question whether or not the same rate of nitrogenous fertilizer should be applied to different rice varieties in an experiment.

In both the varieties, RD 7 and RD 11, the significant correlation between solar radiation and degree of ripening was not observed. This strongly suggests the possibility that the sterility caused by high air temperature, as reported by Osada (1973) and Satake et al. (1977), disturbed the correlation. It was also observed in the experiments conducted at the same site that the percentage of empty grains of the variety RD 7 was the highest in the plot where heading time was on May 19, 1978* and the lowest in the plot where heading time was on January 6, 1978*.

Thus, the characteristics of rice varieties as mentioned above have to be referred to when the planting season and cultural practice for each variety are decided.

This experiment has proved the possibility of triple cropping of rice from the agronomic points of view focussing on its productivity and water efficiency. The comparison with other multiple cropping systems consisting of upland crops and rice in the aspect of productivity and water efficiency will be discussed in another chapter.

References

- Yoshida, S. F. T. Parao, and H. M. Beachell: A Maximum Annual Rice Production Trial in the Tropics. IRC Newsletter 21,(3)27-32 (1972)
- Osada, A., V. Sasiprapa, M. Rahong, S. Dhammanuvong and H. Chakrabandhu: Abnormal occurrence of empty grains of indica rice plants in the dry, hot season in Thailand. Proc. Crop. Sci. Soc. Japan, 42(1): 103-109 (1973).
- 3) Satake, T. and S. Yoshida: Mechanism of sterility caused by high temperature at flowering time in indica rice, JARQ 9, 11(2): 127-128 (1977).

May 19: Max: 33.8°C, Min: 25.9°C Jan. 6: Max: 30.8°C, Min: 20.3°C

^{*} The average maximum and minimum temperature for 10 days after both the dates was as follows:

Variety	Planting cycle	Grain Yield	Number of spikelets	Degree of ripening****	Total nitr	Number of spikelets per 1 mg	
	and crop***	ton/ha	/m ²	g/1,000 spikelets	g/m²	%	nitrogen absorbed
Average	P ₁ -1	4.699	19948	23.8	6.16	0.77	2.95
of both	P ₁ -2	4.194	18159	23.1	6.09	0.80	2.58
Vareties	P ₁ -3	4.794	19462	24.9	6.40	0.85	2.76
	Total	13.687	57569	23.93*	18.65	0.81*	2.76*
	P ₂ -1	4.891	19966	24.6	6.75	0.67	2.99
	P_2-2	3.547	16169	22.0	5.15	0.81	2.92
	P_2-3	3.683	13957	26.5	5.39	0.92	2.40
	Total	12.121	50092	24.37*	17.29	0.78^{*}	2.79*
RD 7	P ₁ -1	4.428	21714	20.4	4.90	0.72	4.10
	$P_{1}-2$	4.160	18719	22.2	4.52	0.64	3.23
	P ₁ -3	4.730	21467	22.1	5.69	0.76	3.51
	Total	13.318	61900	21.57*	15.11	0.71*	3.61*
	P ₂ -1	4.645	21125	21.9	5.29	0.57	3.99
	P ₂ -2	3.863	16778	23.0	4.41	0.73	3.41
	P ₂ -3	3.386	14376	23.6	4.73	0.99	2.60
	Total	11.894	52279	22.83*	14.43	0.71*	3.36*
RD 11	P ₁ -1	4.970	18182	27.2	7.42	0.80	2.20
	P ₁ -2	4.228	17599	24.0	7.65	0.94	2.19
	$P_{1}-3$	4.858	17457	27.8	7.11	0.94	2.15
	Total	14.056	53238	26.33*	22.18	0.89*	2.18*
	P ₂ -1	5.138	18807	27.3	8.21	0.76	2.34
	P ₂ -2	3.231	15560	20.9	5.89	0.89	2.56
	P ₂ -3	3.979	13538	29.4	6.04	0.88	2.25
	Total	12.348	47905	25.87*	20.14	0.83*	2.38*

Table 4-1.	Grain	yield,	number	of	spikelets,	ripening	degree	and nitrog	en
	absorp	otion in	relation t	o pl	anting cycl	e, transpla	inting tin	ne and varie	ty

Remarks: * **

: Values are expressed in an average. : Rice samples in the plots of $W_1 {\cdot} F_1 {\cdot} D_1$ at heading time were used for analyzing total nitrogen.

*** ****

: P₁-1 means 1st crop of planting cycle P₁. : Grain (unhusked full) yield per 1000 spikelets.

	(
W	F	V	D	P ₁ -1	P ₁ -2	P ₁ -3	Total	P ₂ -1	P ₂ -2	P ₂ -3	Total
Wı	\mathbf{F}_1	\mathbf{V}_1	D_1	3.92	3.36	4.59	11.87	4.54	3.41	3.05	11.00
\mathbf{W}_1	\mathbf{F}_1	\mathbf{V}_1	D_2	4.18	4.02	4.82	13.02	5.05	3.99	3.12	12.16
\mathbf{W}_1	\mathbf{F}_1	\mathbf{V}_2	D_1	4.27	4.22	4.40	12.89	5.70	3.16	4.00	12.86
\mathbf{W}_1	\mathbf{F}_1	\mathbf{V}_2	D_2	5.92	4.70	4.48	15.10	6.00	3.18	3.91	13.09
\mathbf{W}_1	\mathbf{F}_2	\mathbf{V}_1	D_1	4.51	4.78	4.96	14.25	5.30	3.35	4.00	12.65
\mathbf{W}_1	\mathbf{F}_2	\mathbf{V}_1	D_2	5.58	4.78	5.23	15.59	4.86	3.69	3.89	12.44
\mathbf{W}_1	\mathbf{F}_2	\mathbf{V}_2	D_1	5.05	4.73	5.62	15.40	4.91	3.12	4.33	12.36
\mathbf{W}_1	\mathbf{F}_2	V_2	D_2	5.70	4.48	5.69	15.87*	5.46	3.25	4.46	13.17*
\mathbf{W}_2	\mathbf{F}_1	\mathbf{V}_1	D_1	4.28	3.85	4.59	12.72	3.41	3.84	3.01	10.26
\mathbf{W}_2	\mathbf{F}_1	\mathbf{V}_1	D_2	4.76	3.95	4.07	12.78	3.72	4.24	3.28	11.24
\mathbf{W}_2	\mathbf{F}_1	V_2	D_1	4.05	3.96	4.53	12.54	4.30	2.92	3.38	10.60
W_2	\mathbf{F}_1	V_2	D_2	3.98	3.68	4.11	11.77	4.65	3.15	3.33	11.13
\mathbf{W}_2	\mathbf{F}_2	\mathbf{V}_1	D_1	4.04	4.09	4.88	13.01	5.09	4.16	3.50	12.75
\mathbf{W}_2	\mathbf{F}_2	\mathbf{V}_1	D_2	4.15	4.45	4.70	13.30	5.19	4.22	3.24	12.65
\mathbf{W}_2	\mathbf{F}_2	V_2	D_1	5.37	3.92	4.95	14.24	5.03	3.64	3.89	12.56
\mathbf{W}_2	\mathbf{F}_2	V_2	D_2	5.42	4.13	5.08	14.63	5.05	3.43	4.53	13.01

Table 4-2. Grain yield of rice in relation to planting cycle, transplanting time, water management, rate of fertilizer application, variety and planting density (ton/ha)

Remarks: * : Maximum grain yield among 16 plots.

W : Watermanagement. : Continuously flooded.

 W_1

 W_2 : Non-flooded for 6 to 10 days from 30 days after transplanting.

F

: Rate of fertilizer application : Standard, Basal N-20, P₂O₅-25.0, Top N-20 Kg/ha \mathbf{F}_1

 F_2 V : High level, Basal N-30, P2O5-37.5, Top N-30 Kg/ha

: Variety : RD 7 : RD 11

Ý.

 $\dot{V_2}$

D : Planting density

: Standard, 16 hills/m² D_1

: Dense, 20 hills/m² D_2

							Growing	Period,	(days)	
Planting cycle- crop	Variety	Seeding time	Trans- planting time	0	Harvesting time	Seeding to heading	Trans- planting to heading	Heading to harvesting	Seeding to harvesting	Trans- planting to harvesting
P ₁ -1	RD7	Dec. 20	Jan. 13	Mar. 18	Apr. 14	88	64	27	115	91
	RD11	,,	,,	Apr. 2	May 2	103	79	30	133	109
P_1-2	RD7	Apr. 18	May 13	Jul. 27	Aug. 29	100	75	33	133	108
	RD11	,,	,,	Jul. 28	Sept. 2	101	76	36	137	112
P ₁ -3	RD7	Aug. 16	Sept. 9	Nov. 14	Dec. 19	90	66	35	125	101
	RD11	,,	••	Nov. 23	Dec. 28	99	75	35	134	110
P ₂ -1	RD7	Feb. 18	Mar. 15	May 25	Jun. 24	96	71	30	126	101
	RD11	,,	,,	Jun. 8	Jul. 7	110	85	29	139	114
P ₂ -2	RD7	Jun. 21	Jul. 15	Sept. 24	Oct. 25	95	71	31	126	102
	RD11	,,	,,	Sept. 28	Oct. 31	99	75	33	132	108
P ₂ -3	RD7	Oct. 17	Nov. 10	Jan. 6	Feb. 15	81	57	40	121	97
	RD11	,,	,,	Jan. 24	Feb. 27	99	75	34	133	109

 Table 4-3.
 Growing period in relation to planting cycle and variety

Table 4-4.Water consumption

	Evapo	oration	Transp	oiration	Evapotrar	spiration	Pan Eva	poration	r	Water equirement
Planting cycle-crop	$E_1 \\ mm$	E ₂ mm	$T_1 \\ mm$	T ₂ mm	ET_1 mm	ET ₂ mm	EP ₁ mm	EP ₂ mm	ET/EP	g/g
P ₁ -1	254.8	2.8	298.4	3.3	553.2	6.1	533.4	5.9	1.04	343.9
P ₂ -2	410.5	3.8	315.8	2.9	726.3	6.7	672.8	6.2	1.08	349.0
P ₃ -3	239.6	2.4	282.7	2.8	522.3	5.2	474.0	4.7	1.10	321.0
Total	904.9	3.01*	896.9	2.99*	1801.8	6.01*	1680.2	5.60*	1.07*	338.07*
P ₂ -1	331.6	3.3	398.3	3.9	729.9	7.2	689.8	6.8	1.06	381.5
P ₂ -2	344.3	3.4	216.8	2.1	561.1	5.5	499.6	4.9	1.12	277.1
P ₂ -3	240.9	2.5	240.2	2.5	481.1	5.0	447.5	4.6	1.08	411.3
Total	916.8	3.06*	855.3	2.85*	1772.1	5.91*	1636.9	5.46*	1.08*	354.86*

 E_1 , T_1 , ET_1 and EP_1 are expressed as the total amount. E_2 , T_2 , ET_2 and EP_2 are expressed as a daily average value.

* : Value are expressed on an average.

Ep was measured by a evaporimeter 20 cm in diameter. The values may be about 10% more than evaporation from free water surface measured by evaporimeter 1 m in diameter.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ju	ng pern	grown	uuiing	ulation	501a1 1 a	ually	verage	то. л	Table 4	
P1-1ASrASrASrASrAP1-1RD 736052409.726306411.012027445.448079418.13833RD 1142274410.432528411.714661488.756935428.14718P1-2RD 745567455.733734449.813418406.658985443.54715RD 1145941454.934108448.814859412.860800443.84896P1-3RD 737577417.528058425.115650447.153227425.84370RD 1141840422.632321430.915145432.756985425.34746P2-1RD 743618454.432917463.614365478.857983460.24728RD 1150343457.739642466.412738439.263081453.85238P2-2RD 738859409.028649403.513650440.352509416.74229RD 1140587410.030377405.014370435.554957416.34474		Transplanting to harvesting		0		0		1 0		-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sr	А	Sr	А	Sr	А	Sr	А	Sr	А		crop	
P1-2 RD 7 45567 455.7 33734 449.8 13418 406.6 58985 443.5 4715 RD 11 45941 454.9 34108 448.8 14859 412.8 60800 443.8 4896 P1-3 RD 7 37577 417.5 28058 425.1 15650 447.1 53227 425.8 4370 RD 11 41840 422.6 32321 430.9 15145 432.7 56985 425.3 4746 P2-1 RD 7 43618 454.4 32917 463.6 14365 478.8 57983 460.2 4728 RD 11 50343 457.7 39642 466.4 12738 439.2 63081 453.8 5238 P2-2 RD 7 38859 409.0 28649 403.5 13650 440.3 52509 416.7 4229 RD 11 40587 410.0 30377 405.0 14370 435.5 54957 416.3 4474	3 421.2	38333	418.1	48079	445.4	12027	411.0	26306	409.7	36052	RD 7	P ₁ -1	
RD 11 45941 454.9 34108 448.8 14859 412.8 60800 443.8 4896 P1-3 RD 7 37577 417.5 28058 425.1 15650 447.1 53227 425.8 4370 RD 11 41840 422.6 32321 430.9 15145 432.7 56985 425.3 4746 P2-1 RD 7 43618 454.4 32917 463.6 14365 478.8 57983 460.2 4728 RD 11 50343 457.7 39642 466.4 12738 439.2 63081 453.8 5238 P2-2 RD 7 38859 409.0 28649 403.5 13650 440.3 52509 416.7 4229 RD 11 40587 410.0 30377 405.0 14370 435.5 54957 416.3 4474	9 432.9	47189	428.1	56935	488.7	14661	411.7	32528	410.4	42274	RD 11		
P1-3 RD 7 37577 417.5 28058 425.1 15650 447.1 53227 425.8 4370 RD 11 41840 422.6 32321 430.9 15145 432.7 56985 425.3 4746 P2-1 RD 7 43618 454.4 32917 463.6 14365 478.8 57983 460.2 4728 RD 11 50343 457.7 39642 466.4 12738 439.2 63081 453.8 5238 P2-2 RD 7 38859 409.0 28649 403.5 13650 440.3 52509 416.7 4229 RD 11 40587 410.0 30377 405.0 14370 435.5 54957 416.3 4474	436.6	47152	443.5	58985	406.6	13418	449.8	33734	455.7	45567	RD 7	P_1-2	
RD 11 41840 422.6 32321 430.9 15145 432.7 56985 425.3 4746 P2-1 RD 7 43618 454.4 32917 463.6 14365 478.8 57983 460.2 4728 RD 11 50343 457.7 39642 466.4 12738 439.2 63081 453.8 5238 P2-2 RD 7 38859 409.0 28649 403.5 13650 440.3 52509 416.7 4229 RD 11 40587 410.0 30377 405.0 14370 435.5 54957 416.3 4474	7 437.2	48967	443.8	60800	412.8	14859	448.8	34108	454.9	45941	RD 11		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 432.8	43708	425.8	53227	447.1	15650	425.1	28058	417.5	37577	RD 7	P ₁ -3	
RD 11 50343 457.7 39642 466.4 12738 439.2 63081 453.8 5238 P2-2 RD 7 38859 409.0 28649 403.5 13650 440.3 52509 416.7 4229 RD 11 40587 410.0 30377 405.0 14370 435.5 54957 416.3 4474	6 431.5	47466	425.3	56985	432.7	15145	430.9	32321	422.6	41840	RD 11		
P2-2 RD 7 38859 409.0 28649 403.5 13650 440.3 52509 416.7 4229 RD 11 40587 410.0 30377 405.0 14370 435.5 54957 416.3 4474	2 468.1	47282	460.2	57983	478.8	14365	463.6	32917	454.4	43618	RD 7	P ₂ -1	
RD 11 40587 410.0 30377 405.0 14370 435.5 54957 416.3 4474) 459.5	52380	453.8	63081	439.2	12738	466.4	39642	457.7	50343	RD 11		
	9 414.7	42299	416.7	52509	440.3	13650	403.5	28649	409.0	38859	RD 7	P_2-2	
P ₂ -3 RD 7 35161 434.1 24520 430.2 14946 373.7 50107 414.1 3946	7 414.3	44747	416.3	54957	435.5	14370	405.0	30377	410.0	40587	RD 11		
	6 406.9	39466	414.1	50107	373.7	14946	430.2	24520	434.1	35161	RD 7	P ₂ -3	
RD 11 42159 425.8 31518 420.2 12152 357.4 54311 408.4 4367	400.6	43670	408.4	54311	357.4	12152	420.2	31518	425.8	42159	RD 11		

 Table 4-5.
 Average daily solar radiation during growing period

Remarks: A: Accumulated value (cal/cm²/period) Sr: Average daily solar radiation (cal/cm²/day)

Table 4-6.	Average daily maximum air temperature during growing period

Table 4-0. Average daily maximum an temperature during growing period											
Planting cycle-	Variety	Seeding to ty heading		Transplanting to heading		Heading to harvesting		Seeding to harvesting		Transplanting to harvesting	
crop		А	Max.	А	Max.	А	Max.	А	Max.	А	Max.
P ₁ -1	RD 7	2806.8	31.9	2056.8	32.1	917.9	34.0	3724.7	32.4	2974.7	32.7
	RD 11	3305.9	32.1	2555.9	32.4	1061.1	35.4	4367.0	32.8	3617.0	33.2
P ₁ -2	RD 7	3454.4	34.5	2585.8	34.5	1085.2	32.9	4539.6	34.1	3671.0	34.0
	RD 11	3487.6	34.5	2619.0	34.5	1180.5	32.8	4668.1	34.1	3799.5	33.9
P ₁ -3	RD 7	2826.3	31.4	2046.2	31.0	997.4	28.5	3823.7	30.6	3043.6	30.1
	RD 11	3070.4	31.0	2290.3	30.5	1038.0	29.7	4108.4	30.7	3328.3	30.3
P ₂ -1	RD 7	3258.8	33.9	2449.8	34.5	1051.5	35.1	4310.3	34.2	3501.3	34.7
	RD 11	3743.7	34.0	2934.7	34.5	1014.5	35.0	4758.2	34.2	3949.2	34.6
P ₂ -2	RD 7	3135.8	33.0	2304.4	32.5	976.4	31.5	4112.2	32.6	3280.8	32.2
	RD 11	3267.3	33.0	2435.9	32.5	1027.5	31.1	4294.8	32.5	3463.4	32.1
P ₂ -3	RD 7	2405.2	29.7	1671.1	29.3	1295.5	32.4	3700.7	30.6	2966.6	30.6
	RD 11	2972.9	30.0	2238.8	29.9	1114.0	32.8	4086.9	30.7	3352.8	30.8

Remarks: A: Accumulated value (°C) Max.: Average daily maximum air temperature (°C)

									_	_	
Planting cycle-	Variety	Seedi head	-	Transpl to hea	0	Headi harve	0	Seedi harve	0	Transp to harv	0
crop		А	Min.	А	Min.	А	Min.	А	Min.	А	Min.
P ₁ -1	RD 7	1806.3	20.5	1303.9	20.4	659.7	24.4	2466.0	21.4	1963.6	21.6
	RD 11	2169.6	21.1	1667.2	21.1	775.5	25.9	2945.1	22.1	2442.7	22.4
P ₁ -2	RD 7	2526.9	25.3	1890.8	25.2	811.8	24.6	3338.7	25.1	2702.0	25.0
	RD 11	2551.4	25.3	1915.3	25.2	886.3	24.6	3437.7	25.1	2801.6	25.0
P ₁ -3	RD 7	2208.5	24.5	1613.2	24.4	661.0	18.9	2869.5	23.0	2274.2	22.5
	RD 11	2452.6	24.8	1857.3	24.8	694.2	19.8	3146.8	23.5	2551.5	23.2
P_2-1	RD 7	2292.0	23.7	1785.2	25.1	765.6	25.5	3057.6	24.3	2550.8	25.3
	RD 11	2645.9	24.1	2139.1	25.2	740.2	25.5	3386.1	24.4	2879.3	25.3
P_2-2	RD 7	2343.0	24.7	1742.2	24.5	771.6	24.9	3114.6	24.7	2513.8	24.6
	RD11	2443.7	24.7	1842.9	24.6	814.8	24.7	3258.5	24.7	2657.7	24.6
P ₂ -3	RD 7	1731.0	21.4	1148.8	20.2	851.3	21.3	2582.3	21.3	2000.1	20.6
	RD 11	2098.7	21.2	1516.5	20.2	749.4	22.0	2848.1	21.4	2265.9	20.8

 Table 4-7.
 Average daily minimum air temperature during growing period

Remarks: A : Accumulated value (°C)

Min. : Average daily minimum air temperature (°C).

$1 a m c 4 \circ 0$.	шеан ан тени	relating uniting	growing period
	 		a o mana portou

Table	+ -0, 1	werage	uany	mean ai	i temp		uuim	ig grown	ng per	lou	
Planting cycle- Variet		Seeding to heading		Transplanting to heading		Heading to harvesting		Seedi harve	0	Transplanting to harvesting	
crop		А	М	А	М	А	М	А	М	А	М
P ₁ -1	RD 7	2306.6	26.2	1680.4	26.3	788.8	29.2	3095.4	26.9	2469.2	27.1
	RD 11	2737.8	26.6	2111.6	26.7	918.3	30.6	3656.1	27.5	3029.9	27.8
P_1-2	RD 7	2990.7	29.9	2238.3	29.8	948.5	28.7	3939.2	29.6	3186.8	29.5
	RD 11	3019.5	29.9	2267.2	29.8	1033.4	28.7	4052.9	29.6	3300.6	29.5
P_1-3	RD 7	2517.4	28.0	1829.7	27.7	829.2	23.7	3346.6	26.8	2658.9	26.3
	RD 11	2761.5	27.9	2073.8	27.7	866.1	24.7	3627.6	27.1	2939.9	26.7
P ₂ -1	RD 7	2775.4	28.9	2117.5	29.8	908.6	30.3	3684.0	29.2	3026.1	30.0
	RD 11	3194.8	29.0	2536.9	29.8	877.4	30.3	4072.2	29.3	3414.3	30.0
P_2-2	RD 7	2739.4	28.8	2023.3	28.5	874.0	28.2	3613.4	28.7	2897.3	28.4
	RD 11	2855.5	28.8	2139.4	28.5	921.2	27.9	3776.7	28.6	3060.6	28.3
P ₂ -3	RD 7	2068.1	25.5	1410.0	24.7	1073.4	26.8	3141.5	26.0	2483.4	25.6
	RD 11	2535.8	25.6	1877.7	25.0	931.7	27.4	3467.5	26.1	2809.4	25.8

Remarks: A : Accumulated value (°C)

M. : Average daily mean air temperature (°C).

Planting cycle-crop	Variety	Seeding to heading	Transplanting to heading	Heading to harvesting	Seeding to harvesting	Transplanting to harvesting
P ₁ -1	RD 7	11.4	11.7	9.6	11.0	11.1
	RD 11	11.0	11.3	9.5	10.7	10.8
P ₁ -2	RD 7	9.2	9.3	8.3	9.0	9.0
	RD 11	9.2	9.3	8.2	9.0	8.9
P ₁ -3	Rd 7	6.9	6.6	9.6	7.6	7.6
	RD 11	6.2	5.7	9.9	7.2	7.1
P ₂ -1	RD 7	10.0	9.4	9.6	9.9	9.4
	RD 11	9.9	9.3	9.5	9.8	9.3
P ₂ -2	RD 7	8.3	8.0	6.6	7.9	7.6
	RD 11	8.3	7.9	6.4	7.8	7.5
P ₂ -3	RD 7	8.3	9.1	11.1	9.3	10.0
	RD 11	8.8	9.7	10.8	9.3	10.0

Table 4-9. Average difference between daily maximum and minimum air temperature during growing period (°C)

Table 4-10. Water consumption in P_1 -1

				-		
Weeks after transplanting	Water requirement in depth (mm)	Evapo- ration (mm)	Trans- piration (mm)	Pan evaporation (mm)	Т ЕР (%)	Evapo- transpiratior (mm)
1	5.8	3.6	0.8	4.4	18.2	4.4
2	5.0	3.8	0.3	4.2	7.0	4.1
3	5.9	3.7	1.0	5.1	19.6	4.7
4	6.0	3.2	1.8	5.2	34.6	5.0
5	5.6	3.0	2.2	5.6	39.3	5.2
6	7.8	3.2	3.1	6.8	45.6	6.3
7	7.3	2.4	3.7	5.9	62.7	6.1
8	6.8	1.9	4.4	5.8	75.9	6.3
9	7.5	1.6	5.7	6.8	83.8	7.3
10	7.0	1.9	4.7	6.3	74.6	6.6
11	7.6	2.3	5.1	6.0	85.0	7.4
12	6.8	3.0	3.6	6.3	57.1	6.6
13	8.7	2.8	6.2	7.8	79.5	9.0
Total						
(mm/91 days) Mean	614.4	254.8	298.2	533.4		553.0
(mm/day)	6.8	2.8	3.3	5.9	52.5	6.1

Remarks:

1) RD 7 in the plot of $W_1F_1D_1$ was used for measurement of water consumption.

2) Growing period (from transplanting to harvesting) in P₁-1 is 91 days. (Jan. 13 to Apr. 14)
 3) T: Transpiration EP: Pan evaporation

4) Pan evaporation was measured by using a pan 20 cm in diameter: The values are supposedly around 10 percent more than that by using a pan 120 cm in diameter.

5) Water requirement in depth was not proportional to evapotranspiration because the former was influenced by the field conditions around the test field.

Weeks after transplanting	Water requirement in depth (mm)	Evapo- ration (mm)	Trans- piration (mm)	Pan evaporation (mm)	Т ЕР (%)	Evapo- transpiration (mm)
1	7.3	6.6	0.9	6.6	13.6	7.5
2	4.9	4.7	0.6	6.3	9.5	5.3
3	6.3	4.6	1.0	6.1	16.4	5.6
4	11.0	5.7	1.1	7.8	14.1	6.8
5	10.0	4.1	2.9	6.1	47.5	7.0
6	13.1	4.4	3.7	8.2	45.1	8.1
7	12.3	3.4	5.5	8.0	68.8	8.9
8	12.0	2.9	5.9	6.3	93.7	8.8
9	16.6	4.9	2.8	7.3	38.4	7.7
10	10.6	3.2	4.5	6.2	72.6	7.7
11	9.9	1.9	5.0	3.8	131.6	6.9
12	11.5	2.4	3.6	4.7	76.6	6.0
13	9.0	2.7	4.1	5.7	71.9	6.8
14	7.8	2.7	2.7	6.2	43.5	5.4
15	4.6	2.8	0.8	4.5	17.8	3.6
16	6.2	3.8	0.0	5.4	0	3.8
Total		nanna na chuirte tha ann an t				
(mm/108 days)	1,045.5	410.4	315.7	672.8		726.1
Mean						
(mm/day)	9.7	3.8	2.9	6.2	49.3	6.7

Table 4-11. Water consumption in P_1 -2

Remarks: Growing period in P₁-2 is 108 days (May 13 to Aug. 29).

Weeks after transplanting	Water requirement in depth (mm)	Evapo- ration (mm)	Trans- piration (mm)	Pan evaporation (mm)	Т ЕР (%)	Evapo- transpiration (mm)
1	4.6	4.4	0	5.1	0	4.4
2	7.1	4.0	0	4.0	0	4.0
3	5.4	4.2	1.2	5.5	21.8	5.4
4	5.4	3.8	1.8	5.1	35.3	5.6
5	7.2	4.7	1.5	5.5	27.3	6.2
6	7.2	2.5	3.6	4.0	90.0	6.1
7	6.7	2.1	3.4	4.0	85.0	5.5
8	6.5	1.7	4.3	5.0	86.0	6.0
9	7.3	0.9	6.0	4.5	133.3	6.9
10	4.2	1.1	4.1	4.5	91.1	5.2
11	6.7	1.0	4.5	4.4	102.3	5.5
12	5.0	0.9	3.7	4.7	78.7	4.6
13	5.8	1.4	3.1	4.7	66.0	4.5
14	5.5	1.4	2.2	4.9	44.9	3.6
15	6.5	0.3	2.3	4.6	50.0	2.6
Total						
(mm/101 days) Mean	611.5	239.6	282.7	474.0	—	522.3
(mm/day)	6.1	2.4	2.8	4.7	61.2	5.2

Table 4-12. Water consumption in P_1 -3

Remarks: Growing period in P_1 -3 is 101 days (Sept. 9 to Dec. 19).

				-		
Weeks after transplanting	Water requirement in depth (mm)	Evapo- ration (mm)	Trans- piration (mm)	Pan evaporation (mm)	Т ЕР (%)	Evapo- transpiration (mm)
1	7.6	5.8	0	6.3	0	5.8
2	8.2	5.7	0.5	6.5	7.7	6.2
3	6.9	4.3	1.1	5.7	19.3	5.4
4	10.2	5.1	3.0	7.5	40.0	8.1
5	9.8	4.4	3.5	7.4	47.3	7.9
6	8.9	3.4	4.4	7.2	61.1	7.8
7	11.5	3.2	4.9	7.3	67.1	8.1
8	8.6	2.3	5.1	6.5	78.5	7.4
9	8.7	2.1	6.2	7.0	88.6	8.3
10	7.7	1.7	5.7	6.2	91.9	7.4
11	8.0	2.4	5.3	6.2	85.5	7.7
12	7.9	2.0	5.7	7.2	79.2	7.7
13	8.7	2.0	5.1	6.7	76.1	7.1
14	8.4	1.9	4.6	7.2	63.9	6.5
15	8.2	2.5	4.2	8.5	49.4	6.7
Total						
(mm/101 days)	872.3	331.6	389.3	689.8		729.9
Mean						
(mm/day)	8.6	3.3	3.9	6.8	53.3	7.2

Table 4-13.Water consumption in P2-1

Remarks: Growing period in P₂-1 is 101 days (Mar. 15 to Jun. 24).

Weeks after transplanting	Water requirement in depth (mm)	Evapo- ration (mm)	Trans- piration (mm)	Pan evaporation (mm)	Т ЕР (%)	Evapo- transpiration (mm)
1	5.2	5.3	0	6.2	0	5.3
2	5.2	3.8	0.4	3.8	10.8	4.2
3	5.2	4.2	1.2	4.7	25.5	5.4
4	6.4	5.3	1.6	5.7	28.1	6.9
5	5.7	4.1	3.0	6.2	48.4	7.1
6	4.9	3.2	1.7	4.5	37.8	4.9
7	6.1	3.7	2.0	5.3	37.7	5.7
8	4.3	2.7	0.9	3.6	25.0	3.6
9	5.3	2.3	3.9	5.1	76.5	6.2
10	5.6	4.0	1.1	4.0	27.5	5.1
11	3.7	2.2	3.5	5.5	63.6	5.7
12	4.9	3.1	1.9	5.1	37.3	5.0
13	4.4	2.7	3.5	5.5	63.6	6.2
14	5.6	1.6	4.5	4.0	112.5	6.1
15	4.7	1.7	3.1	3.8	81.6	4.8
Total						
(mm/102 days) Mean	525.4	344.2	216.8	499.6		561.0
(mm/day)	5.2	3.4	2.1	4.9	44.0	5.5

Table 4-14.Water consumption in P2-2

Remarks: Growing period in P_2 -2 is 102 days (July 15 to Oct. 25).

۰

L -							
Weeks after transplanting	Water requirement in depth (mm)	Evapo- ration (mm)	Trans- piration (mm)	Pan evaporation (mm)	T EP (%)	Evapo- transpiration (mm)	
1	2.9	3.9	0	4.7	0	3.9	
2	6.8	3.7	0.4	4.5	8.9	4.1	
3	3.8	3.2	0.9	4.6	19.6	4.1	
4	8.0	4.0	1.7	4.6	37.0	5.7	
5	8.7	3.3	2.1	4.9	42.9	5.4	
6	6.7	2.3	2.6	4.6	56.9	4.9	
7	6.6	2.4	2.9	4.4	65.9	5.3	
8	7.0	1.8	3.9	4.7	83.0	5.7	
9	7.5	1.7	3.9	4.4	88.6	5.6	
10	4.8	1.3	3.7	4.1	90.2	5.0	
11	6.8	1.4	3.9	4.2	92.9	5.3	
12	5.2	1.7	2.5	3.9	64.1	4.2	
13	4.8	1.3	2.9	5.1	56.9	4.2	
14	6.0	2.8	3.4	6.1	55.7	6.2	
Total							
(mm/97 day) Mean	593.5	240.8	240.2	447.5		481.0	
(mm/day)	6.1	2.5	2.5	4.6	54.4	5.0	

Table 4-15. Water consumption in P_2 -3

Remarks: Growing period in P_2 -3 is 97 days (Nov. 10 to Feb. 15).