Maize in India
a review of literatures

Haruo Mikoshiba

Tropical Agriculture Research Center
Ministry of Agriculture and Forestry
Nishigahara 2–2–1, Kita-ku
Tokyo, Japan
ACKNOWLEDGMENT

I was given an opportunity to stay at the Indian Agricultural Research Institute in New Delhi for a period from January 1968 to March 1969 under the Tropical Agriculture Research Program of the Japanese Ministry of Agriculture and Forestry with an aim to study maize breeding in India.

This report is a compilation of literatures and information obtained by the generous assistance rendered by the All India Coordinated Maize Improvement Scheme, office of the Rockefeller Foundation and many other agencies.

I take this opportunity to extend my sincere gratitude to Dr. N. L. Dhawan, Project Coordinator, All India Maize Improvement Scheme for giving me all possible help and personal attention whenever needed. Without his cooperation, it would not have been possible to learn and collect so much of information in such a short time. I am most thankful for his constant encouragement during my participation in the field work and also in the collection of information about maize breeding in India.

I owe my thanks to Dr. Joginder Singh, Dr. B. K. Mukherjee and Mr. N. N. Singh, Senior Maize Breeder, Maize Breeder and Senior Research Assistant respectively at IARI for the great pains they took to make me feel at home whether in the field or in the laboratory or elsewhere. I am obliged for their help and cooperation in making available all the informations and helping in the compilation of the report.

I acknowledge the Maize Breeders of all the Stations of Coordinated Maize Improvement Scheme and the Director of Vivekananda Laboratory for extending me all cooperation and hospitality whenever I visited them.

To Mr. I. Suzuki, First Secretary and other staff of Japanese Embassy, I extend my thanks for their cooperation and help.
CONTENTS

I
MAIZE CULTIVATION IN INDIA .. 1
 A. Environmental conditions of maize growing areas 1
 B. Cropping season .. 6
 C. Cropping area ... 8
 D. Maize diseases, their control and pattern of infection 12
 E. Maize plants, their control and pattern of infestation 14
 F. Production and hectare yield ... 20
 G. National demonstration in maize production 22
 H. Rotation practices ... 25
 I. Recommended cultural practices 26
 J. Economics of cultivation ... 27

II
COORDINATED MAIZE IMPROVEMENT PROJECT - Its Inception and Aim .. 30
 A. Breeding Section ... 32
 i) Derivation of inbred lines and making of double cross hybrid .. 32
 ii) Collection and evaluation of Indian and Exotic germplasm... 37
 iii) Composite breeding approach and results obtained 38
 iv) Breeding for prolific eared character, compact plant type and protein content in maize 54
 v) Summary of breeding work carried out at different stations .. 55
 B. Agronomy section ... 58
 C. Pathology section ... 59
 D. Entomology section .. 60

III
SYSTEMS, METHODOLOGY AND PRACTICES IN THE COORDINATED PROJECT .. 63

IV
HYBRID SEED PRODUCTION AND ROLE OF NATIONAL SEED CORPORATION .. 69

V
STORAGE OF SEEDS ... 76

VI
MAIZE IN INDIA - An analysis ... 78
 REFERENCES ... 80
 PLATES .. 85
 APPENDICES ... 103
LIST OF TABLES

1 Geographic and climatic data of maize breeding centres .. 4
2 Characteristics of soils in experimental fields ... 5
3 Land area and cropped land ... 8
4 State-wise acreage under maize .. 9
5 Disease pattern in India .. 16
6 Insect pattern in India .. 20
7 Total maize production and hectare yield in state-wise for the year 1967-68 21
8 Area under irrigation state-wise ... 22
9 Number of demonstrations conducted on maize in different states for the year 1967-68 23
10 Results of National Demonstrations under different fertilizer doses 24
11 Frequency of distribution of National Demonstrations state-wise 24
12 Comparison of state average yield and the yield obtained in National Demonstrations 25
13 Average production costs and returns from maize ... 28
14 Indian maize collections ... 37
15 Performance of advanced generations of composites (4 generations) 39
16 Performance of advanced generations of composites (3 generations) 40
17 Performance of biparental progenies .. 42
18 Biparental progeny selection ... 42
19 Performance of reconstituted composite populations using different selection procedures against the respective base populations ... 47
20 3-way cross test ... 54
21 Number of hybrid seed producers state-wise ... 72
22 Progress of hybrid maize seed production .. 73
23 Area under hybrid maize ... 73

LIST OF FIGURES

Fig.1, Location of maize breeding centres in India ... 2
2 Climatological data of maize breeding centres ... 3
3 Cropping seasons of maize growing areas ... 7
4 Percentage of maize area to total cropped area state-wise 10
5 Maize area state-wise ... 11
6 Area, production and hectare yield ... 19
7 Recurrent selection procedures ... 41
8 Scheme for the development and improvement of composite varieties 44
9 The time factor in composite vs. double cross hybrid .. 46
10 Step ladder breeding for hybrid maize ... 52
11 Seed production of hybrid maize .. 53
<table>
<thead>
<tr>
<th>Plate Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brown stripe downy mildew</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>Downy mildew</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>Leaf rust</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>Black bundle</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>Charcoal rot</td>
<td>86</td>
</tr>
<tr>
<td>6</td>
<td>Common smut</td>
<td>86</td>
</tr>
<tr>
<td>7</td>
<td>Stem borer damage</td>
<td>86</td>
</tr>
<tr>
<td>8</td>
<td>Grass hopper damage</td>
<td>87</td>
</tr>
<tr>
<td>9</td>
<td>Grain type of Indian local variety, hybrid and US hybrid</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>Elite inbred line CM 104</td>
<td>87</td>
</tr>
<tr>
<td>11</td>
<td>Elite inbred line CM 106</td>
<td>88</td>
</tr>
<tr>
<td>12</td>
<td>Elite inbred line CM 109</td>
<td>88</td>
</tr>
<tr>
<td>13</td>
<td>Elite inbred line CM 110</td>
<td>88</td>
</tr>
<tr>
<td>14</td>
<td>Elite inbred line CM 112</td>
<td>88</td>
</tr>
<tr>
<td>15</td>
<td>Elite inbred line CM 113</td>
<td>89</td>
</tr>
<tr>
<td>16</td>
<td>Elite inbred line CM 201</td>
<td>89</td>
</tr>
<tr>
<td>17</td>
<td>Elite inbred line CM 202</td>
<td>89</td>
</tr>
<tr>
<td>18</td>
<td>Elite inbred line CM 205</td>
<td>89</td>
</tr>
<tr>
<td>19</td>
<td>Elite inbred line CM 300</td>
<td>90</td>
</tr>
<tr>
<td>20</td>
<td>Elite inbred line CM 400</td>
<td>90</td>
</tr>
<tr>
<td>21</td>
<td>Antigua Gr.1 CM 500</td>
<td>90</td>
</tr>
<tr>
<td>22</td>
<td>Some of the released hybrids</td>
<td>90</td>
</tr>
<tr>
<td>23</td>
<td>Male parents of released hybrid</td>
<td>90</td>
</tr>
<tr>
<td>24</td>
<td>Male parents of released hybrid</td>
<td>91</td>
</tr>
<tr>
<td>25</td>
<td>Male parents of released hybrid</td>
<td>91</td>
</tr>
<tr>
<td>26</td>
<td>Male parents of released hybrid</td>
<td>91</td>
</tr>
<tr>
<td>27</td>
<td>Hybrid vigour in varietal cross</td>
<td>91</td>
</tr>
<tr>
<td>28</td>
<td>Biparental progeny breeding</td>
<td>91</td>
</tr>
<tr>
<td>29</td>
<td>Released composites</td>
<td>91</td>
</tr>
<tr>
<td>30</td>
<td>Future improvement of released composites</td>
<td>92</td>
</tr>
<tr>
<td>31</td>
<td>Sikkim Primitive maize – A living fossil but source for prolificacy</td>
<td>93</td>
</tr>
<tr>
<td>32</td>
<td>Multi-ears segregates</td>
<td>93</td>
</tr>
<tr>
<td>33</td>
<td>High lysine opaque composite</td>
<td>93</td>
</tr>
<tr>
<td>34</td>
<td>Sweet corn composite</td>
<td>94</td>
</tr>
<tr>
<td>35</td>
<td>Seed storage cabinets</td>
<td>94</td>
</tr>
<tr>
<td>36</td>
<td>Apparatus for sorting out data entry-replication-wise</td>
<td>94</td>
</tr>
<tr>
<td>37</td>
<td>Method for putting of data strips</td>
<td>94</td>
</tr>
<tr>
<td>38</td>
<td>Harvesting and weighing</td>
<td>95</td>
</tr>
<tr>
<td>39</td>
<td>Taking of moisture sample</td>
<td>95</td>
</tr>
<tr>
<td>40</td>
<td>Moisture testing of grains with the universal moisture tester</td>
<td>97</td>
</tr>
<tr>
<td>41</td>
<td>Shelling of ears</td>
<td>97</td>
</tr>
<tr>
<td>42</td>
<td>Scale for rating Helminthosporium turcicym leaf blight</td>
<td>96</td>
</tr>
<tr>
<td>43</td>
<td>Ploughing</td>
<td>97</td>
</tr>
<tr>
<td>44</td>
<td>Fertilizer application</td>
<td>97</td>
</tr>
<tr>
<td>45</td>
<td>Irrigation</td>
<td>98</td>
</tr>
<tr>
<td>46</td>
<td>Inter-cultivation</td>
<td>98</td>
</tr>
<tr>
<td>47</td>
<td>Dusting of insecticides</td>
<td>98</td>
</tr>
<tr>
<td>48</td>
<td>Pollination apron</td>
<td>99</td>
</tr>
<tr>
<td>49</td>
<td>Cutting of ear shoot for uniform silking</td>
<td>99</td>
</tr>
</tbody>
</table>
Putting ear shoot bag .. 99
Putting tassel bag ... 100
Collecting pollen .. 100
Pollination procedures ... 101

LIST OF APPENDICES

APPENDIX
NO.
I Climatological data of different stations - 103

II Area under maize in different states 112

III Maize production in different states 114

IV Average yield per hectare in different states 116

V List of outstanding inbred lines 118

VI Performance of experimental double cross hybrids in different zones .. 124

VII Code Number and pedigree of experimental double cross hybrids ... 126

VIII Code Number of the parental inbred lines and varieties of the released hybrids ... 128

IX Pedigree of released hybrids 129

X Direction of crossing of released hybrids 130

XI State-wise list of Indian maize complexes 131

XII Master sheet of yield trial ... 134

XIII Field data recording sheet 136

XIV Field layout yield trials .. 137

XV List of addresses of NSC units 138
CHAPTER I

MAIZE CULTIVATION IN INDIA

A. Environmental conditions*:

Maize can be grown in almost all over India but it is popular in the northern and south western part. In the northern part, it is grown only in rainy season (Kharif), but in the south western part it can be grown in winter (Rabi), summer (Zaid) and rainy (Kharif) seasons. To carry out research work on maize in India, the differences in climate, soil type and other agro-climatic factors are taken into consideration. The whole country, therefore, is divided into four different zones on the basis of agro-climatic and edaphic factors. A main research centre is established for each zone and within each zone different substations have been formed. The four zones are as follows:

Zone 1 - includes the hilly areas of the Himalayas
Main centre: Srinagar
Substations: Bajaura, Solan, Almora, Sikkim and Kalimpong

Zone 2 - includes the western Indo-gangetic plains with moderate to low rainfall
Main Centre: Delhi
Substations: Ajmer, Ludhiana

Zone 3 - includes the eastern Indo-gangetic plains
Main Centre: Pantnagar
Substation: Dholi

Zone 4 - includes the southern and peninsular India
Main centre: Hyderabad
Substations: Godhra (Gujarat), Arbhavi (Mysore), Chhindwara (M.P.)

Fig.1 represents the map of India with the different main centres and substations.

Geographic and climatic data of these centres are presented in Table 1 and Fig. 2. The latitude of breeding centres ranges from 16°N to 34°N. The range in altitude is from 49 meters at Dholi to 1,520 meters of Solan. The maximum temperature during June often exceeds 40°C at some of the locations while minimum temperature during winter are favourable for maize at most of the locations except Zones 1 and 2. Lack of adequate irrigation facilities limit the area under maize experiment during winter (Rabi) season at Godhra, Arbhavi and Zone 1.

Annual rainfall varies from 513 mm. at Arbhavi to about 2200 mm. at Almora and Kalimpong. Most of the rainfall is received between April and October at a majority of the locations. Winter rainfall is high only at Bajaura where the temperatures are unfavourable for maize during the Rabi season. Lack of adequate irrigation facilities limit the area under maize experiment during winter (Rabi) season at Godhra, Arbhavi and Zone 1. (Appendix I)

The crop is successfully raised on a wide variety of soil types ranging from the alluvia of the Indo-Gangetic plains to the black soil of the Deccan. Table 2 gives the characteristic of soils in the experimental fields of some of the research centres which represent most of the different soil types in the country. A brief description of soils in each of the centres is given herein**.

* According to the Progress Report of Coordinated Maize Breeding Scheme 1962, ICAR, INDIA.
** According to the technical Report, Maize Agronomy, 1964-1968, ICAR, INDIA.
Figure 1. Location of Maize Breeding Centers in INDIA*

* Figure in the Progress Report of Coordinated Maize Breeding Scheme. 1963, ICAR, was cited with a slight modification.
Figure 2. Climatological Data of Maize Breeding Center*

1. Srinagar
 Latitude 34° 05' N
 Longitude 74° 50' E
 Altitude 1,586m

2. Delhi
 Latitude 28° 39' N
 Longitude 77° 12' E
 Altitude 216m

3. Pantnagar
 (Bareilly)
 Latitude 28° 22' N
 Longitude 79° 22' E
 Altitude 673m

4. Kalimpong
 Latitude 27° 08' N
 Longitude 88° 28' E
 Altitude 1,209m

5. Godhra
 (Dhod)
 Latitude 22° 50' N
 Longitude 74° 16' E
 Altitude 333m

6. Chhindwara
 Latitude 22° 05' N
 Longitude 79° 33' E
 Altitude 617.8m

7. Hyderabad
 Latitude 17° 58' N
 Longitude 78° 23' E
 Altitude 545m

8. Bangalore
 Latitude 12° 58' N
 Longitude 77° 35' E
 Altitude 921m

* Compiled from Climatological Tables of Observatories in India (1931-1960), Indian Meteorological Department, Government of India.
<table>
<thead>
<tr>
<th>Station</th>
<th>Altitude (meters)</th>
<th>Latitude (°)</th>
<th>Mean daily temperature(°C)</th>
<th>Average annual temp.(°C)</th>
<th>Average annual rainfall(mm.)</th>
<th>Soil texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Srinagar</td>
<td>1,580</td>
<td>34 05</td>
<td>29.7</td>
<td>14.1</td>
<td>9.0</td>
<td>2.6</td>
</tr>
<tr>
<td>Bajaura</td>
<td>1,040</td>
<td>30 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solan</td>
<td>1,520</td>
<td>30 00</td>
<td>23.9</td>
<td>15.6</td>
<td>10.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Almora</td>
<td>1,280</td>
<td>29 35</td>
<td>37.8</td>
<td>13.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gangtok</td>
<td>1,370</td>
<td>27 15</td>
<td>23.3</td>
<td>16.4</td>
<td>15.6</td>
<td>6.4</td>
</tr>
<tr>
<td>Kalimpong</td>
<td>1,070</td>
<td>27 04</td>
<td>24.0</td>
<td>19.1</td>
<td>16.8</td>
<td>9.0</td>
</tr>
<tr>
<td>Zone 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delhi</td>
<td>228</td>
<td>28 35</td>
<td>39.1</td>
<td>28.1</td>
<td>23.2</td>
<td>7.2</td>
</tr>
<tr>
<td>Ludhiana</td>
<td>247</td>
<td>30 56</td>
<td>39.8</td>
<td>27.2</td>
<td>21.6</td>
<td>6.8</td>
</tr>
<tr>
<td>Ajmer</td>
<td>486</td>
<td>26 27</td>
<td>38.0</td>
<td>27.7</td>
<td>24.1</td>
<td>8.1</td>
</tr>
<tr>
<td>Zone 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pantnagar</td>
<td>240</td>
<td>29 22</td>
<td>37.9</td>
<td>26.9</td>
<td>22.8</td>
<td>8.1</td>
</tr>
<tr>
<td>Dholi</td>
<td>49</td>
<td>25 05</td>
<td>35.7</td>
<td>26.6</td>
<td>23.7</td>
<td>11.3</td>
</tr>
<tr>
<td>Zone 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyderabad</td>
<td>537</td>
<td>17 26</td>
<td>34.8</td>
<td>24.0</td>
<td>28.6</td>
<td>13.6</td>
</tr>
<tr>
<td>Godhra</td>
<td>307</td>
<td>22 45</td>
<td>36.5</td>
<td>26.6</td>
<td>30.7</td>
<td>10.7</td>
</tr>
<tr>
<td>Chhindwara</td>
<td>682</td>
<td>22 00</td>
<td>35.0</td>
<td>24.7</td>
<td>26.3</td>
<td>9.8</td>
</tr>
<tr>
<td>Arbhavi</td>
<td>584</td>
<td>16 00</td>
<td>27.6</td>
<td>20.2</td>
<td>27.8</td>
<td>14.7</td>
</tr>
</tbody>
</table>

* Main centre

** Compiled from Climatological Tables of Observatories in India (1931-1960).
Table 2 Characteristics of soils in Experimental fields**

<table>
<thead>
<tr>
<th>Location</th>
<th>Year</th>
<th>Range of soil reaction (pH)</th>
<th>Range of E.C. millimhos/cm.</th>
<th>Range of organic matter C %</th>
<th>Range of available nutrients lbs/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pantnagar</td>
<td>1964</td>
<td>6.4 - 7.6</td>
<td>0.3 - 0.6</td>
<td>1.01 - 1.15</td>
<td>3 - 17</td>
</tr>
<tr>
<td></td>
<td>1965</td>
<td>6.8 - 7.0</td>
<td>0.15 - 0.3</td>
<td>1.16 - 1.20</td>
<td>8 - 23</td>
</tr>
<tr>
<td>Godhra</td>
<td>1964</td>
<td>6.0 - 6.7</td>
<td>0.5 - 2.6</td>
<td>0.46 - 0.50</td>
<td>23 - 54</td>
</tr>
<tr>
<td></td>
<td>1965</td>
<td>5.9 - 7.3</td>
<td>0.2 - 0.6</td>
<td>0.36 - 0.63</td>
<td>7 - 62</td>
</tr>
<tr>
<td></td>
<td>1966</td>
<td>6.5 - 7.2</td>
<td>0.25 - 0.80*</td>
<td>0.38 - 0.50</td>
<td>6 - 60</td>
</tr>
<tr>
<td>Ajmer</td>
<td>1964</td>
<td>8.5</td>
<td></td>
<td>0.54</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1965</td>
<td>8.2</td>
<td></td>
<td>0.38</td>
<td>12</td>
</tr>
<tr>
<td>Delhi</td>
<td>1965</td>
<td>7.8</td>
<td>1.2</td>
<td>0.40</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1966</td>
<td>7.7 - 8.1</td>
<td>0.70 - 1.40*</td>
<td>0.32 - 0.42</td>
<td>4 - 43</td>
</tr>
<tr>
<td>Hyderabad</td>
<td>1964</td>
<td>7.6</td>
<td>0.3</td>
<td>0.65</td>
<td>60</td>
</tr>
<tr>
<td>Bajaura</td>
<td>1964</td>
<td>6.1</td>
<td>0.2</td>
<td>0.80</td>
<td>9</td>
</tr>
<tr>
<td>Chhindwara</td>
<td>1964</td>
<td>5.8 - 6.0</td>
<td>0.15 - 0.25</td>
<td>0.63 - 0.84</td>
<td>80 - 85</td>
</tr>
<tr>
<td>Ludhiana</td>
<td>1964</td>
<td>8.2 - 813</td>
<td>0.15 - 0.20</td>
<td>0.42 - 0.46</td>
<td>10</td>
</tr>
<tr>
<td>Kalimpong</td>
<td>1964</td>
<td>5.0</td>
<td>1.1</td>
<td>1.36</td>
<td>69</td>
</tr>
</tbody>
</table>

*Soluble salts (E.C.: electric conductivity) m.m.hos/cm.

Classification of different soil constituents:

<table>
<thead>
<tr>
<th>Soil Reaction (pH)</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidic - below 6.0</td>
<td>Normal - below 1</td>
</tr>
<tr>
<td>Normal - 6.0 - 8.7</td>
<td>Injurious - above 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Org.C</td>
<td>Below 0.5</td>
<td>0.5 - 0.75</td>
</tr>
<tr>
<td>'P'</td>
<td>" 9</td>
<td>9 - 22</td>
</tr>
<tr>
<td>'K'</td>
<td>" 100</td>
<td>100 - 250</td>
</tr>
</tbody>
</table>

** According to Final Technical Report, Maize Agronomy (1964-1968), ICAR, INDIA.

Bajaura: The soil at Bajaura in the Kulu Valley is a slightly acidic silt loam of alluvial soil. There is no problem with salinity and it is relatively high in organic matter (0.8% C). The phosphorus status is very low but the exchangeable potassium is high. This soil is well drained and is capable of very good yields.

Kalimpong: The Kalimpong farm is a terraced farm that was an irrigated paddy farm some years previously. The soils are fairly fine-textured, and waterlogging is a problem. These are the most acid of all experimental soils (about pH 5.0), the organic matter content is relatively high. Contents of phosphorus
potassium are both high. In spite of the drainage problems this farm has given
the highest yield recorded in the maize scheme.

Delhi: The experimental field at I.A.R.I. (Main Block #8) is a low-lying,
poorly-drained silt loam to silty clay loam. Salinity is a very real problem
with water tables usually standing at 1 to 3 meters. Surface drainage is
exceedingly poor. PH is about 8.0, organic matter is low, phosphorus is very
low, and potassium is fairly high. In some areas of this field soluble sodium
is prominent. On the whole, this is a poor agricultural soil. At present,
attempts are being made to tile drain this field so that the water-table can
be lowered and the excess salts leached out.

Ludhiana: The soil at Ludhiana is a deep sandy soil subject to drought
because of its low water-holding capacity. The soil is calcareous with little
organic matter, low phosphorus, and fairly high potassium levels. Salinity is
not a problem here although many of the soils in this area are "salting out"
due to rising water-tables.

Ajmer: The soils of the Ajmer farms are sandy, and salty. Moreover, the
irrigation water is also high in salt (2800-4750 millimhos/cm.). Only the
course textured soils and the fairly concentrated monsoon rains (little as
they are) prevent this area from accumulating large quantities of salt. The
soil pH is about 8.5, organic matter is low as is "available" phosphorus.
"Available" potassium is in the medium range.

Pantnagar: This experimental soil is in the "Tarai" region, a zone of
natural grassland which was only recently put into cultivation. The organic
matter content is relatively high (slightly less than 2% organic matter) and
salinity is no problem. "Available" P is generally very low, and K is medium
to high. These soils are young alluvial silty clay loam soils with very little
profile differentiation. There is usually present a layer of coarse gravel at
1 to 3 meters below the surface. These are productive soils.

Hyderabad: The Hyderabad soils are fine-textured "black cotton soils".
They are slightly alkaline, relatively low in organic matter, low in P except
where fertiliser has been used for some time, and very high in potassium.
Salts are a problem in a few spots. Although this soil does not appear to be
especially good for high yields, year in and year out Hyderabad reports excel­
lent yields.

Chhindwara: The research farm at Chhindwara encompasses two kinds of
soils, red sandy soils and black clay soils. This soil is slightly acid, low
in organic matter and high in both P and K. This soil has given very good
Yields in the past.

Godhra: The Godhra soils are slightly acid to neutral, low in organic
matter, generally low in P, and high in K. Salts are a problem in some spots.
These sandy loam soils do not generally yield well.

Arbhavi: The soils at Arbhavi are sandy loam soils.

B. Cropping seasons:
In the states of West Bengal, Bihar, Utter Pradesh, Punjab, Jammu and
Kashmir, Rajasthan, Gujarat and Madhya Pradesh, maize is grown as a kharif crop.
It is planted at the onset of the monsoon rains at the end of June and beginning
of October. However, very early maturing varieties are grown during the summer
months in river valleys. Such varieties are planted in April and are harvested
Figure 3. Cropping season of maize growing areas

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1</td>
<td></td>
</tr>
<tr>
<td>Srinagar</td>
<td></td>
</tr>
<tr>
<td>Bajaura</td>
<td></td>
</tr>
<tr>
<td>Solan</td>
<td></td>
</tr>
<tr>
<td>Almora</td>
<td></td>
</tr>
<tr>
<td>Kalimpong</td>
<td></td>
</tr>
<tr>
<td>Gangtok</td>
<td></td>
</tr>
<tr>
<td>Zone 2</td>
<td></td>
</tr>
<tr>
<td>Delhi</td>
<td></td>
</tr>
<tr>
<td>Ludiana</td>
<td></td>
</tr>
<tr>
<td>Udaipur</td>
<td></td>
</tr>
<tr>
<td>Zone 3</td>
<td></td>
</tr>
<tr>
<td>Pant Nagar</td>
<td></td>
</tr>
<tr>
<td>Dholi</td>
<td></td>
</tr>
<tr>
<td>Zone 4</td>
<td></td>
</tr>
<tr>
<td>Hyderabad</td>
<td></td>
</tr>
<tr>
<td>Godhara</td>
<td></td>
</tr>
<tr>
<td>Chhindwara</td>
<td></td>
</tr>
<tr>
<td>Arbhavi</td>
<td></td>
</tr>
</tbody>
</table>

- Sowing time
- Silking time
- Harvesting time

*Complied from the data of Breeding Centre respectively.
in about 70 days, before the monsoon starts.

The varieties in the hilly regions are planted from March to May. The crop matures in 110 to 130 days and is harvested from August to September.

In the states of Andhra Pradesh and Maharashtra, there are two crop seasons. Kharif planting starts about the middle of June, varieties mature in about 110 to 120 days and harvesting is done in September. A considerable area of maize is also grown in the Rabi season; it is planted in November and harvested from March to April. Most of the Kharif maize is rainfed; the Rabi crop is, however, grown under irrigation.

Fig. 3 represents the time of sowing, silking of the crop and harvesting of the crop at the different stations in each zone.

C. Cropping area:

It is interesting to note that though India is such a big country, yet only 4.6% of its total area is cropped. Out of all the states, only Punjab has the largest cropping area, as high as 20.1%. Rest of States fall far back in utilization of land for agricultural production. Madhya Pradesh has the largest area but only 4.3% of it is under cultivation. Rajasthan has only 4.5% under crops. Uttar Pradesh and W. Bengal have 7.3% under crops. A comparison of total land area and total cropped area is presented in Table 3.

Table 3 Land area and cropped land in India*

<table>
<thead>
<tr>
<th>State</th>
<th>Area in sq.km.</th>
<th>Total cropped area ('64-'65)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Andhra Pradesh</td>
<td>275,261</td>
<td>12,756</td>
<td>5.0</td>
</tr>
<tr>
<td>2. Assam</td>
<td>203,380</td>
<td>2,717</td>
<td>1.2</td>
</tr>
<tr>
<td>3. Bihar</td>
<td>134,038</td>
<td>10,832</td>
<td>6.2</td>
</tr>
<tr>
<td>4. Gujarat</td>
<td>187,115</td>
<td>10,044</td>
<td>5.4</td>
</tr>
<tr>
<td>5. Haryana</td>
<td>43,869</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6. Jammu & Kashmir</td>
<td>222,800</td>
<td>843</td>
<td>0.4</td>
</tr>
<tr>
<td>7. Kerala</td>
<td>38,855</td>
<td>2,489</td>
<td>6.4</td>
</tr>
<tr>
<td>8. Madhya Pradesh</td>
<td>443,452</td>
<td>18,903</td>
<td>4.3</td>
</tr>
<tr>
<td>9. Madras</td>
<td>130,357</td>
<td>7,177</td>
<td>5.5</td>
</tr>
<tr>
<td>10. Maharashtra</td>
<td>307,477</td>
<td>19,214</td>
<td>6.2</td>
</tr>
<tr>
<td>11. Mysore</td>
<td>192,204</td>
<td>10,801</td>
<td>5.6</td>
</tr>
<tr>
<td>12. Nagaland</td>
<td>16,488</td>
<td>49</td>
<td>0.3</td>
</tr>
<tr>
<td>13. Orissa</td>
<td>155,825</td>
<td>7,446</td>
<td>4.8</td>
</tr>
<tr>
<td>14. Punjab</td>
<td>50,236</td>
<td>10,121</td>
<td>20.1</td>
</tr>
<tr>
<td>15. Rajasthan</td>
<td>342,274</td>
<td>15,501</td>
<td>4.5</td>
</tr>
<tr>
<td>16. Uttar Pradesh</td>
<td>294,364</td>
<td>21,517</td>
<td>7.3</td>
</tr>
<tr>
<td>17. W. Bengal</td>
<td>87,617</td>
<td>6,391</td>
<td>7.3</td>
</tr>
<tr>
<td>18. Andaman & Nicobar</td>
<td>8,327</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>19. Chandigarh</td>
<td>114</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20. Dadra & Nagar Haveli</td>
<td>489</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>21. Delhi</td>
<td>1,484</td>
<td>102</td>
<td>6.9</td>
</tr>
<tr>
<td>22. Goa, Daman & Diu</td>
<td>3,693</td>
<td>139</td>
<td>3.8</td>
</tr>
<tr>
<td>23. Himachal Pradesh</td>
<td>56,019</td>
<td>175</td>
<td>0.3</td>
</tr>
<tr>
<td>24. Laccadive, Minicoy & Aminde Islands</td>
<td>28</td>
<td>3</td>
<td>10.7</td>
</tr>
<tr>
<td>25. Manipura</td>
<td>22,347</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26. Pondicherry</td>
<td>479</td>
<td>47</td>
<td>9.8</td>
</tr>
<tr>
<td>27. Tripura</td>
<td>10,453</td>
<td>322</td>
<td>3.1</td>
</tr>
<tr>
<td>Total</td>
<td>3,269,075</td>
<td>151,103</td>
<td>4.6</td>
</tr>
</tbody>
</table>

* According to Area, Production and Yield of Principal Crops in India, 1949-1950 to 1967-1968. Summary Table.
Maize growing area:

Maize is grown in almost all the states of India, but the acreage under this crop varies according to the food habits of the people in each state. Maximum acreage under maize is in Himachal Pradesh (68.5%) followed by Jammu and Kashmir (29.7%). Kerala does produce very little or no maize. Madras, Mysore, Maharashtra, Orissa and W. Bengal have less than 1% area under maize. The percentage of acreage under maize for each state can be seen from Fig.4.

Considering total area under maize in different states (Fig.5) it can be seen that Uttar Pradesh has the maximum acreage (over 1,000,000 hectares), Rajasthan and Bihar has over 700,000 hectares, Punjab and Madhya Pradesh have over 400,000 hectares under maize. Gujarat, Jammu and Kashmir and Himachal Pradesh have over 100,000 ha. The rest of the states grow only less than 100,000 ha. under maize.

Table 4 gives the actual acreage under maize in different states. If we compare the maize acreage in each state with the total maize acreage of the country, the same pattern as shown in Fig.4 emerges. Uttar Pradesh leads all the states in having 26.4% of the country's total maize area followed by Bihar having 17.7%. Delhi's contribution of maize area to the country is minimum.

<table>
<thead>
<tr>
<th>State</th>
<th>Area (thousand hectares) (final estimate)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Andhra Pradesh</td>
<td>252.8</td>
<td>4.5</td>
</tr>
<tr>
<td>2. Assam</td>
<td>24.4</td>
<td>0.4</td>
</tr>
<tr>
<td>3. Bihar</td>
<td>989.1</td>
<td>17.7</td>
</tr>
<tr>
<td>4. Gujarat</td>
<td>239.7</td>
<td>4.3</td>
</tr>
<tr>
<td>5. Haryana</td>
<td>117.3</td>
<td>2.1</td>
</tr>
<tr>
<td>7. Madhya Pradesh</td>
<td>589.2</td>
<td>10.7</td>
</tr>
<tr>
<td>8. Madras</td>
<td>2.9</td>
<td>0.1</td>
</tr>
<tr>
<td>9. Maharashtra</td>
<td>38.9</td>
<td>0.7</td>
</tr>
<tr>
<td>10. Mysore</td>
<td>15.4</td>
<td>0.3</td>
</tr>
<tr>
<td>11. Orissa</td>
<td>55.2</td>
<td>1.0</td>
</tr>
<tr>
<td>12. Punjab</td>
<td>469.2</td>
<td>8.4</td>
</tr>
<tr>
<td>13. Rajasthan</td>
<td>745.5</td>
<td>13.4</td>
</tr>
<tr>
<td>14. Utter Pradesh</td>
<td>1472.1</td>
<td>26.4</td>
</tr>
<tr>
<td>15. West Bengal</td>
<td>51.5</td>
<td>0.9</td>
</tr>
<tr>
<td>16. Delhi</td>
<td>1.6</td>
<td>0.02</td>
</tr>
<tr>
<td>17. Himachal Pradesh</td>
<td>285.8</td>
<td>4.6</td>
</tr>
<tr>
<td>18. Manipur</td>
<td>5.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>5576.7</td>
<td>100.0</td>
</tr>
</tbody>
</table>

* According to Area, Production and Yield of Principal crops in India, 1945-50 to 1967-68, Summary Table.
Figure 4. Percentage of Maize area to total cropped area in state wise*

* Calculated from the data of Area, Production and Yield of Principal Crops in India, 1949-50 to 1967-68, Summary table.
Figure 5. Maize Area State-wise*

INDIA

Over 1,000,000ha.
Over 700,000ha.
Over 400,000ha.
Over 100,000ha.
Less than 100,000ha.

1 Andhra Pradesh
2 Assam
3 Bihar
4 Gujarat
5 Haryana
6 Jammu & Kashmir
7 Madhya Pradesh
8 Madras
9 Maharashtra
10 Mysore
11 Orissa
12 Punjab
13 Rajasthan
14 Uttar Pradesh
15 West Bengal
16 Delhi
17 Himachal Pradesh
18 Manipur
19 Kerala

* Compiled from the data of Area, Production and Yield of Principal Crops in India, 1949-50 to 1967-68, Summary Table.
Appendix II gives the area under maize in hectares for the different states from 1952 to 1967.

D. Maize diseases, their control and pattern of infection in India:

Maize is affected by about 25 diseases in India; three caused by bacteria, one by a virus and the rest by fungi.

The diseases can be broadly categorized into those that attack seedlings, foliage, stalks and cobs or ears. They can be combated by use of disease-resistant varieties and hybrids, seed treatment with fungicides. Limited control can also be achieved by adjustment of soil fertility, planting date, and soil moisture and by spraying plants with fungicides.

The establishment of vigorous seedling is very important to the development of productive plants. Seed rot in the soil and seedling diseases can be largely prevented by planting sound, healthy seed that has been treated with a fungicide (thiram or captan) at the rate of 2.5 gm. per kg. Seed treatment is obligatory for certification by the National Seed Corporation and agricultural universities. When uncertified seed is used, farmers should avoid chaffy, light or moudly kernels, those which show blemishes, streaking, silk cut, or cracks induced by sieving or other physical operations and such seed should then be treated with a fungicide.

Several diseases that affect the foliage are highly debilitating, but can be kept in check by growing resistant released hybrids (Ganga 101, Deccan, Ranjit) or composites (Jawahar, Kisan). Leaf blights *Helminthosporium turcicum* and *H. maydis* and brown stripe downy mildew (*Sclerophthora rayssiae* var. *zeae*) are the major diseases and are favoured by extended wetting periods and moderate temperatures. Where the economic value of the crop is high, e.g. in case of sweet or pop corn or seed production, leaf blight can be controlled by the application of 2 lb. per 100 gallons of water (1-1½ tablespoonsfuls of fungicide per gallon) of zineb (zinc ethylenebis(dithiocarbamate) sprayed on the plants, beginning when first infection is fund and continued at about 7 day intervals until grain formation. The number of applications may be reduced if weather appears unfavourable for disease development.

Stalk rots are widespread in India and six are known to occur. Bacterial and pythium stalk rots often occur suddenly at the time of flowering and their incidence can be reduced by planting in well-drained soil to avoid water-logging, and by providing well-balanced fertilization (use of potash is specially recommended). Hybrid Deccan, Ranjit and Ganga 101 show moderate resistance to the black bundle or *Cephalosporium* stalk rot. Charcoal rot can be minimized by avoiding drought conditions, particularly after flowering.

Ear rots pose a serious threat in areas where the atmospheric humidity is high and where the ears are injured by birds, insects of other agencies. A long, tight husk cover proves helpful in reducing ear rot incidence. Adjustment of planting time so that kernel formation occurs during dry conditions can also be practised.

In the following table, the important diseases are listed together with their causal organisms, symptoms and control practices.

Maize diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Symptoms</th>
<th>Causal organism</th>
<th>Control Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed rots and seedling</td>
<td>Brown water-soaked depressed lesions on mesocotyl, patchy stands, poor emergence, damping off.</td>
<td>Cephalosporium acremonium</td>
<td>Treat the seed with Fusarium moniliforme, Pythium aphanidermatum (1:400)</td>
</tr>
</tbody>
</table>

* According to Combating Maize Disease by Dr. M. M. Payak and Dr. B. L. Renfro, 1967.
<table>
<thead>
<tr>
<th>Disease</th>
<th>Symptoms</th>
<th>Causal organism</th>
<th>Control measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turcicum leaf blight</td>
<td>Long elliptic greyish green or brown spots, more severe on lower leaves; heavily infected plants present a burnt appearance.</td>
<td>Trichometasphaeria turcica (Helminthosporium turcicum)</td>
<td>Grow resistant hybrids, Ranjit, Deccan and Ganga 101. Spray Dithane Z-75 (zineb) from first symptom to cob formation stage at 5-7 day intervals.</td>
</tr>
<tr>
<td>Maydis leaf blight</td>
<td>Greyish tan parallel or straight-sided lesions with slight zonation ranging from one-half to one and one-half inch in length.</td>
<td>Cochliobolus heterostrophus (Helminthosporium maydis)</td>
<td>Same as above.</td>
</tr>
<tr>
<td>Downy mildew</td>
<td>Leaf streaking and chlorosis, stunting in severe cases; whitish coarse downy growth on affected parts (see Plate 2).</td>
<td>Sclerospora philippinensis</td>
<td>Use of Bordeaux mixture has been suggested but it may prove injurious to foliage.</td>
</tr>
<tr>
<td>Brown stripe Downy mildew</td>
<td>Well demarcated chlorotic stripes turning straw or tan coloured and delimited by leaf veins; fine downy growth in early mornings; cob formation does not occur in severe cases. (See Plate 1)*.</td>
<td>Sclerophthora rayssiae</td>
<td>Grow resistant hybrids-Ganga 101, Ranjit and Deccan; composites- Kisan and Jawahar. Regulate planting time in Tarai area; early seeding in June may help in reduction of incidence.</td>
</tr>
<tr>
<td>Rust</td>
<td>Saffron or rust coloured pustules develop on leaves which release powdery spores; later these turn dark and produce the telial stage. (see Plate 3).</td>
<td>Puccinia sorghi</td>
<td>Grow resistant hybrids: Deccan Ranjit, Ganga 101 and Him. 123</td>
</tr>
<tr>
<td>Bacterial Stalk rot</td>
<td>Softening of basal internodes; plants may wilt and emit fermenting odour; ears may become blighted and rot.</td>
<td>Erwinia carotovora var zeae.</td>
<td>Plant in well-drained soil to avoid water logging; provide well-balanced fertilization.</td>
</tr>
</tbody>
</table>

* Plate No. 1 to Plate No. 6: By Courtesy of Dr. B.K. Mukherjee.
Disease | Symptoms | Causal organism | Control measures
--- | --- | --- | ---
Phthium stalk rot | Part of any one of the lower internodes becomes soft and gets twisted; plants lodge though they remain green for some time. | *Pythium aphanidermatum* | Same as above.
Black bundle rot | Affected plants show blackening of vascular bundles in the stalk; in severe cases plants wilt; also causes ear rot and streaking on kernels (see Plates 4A and 4B). | *Cephalosporium acremonium* var. *cereum* | Grow resistant hybrids: Deccan, Ranjit and Ganga 101.
Charcoal rot | Shredding of the pith in stalk; back dot like sclerotia on the rind and inside stalk; lodging of crop in severe cases (see Plate 5) | *Macrophomina phascoli* | Avoid water stress to the crop after flowering.
Common smut | Conspicuous galls first covered by host membrane develop on any above ground part of plant (floral or vegetative); these rupture and release black spore masses (see Plate 6). | *Ustilago maydis* | Balanced soil fertility and clean cultivation.

None of the zones were free from diseases, but zone 4 shows relatively less prevalence of diseases and compared to the other zones. Seed rot and seedling blight was scarce in all the zones. Turcium leaf blight is most severe in zone 1 and zone 4. Maydis blight does not appear in zone 4 and very little in zone 1. Zone 2, however, is very much affected by maydis blight. Downy mildew (*Sclerospora philippinensis*) is found in zone 2 and zone 3 only while brown stripe mildew (*Sclerophthora rayssia* var. *zeae*) occurs in all zones. Occurrence of rust is very mild in zones 2 and 3 but occurs moderately in zones 1 and 4. Bacterial stalk rot is noticed in all the zones varying from light to heavy, specially in zones 2 and 3. Smuts are prevalent by in zone 1.

The range of infection for the different stations is given in Table 5.

E. Maize pests, their control and pattern of infestation in India*

India is now on the threshold of farm revolution. With the advent of a large number of new high yielding varieties and hybrids, the outlook on agriculture seems to be bright.

Farmers would be soon going for maize crop. They would be investing large resources, financial and otherwise in anticipation of a bumper crop.

* According to *Insect Enemies of Maize* by Shri Y.S. Rathore. 1968.
Proper protection of plants from ravages of the insect pests is one of the important pre-requisites for higher yield. Sixty seven species of insect pests have been reported to infest maize and millets. These insects start their activities right from the seedling stage up to the harvest. It would, therefore, be paying to know of the nature and extent of damage and methods of control in respect of few of the important insect pests of maize.
Table 5 Disease pattern in India*

<table>
<thead>
<tr>
<th>Station</th>
<th>Seed rots and seedling blight</th>
<th>Turcicum leaf blight</th>
<th>Maydis leaf blight</th>
<th>Brown stripe mildew</th>
<th>Downy mildew</th>
<th>Rust</th>
<th>Mosaic</th>
<th>Bacterial stalk rot</th>
<th>Phytophthora stalk rot</th>
<th>Stalk rot</th>
<th>Charcoal rot</th>
<th>Physoderma</th>
<th>Common smut</th>
<th>Head smut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1</td>
<td></td>
</tr>
<tr>
<td>Srinagar</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bajaura</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solan</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Almora</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalimpong</td>
<td>-</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Gangtok</td>
<td>-</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Zone 2</td>
<td></td>
</tr>
<tr>
<td>Delhi</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ludhiana</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Udaipur</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zone 3</td>
<td></td>
</tr>
<tr>
<td>Pantnagar</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dholi</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zone 4</td>
<td></td>
</tr>
<tr>
<td>Hyderabad</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3(Rabi)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Godhra</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chhindwara</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dharwar</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 - Very light 2 - Light 3 - Moderate 4 - Heavy 5 - Severe

Compiled from the author's observation.
1. Stem borer:
The adults of this borer are straw colour, while caterpillars are brownish with four longitudinal violet stripes on the upper surface of the body. Full grown larvae measure about one inch in length.

The larvae are responsible for maximum damage. They feed first on leaves by making small irregular pin holes. Much of the injury is done within the leaf whorl and finally the larvae bore into the stem where they make extensive tunnels. All parts of the plants are attacked (see Plates 7A, 7B and 7C). In the early stage of the crop the "dead hearts" are produced i.e. the growing points dry up and often results in the death of affected plants. In later stages, the crop suffers in vigour and bears weak earheads (cobs). If adequate control measures are not taken well in time, the larvae feed on cobs and grains as well. The larvae of this insect feed heavily on jowar, and is, as such, also known jowar stem borer. The pest is active from first week of March to middle of October. The cultural and chemical control measures are as under:

Control measures:

Cultural measures:
- (a) Remove all the grasses, particularly the wild sorghum from the vicinity of the maize as it serves the alternative host for the borers when maize crop is not available to them.
- (b) Uproot and burn the maize stubbles in the field itself so as to kill hiding caterpillars.

Chemical control:
- Spray endrin 20 EC. 0.03% solution (1.5 CC in one litre of water) or 0.2% sevin 50 w.p. or 0.2% BHC 50 wp 4 gm. in one litre of water) 15 days after sowing at the rate of 225 litres per acre. Apply 2% endrin or 1% lindane granules in the whorls twice, 25 and 35 days after sowing at the 6 kg. and 8 kg. per acre respectively.
- In case borer attack is noticed at cob stage, it would be advisable to spray 0.2% sevin or 0.2% BHC at the rate of 315 litres per acre.

2. Pink borer:
The larvae of this borer are pink in colour hence the name pink borer. This insect is widely distributed, however, in the Southern regions, it is present in menacing proportions. Like stem borer, this also causes "dead hearts" in the early stages of plant growth. In later stages of crop, these feed on tassels; cobs and make deep tunnels in the stem. Besides maize, the larvae of this borer has been known to do no less damage to jowar, sugarcane, ragi, paddy, wheat and Guinea grass. This pest is more active during winter season.

Control measures:
- The cultural and chemical methods recommended for stem borer are applicable for the control of this pest also.

3. Shoot fly:
It occurs throughout India and is a serious pest of jowar, wheat, maize, broom-corn and smaller millets and grasses. However, in case of maize, it is a more serious menace in spring crop, particularly at Tarai area of U.P.

The maximum damage is done by the maggots of this fly. These are whitish in colour and are legless. These maggots bore into the central shoot of young plants where they damage the growing point, which dries and results in "dead heart". Due to death of the growing point the plant produces side tillers. In case of severe infestation, the tillers are again infested. The pest is serious in young plants.

* Plate No. 7 to Plate No. 8: By courtesy of the Rockfeller Foundation in New Delhi.*
Control measures:

Cultural measures: - Rotten material could be an ideal breeding place for the fly, as such it is advisable to all, to cover properly manure pits and other rubbish.
(b) Poor drainage in the field accelerates the rate of breeding, adequate drainage facilities should be provided.

Chemical measures:- The chemical control measures are as under:
(a) Apply 10% phorate (Thimet) granules in the furrows before sowing at the rate of 7 kg/acre. Cover the insecticide with little of the soil and then place the seeds.
(b) Spray 0.02% metasystox after germination (1 cc. metasystox in one litres per acre after about six day) and repeat twice at the interval of 10-12 days.

4. Leaf roller:
Its caterpillars are green in colour and are responsible for damage. Though it is regarded only as a minor pest but at times assumes serious proportion. Its incidence on jowar is serious and that is why it is known as jowar leaf roller. Besides maize and jowar, it has also been recorded on bajra and other millets and sugarcane. The larvae of this pest roll the leaves and feed inside by scratching the epidermis and thereby cause longitudinal patches on leaves.

Control measures:- Spray 0.02% endrin at the rate of 225 litres per acre, or dust the crop with 5% BHC at the rate of 10 kg. per acre.

5. Aphids:
These are tiny, dark green coloured soft bodied insects. Many of which are found feeding at one place. Both adults and young ones (nymphs) suck the sap from leaves and tassels. In case of severe infestation, the plants show sickly appearance. Tassels dry before attaining maturity. These aphids secrete a sticky substance, known as honeydew. Dust particles adhere to this substance and hinder in the photosynthetic activities of the plants.
Besides maize, this polyphagous insect has been recorded on a number of crops including wheat, jowar, bajra, oat, barley and other millets.

Control measures:- Spray 0.025% metalystox at the rate of 225 litres per acre, or 0.05% malathion (1 cc. in litre of water) at the rate of 225 litres per acre. Repeat once at the interval of 15 days in case of severe infestation.

6. Grasshoppers:
This is a very destructive pest and is commonly called as 'Phadka'. The adults as well as the young hoppers feed on the leaves. In case of severe infestation only the midribs of the leaves are left. Jowar, bajra, paddy, sugarcane and other millets are its other favourite holts (see Plate 8).

Control measures:-
(a) Common breeding places of this insect, such as irrigation and field bunds and other raised areas should be dusted with 2.5% BHC so as to kill the emerging hoppers. It may be desirable even to treat the waste lands where eggs may have been laid, in the breeding season.
(b) Spray the crop with 0.1 to 0.2% BHC 50 W.P. at the rate of 225 litres per acre, or (c) dust with 10% BHC or 5% Aldrin at the rate of 10 kg. per acre.

7. Jassids:
This is a small greyish brown bug; the adults and nymphs of which feed inside the leaf sheath, whole and sometimes on cobs. They suck the plant sap thereby causing gradual fading and consequently drying up of the affected shoots. These plants generally bear weak cobs. Besides maize, this insect also feeds on jowar.
Control measures: Dust the crop with 5% DDT at the rate of 10 kg. per acre.

8. Army worms:
This is a very destructive and sporadic pest and is found throughout the country. It can be observed feeding on maize, wheat, paddy and sugarcane crops. During the day, it generally remains hidden in the leaf whorl, leaf sheath, or under the trash and under clods in the field. In case of maize, it feeds, inside the whorl during early stage of the crop and on the silk in the later stages.

Control measures: Spray 0.03 and 20 EC at the rate of 270 litres per acre, or dust the crop with 5 to 10% BHC at the rate of 10 kg. per acre.

9. Hairy caterpillar
These caterpillars can be recognized at the first sight, since they have long hairs on the body. On maize, they feed on silk and hence hinder in pollination. All this ultimately affects in setting of grains in the plants.

Control measures: Spray 0.03 endrin 20 EC at the rate of 225 litres per acre, or 0.2% BHC 50 W.P. at the rate of 225 litres per acre.

Insect pattern in India:
The most common insect pest attacking maize is stem borer (Chilo zonellus). Stem borer occurs in all the zones and is a major problem for maize cultivation. Zones 2, 3 and 4 are the ones which show severity of attack while zone 1 shows relatively moderate infestation. The range of infestation is given in Table 6.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Stem borer</th>
<th>Pink borer</th>
<th>Shoot fly</th>
<th>Leaf roller</th>
<th>Aphids</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>3-4</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2-3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2-4</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

* Compiled from the author's observation.

Note: 1 - Very light
2 - Light
3 - Moderate
4 - Heavy
5 - Severe

F. Production and hectare yield:
The Fig. 6 summarizes the area under maize in thousand hectares production in thousand tons and yield per hectare from (1944-45) to (1967-68). It can be seen that there is a remarkably similar trend in area under maize, yield per hectare and total production. Total production follows the same pattern on yield per hectare. There has been quite a fit of fluctuation in hectare yield over the different years. The depression in hectare yield is due to low therefore erratic rainfall resulted into drought at a time when water requirement of the crop was maximum.
Figure 6. Production and Hectare Yield of Maize in INDIA* for the years 1944-45 through 1967-68

* compiled from the Area, Production and Yield of Principal crops in India. 1949-50 to 1967-68. Summary Table.
However, the production and area under maize showed a steep increase from 1964 onwards. This was due to the popularisation and cultivation of high yielding hybrid maize using improved technique by the farmers.

The total maize production and hectare yield by the different states for the year 1967-68 have been given in Table 7. The maximum production was obtained from Uttar Pradesh followed by Bihar and Rajasthan. Taking the hectare yield in consideration, it is interesting to note that though Uttar Pradesh gave maximum production, the hectare yield was very low. Himachal Pradesh and Punjab, on the other hand, gave the top two hectare yield, respectively, even though their total production was quite low. This is due to the fact that in Uttar Pradesh, most of the maize growing areas are rainfed and also most of the farmers have not taken up hybrid maize production and the latest improved techniques. On the contrary, the farmers of Punjab are more enthusiastic about the latest findings in cultural practices and new high yielding seeds. Moreover, the irrigation facilities in this region are better developed (Table 8). The hectare yield obtained in each state when considered in comparison with total irrigated area, a good positive correlation exists.

Table 7 Total maize production and hectare yield in state-wise for the year 1967-68*

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>State</th>
<th>Production (thousand tons)</th>
<th>Yield kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1967-68 (Final estimate)</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Andhra Pradesh</td>
<td>307.0</td>
<td>1,352.4</td>
</tr>
<tr>
<td>2.</td>
<td>Assam</td>
<td>13.1</td>
<td>536.8</td>
</tr>
<tr>
<td>3.</td>
<td>Bihar</td>
<td>1129.8</td>
<td>1,316.9</td>
</tr>
<tr>
<td>4.</td>
<td>Gujarat</td>
<td>280.5</td>
<td>1,170.2</td>
</tr>
<tr>
<td>5.</td>
<td>Haryana</td>
<td>127.7</td>
<td>1,088.6</td>
</tr>
<tr>
<td>6.</td>
<td>Jammu and Kashmir</td>
<td>190.8</td>
<td>760.1</td>
</tr>
<tr>
<td>7.</td>
<td>Madhya Pradesh</td>
<td>657.9</td>
<td>1,176.5</td>
</tr>
<tr>
<td>8.</td>
<td>Madras</td>
<td>3.1</td>
<td>1,068.9</td>
</tr>
<tr>
<td>9.</td>
<td>Maharashtra</td>
<td>52.7</td>
<td>1,354.9</td>
</tr>
<tr>
<td>10.</td>
<td>Mysore</td>
<td>9.0</td>
<td>584.4</td>
</tr>
<tr>
<td>11.</td>
<td>Orissa</td>
<td>50.4</td>
<td>913.8</td>
</tr>
<tr>
<td>12.</td>
<td>Punjab</td>
<td>773.3</td>
<td>1,648.1</td>
</tr>
<tr>
<td>13.</td>
<td>Rajasthan</td>
<td>1024.7</td>
<td>1,374.5</td>
</tr>
<tr>
<td>14.</td>
<td>Uttar Pradesh</td>
<td>1167.2</td>
<td>925.0</td>
</tr>
<tr>
<td>15.</td>
<td>West Bengal</td>
<td>45.0</td>
<td>889.3</td>
</tr>
<tr>
<td>16.</td>
<td>Delhi</td>
<td>0.6</td>
<td>375.0</td>
</tr>
<tr>
<td>17.</td>
<td>Himachal Pradesh</td>
<td>436.5</td>
<td>1,706.4</td>
</tr>
<tr>
<td>18.</td>
<td>Manipur</td>
<td>5.0</td>
<td>657.8</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>6275.1</td>
<td>1,125.2</td>
</tr>
</tbody>
</table>

* Compiled from the data of Area, Production and Yield of Principal Crops in India, 1949-50 to 1967-68, Summary Table.
Table 8 Area under irrigation state-wise*

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>State</th>
<th>Gross irrigated area in thousand hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Andhra Pradesh</td>
<td>3850</td>
</tr>
<tr>
<td>2.</td>
<td>Assam</td>
<td>668</td>
</tr>
<tr>
<td>3.</td>
<td>Bihar</td>
<td>2208</td>
</tr>
<tr>
<td>4.</td>
<td>Gujarat</td>
<td>828</td>
</tr>
<tr>
<td>5.</td>
<td>Jammu and Kashmir</td>
<td>294</td>
</tr>
<tr>
<td>6.</td>
<td>Kerala</td>
<td>494</td>
</tr>
<tr>
<td>7.</td>
<td>Madhya Pradesh</td>
<td>1098</td>
</tr>
<tr>
<td>8.</td>
<td>Madras</td>
<td>3263</td>
</tr>
<tr>
<td>9.</td>
<td>Maharashtra</td>
<td>1345</td>
</tr>
<tr>
<td>10.</td>
<td>Mysore</td>
<td>1069</td>
</tr>
<tr>
<td>11.</td>
<td>Orissa</td>
<td>1778</td>
</tr>
<tr>
<td>12.</td>
<td>Punjab</td>
<td>4495</td>
</tr>
<tr>
<td>13.</td>
<td>Rajasthan</td>
<td>2080</td>
</tr>
<tr>
<td>14.</td>
<td>Uttar Pradesh</td>
<td>6018</td>
</tr>
<tr>
<td>15.</td>
<td>W. Bengal</td>
<td>1454</td>
</tr>
<tr>
<td>16.</td>
<td>Himachal Pradesh</td>
<td>67</td>
</tr>
<tr>
<td>17.</td>
<td>Delhi</td>
<td>25</td>
</tr>
<tr>
<td>18.</td>
<td>Manipur</td>
<td>68</td>
</tr>
<tr>
<td>19.</td>
<td>Tripura</td>
<td>17</td>
</tr>
<tr>
<td>20.</td>
<td>Nagaland</td>
<td>12</td>
</tr>
<tr>
<td>21.</td>
<td>Pondicherry</td>
<td>39</td>
</tr>
<tr>
<td>22.</td>
<td>Goa, Daman and Diu</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>31,189</td>
</tr>
</tbody>
</table>

* Compiled from the data of Area, Production and Yield of Principal Crops in India. 1949-50 to 1967-68. Summary Table.

Areas where good irrigation facilities are available and farmers are using improved seeds and practices, the hectare yield of such areas are very high. Appendices III and IV give maize production and yield per hectare respectively, for the different states from 1952 to 1967.

G. National demonstrations in maize production:

Out of 2000 double or triple crop National Demonstrations planned for 1967-68, maize was included in 262 demonstrations. The results of 116 demonstrations reported so far are summarised in this report.

In the last two years i.e. 1965-66 and 1966-67, the results of 75 and 47 demonstrations on maize, respectively, were reported. Statewise number of the demonstrations for which the results have been reported, mentioned in Table 9.

Highest yield: A highest yield of 8375 kg/ha. was obtained at the farm of Shri Somappa Melligeri, Village Bagalkot, Bijapur District (Mysore). The variety used was Deccan with 15 kg. seed rate per hectare. The fertiliser application was as follows:

- N 125, P 80, K 34 kg. per hectare and 60 C. L. of F.Y.M./ha. The crop was sown on 15.7.1967 and harvested on 3.11.1967. In all 14 irrigations were given and one insecticidal spray.

The highest yield obtained in 1966-67 was 74.20 q/ha.

* According to the Report on the National Demonstration conducted on maize during 1967-68. (compiled by ICAR).
The second highest yield obtained was 80.63 at the village Bheemanahath, Distt. Bangalore, Mysore State at the farm of Shri B. S. L. N. Iyenar, using variety Deccan with 15.85 kg/ha. seed rate. The fertilization application was N 196, P 130, K 56 kg/ha and 12 C. L. of FYM. The crop was sown on 26.6.1967 and harvested on 13.10.1967. Irrigation was made at 10 days interval.

Table 9 Number of demonstrations conducted on maize in different states (1967-68) *

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>States</th>
<th>Variety</th>
<th>Results reported so far</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Andha Pradesh</td>
<td>Deccan</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Madhya Pradesh</td>
<td>Deccan, Ranjit, Ganga 101, Hy. 450</td>
<td>15</td>
</tr>
<tr>
<td>3.</td>
<td>Delhi - I.A.R.I.</td>
<td>Ganga 3</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>Mysore</td>
<td>Deccan</td>
<td>9</td>
</tr>
<tr>
<td>5.</td>
<td>Haryana</td>
<td>Ganga 101, Ganga 3</td>
<td>11</td>
</tr>
<tr>
<td>6.</td>
<td>Punjab</td>
<td>Ganga 101</td>
<td>29</td>
</tr>
<tr>
<td>7.</td>
<td>Himachal Pradesh</td>
<td>Ganga 101, Him. 123</td>
<td>4</td>
</tr>
<tr>
<td>9.</td>
<td>Uttar Pradesh</td>
<td>G3, G 102, Hy 73</td>
<td>4</td>
</tr>
<tr>
<td>10.</td>
<td>Maharashtra</td>
<td>Deccan</td>
<td>1</td>
</tr>
<tr>
<td>11.</td>
<td>Gujarat</td>
<td>Ganga Safed</td>
<td>1</td>
</tr>
<tr>
<td>12.</td>
<td>Rajasthan</td>
<td>Ganga 3</td>
<td>25</td>
</tr>
</tbody>
</table>

Total 116

The third highest yield was 7003. kg/ha. at Village Bari, Kulu Distt. H. P. at the farm of Shri Mahant Kailas, using variety Him. 123 with seed rate 20 kg/ha. The fertilizer dose was N 60, P 24. The crop was sown on 6.6.-1967 and harvested on 14.10.1967.

The lowest yield of 938. kg/ha. was obtained at the BISR Agri. Farm, Village Rogulguda, Distt. Hyderabad. It was due to less inputs used in this demonstration. The second lowest yield obtained was in Madhya Pradesh village Khajuri, Distt. Sehore at the farm of Aman Singh, using Ranjit variety. This is also due to the low inputs used in the demonstration. The yield obtained was 1038. kg/ha.

Range of yield and average yield

The average yield of 116 demonstrations was 4123. kg/ha. This is about 3.15% more than the national average. The average yield in 1965-66 (75 demonstrations) and 1966-67 (47 demonstrations) was 4077. and 4325. kg/ha. respectively.

The highest average yield of 6677. kg/ha. was obtained in Mysore state (9 demonstrations) followed by 5742. kg/ha. in Himachal Pradesh (4 demonstration), as mentioned in Table 10.

Frequency of distribution

Out of 116 demonstrations the yield of 4 demonstrations was lower than 2000 kg/ha. In 12 demonstrations the yield obtained was above 6000 kg/ha. The highest frequency was between 4100 to 5000 kg/ha. The frequency distribution of the yield is given in Table 11.
Table 10 Results of National Demonstrations under different fertilizer doses*

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>States</th>
<th>No. of national demonstrations conducted</th>
<th>Fertilizer kg/ha</th>
<th>Average yield kg/ha.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>Andhra Pradesh</td>
<td>4</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>2.</td>
<td>Madhya Pradesh</td>
<td>15</td>
<td>110</td>
<td>57</td>
</tr>
<tr>
<td>3.</td>
<td>Delhi - IARI</td>
<td>3</td>
<td>150</td>
<td>62</td>
</tr>
<tr>
<td>4.</td>
<td>Mysore</td>
<td>9</td>
<td>179</td>
<td>97</td>
</tr>
<tr>
<td>5.</td>
<td>Haryana</td>
<td>11</td>
<td>82</td>
<td>40</td>
</tr>
<tr>
<td>6.</td>
<td>Punjab</td>
<td>29</td>
<td>118</td>
<td>60</td>
</tr>
<tr>
<td>7.</td>
<td>Himachal Pradesh</td>
<td>4</td>
<td>77</td>
<td>52</td>
</tr>
<tr>
<td>9.</td>
<td>Uttar Pradesh</td>
<td>4</td>
<td>122</td>
<td>46</td>
</tr>
<tr>
<td>10.</td>
<td>Maharashtra</td>
<td>1</td>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td>11.</td>
<td>Gujarat</td>
<td>1</td>
<td>150</td>
<td>30</td>
</tr>
<tr>
<td>12.</td>
<td>Rajasthan</td>
<td>25</td>
<td>68</td>
<td>38</td>
</tr>
</tbody>
</table>

* According to the Report on the National Demonstration conducted on maize 1967-68 (compiled by ICAR, India).

Note: (i) CL: Cart Loads (v) N: Nitrogen
(ii) Mds: Maunds=37.5kg (vi) P: Phosphorous
(iii) q: Quintal=100kg (vii) K: Potassium
(iv) FYM: Farm Yard Manure

Table 11 Frequency of distribution of National Demonstrations State-Wise*

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>Yield kg/ha.</th>
<th>No. of demonstrations</th>
<th>States and numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Below 2000</td>
<td>4</td>
<td>A.P.1, M.P.2, Maharashtra 1, M.P.3, Punjab 1, J & K 1, U.P. 1</td>
</tr>
<tr>
<td>2.</td>
<td>2100 - 3000</td>
<td>10</td>
<td>Rajashtan 4</td>
</tr>
<tr>
<td>4.</td>
<td>4100 - 5000</td>
<td>41</td>
<td>M.P.4, Delhi 1, Mysore 1, Haryana 7, Punjab 15, J & K 2, U.P.2, Rajashtan 8, Gujarat 1.</td>
</tr>
<tr>
<td>5.</td>
<td>5100 - 6000</td>
<td>18</td>
<td>A.P.1, M.P.1, Delhi 1, Mysore 1, Haryana 1, Punjab 6, J&K 1, Rajasthan 6.</td>
</tr>
<tr>
<td>6.</td>
<td>Above 6000</td>
<td>12</td>
<td>M.P.1, Mysore 7, J&K 1, Rajasthan 1, H.P. 2.</td>
</tr>
</tbody>
</table>

Note: (1) A.P. Andhra Pradesh (4) J & K Jammu and Kashmir
(2) M.P. Madhya Pradesh (5) H.P. Himachal Pradesh
(3) U.P. Uttar Pradesh
Comparison of the state average yield and the yield obtained in National Demonstrations is given in Table 12.

The average of 116 National Demonstrations conducted in 12 important maize growing states was 4123 kg/ha, or 31.5% higher than all India average yield.

Table 12 Comparison of state average yield and the yield obtained in National Demonstrations *

<table>
<thead>
<tr>
<th>S.No.</th>
<th>States</th>
<th>State average yield kg/ha</th>
<th>Average yield kg/ha</th>
<th>% increase over state average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Andhra Pradesh</td>
<td>901</td>
<td>3183</td>
<td>253</td>
</tr>
<tr>
<td>2.</td>
<td>Madhya Pradesh</td>
<td>1098</td>
<td>3800</td>
<td>245</td>
</tr>
<tr>
<td>3.</td>
<td>Delhi</td>
<td>-</td>
<td>4220</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>Mysore</td>
<td>775</td>
<td>6677</td>
<td>761</td>
</tr>
<tr>
<td>5.</td>
<td>Punjab</td>
<td>1207</td>
<td>4487</td>
<td>271</td>
</tr>
<tr>
<td>6.</td>
<td>Himachal Pradesh</td>
<td>1454</td>
<td>5742</td>
<td>294</td>
</tr>
<tr>
<td>8.</td>
<td>Uttar Pradesh</td>
<td>808</td>
<td>3695</td>
<td>357</td>
</tr>
<tr>
<td>9.</td>
<td>Maharashtra</td>
<td>723</td>
<td>1250</td>
<td>72</td>
</tr>
<tr>
<td>10.</td>
<td>Gujarat</td>
<td>1101</td>
<td>3800</td>
<td>219</td>
</tr>
<tr>
<td>11.</td>
<td>Rajasthan</td>
<td>1036</td>
<td>4282</td>
<td>313</td>
</tr>
<tr>
<td>12.</td>
<td>Haryana</td>
<td>4310</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Average 9.98 41.23 315

** Rotation practices:**

The most common rotation in the Indo-Gangetic plain consists of maize, jowar, cotton or bajra in the *Kharif* season, followed by wheat, barley, brassicas, linseed or potatoes, in the *Rabi* season. Other type of rotation are:

2-year rotations:
- maize - berseem (*Trifolium alexandrium*) - jowar - pea
- maize - gram - marua - pea
- maize - potato - cotton - pea

3-year rotations are:
- green manure - sugarcane - maize - kalai
- maize - potato - sugarcane - wheat

** According to information given by Dr. N.L.Dhawan.
I. Recommended cultural practices*

The recommended practices are the following:

1. Prepare a good seed bed - This requires adequate ploughing to a depth of at least 5-6 inches and in such a way as to turn under organic matter - either crop refuse, green manure or compost. This can best be accomplished with a moldboard turning plough correctly used. One such ploughing is all that is required. This should be followed by enough harrowing to break up clods and partially smooth the soil. A good planking will usually finish the job and this should leave the soil free of any weeds and in a good condition to receive the seed.

2. Select good seed - of known genetic origin, purity and high germinating ability. In this particular case, this means a hybrid, bred for the part of the country in which it is to be grown. The bag containing the seed should bear a certified seed tag giving essential information i.e. name of variety, lot number, percentage of inert matter and germination percentage. The bag should also be sealed to prevent contamination.

3. Follow an adequate fertility programme - This means first incorporating into the soil adequate quantities of organic material either from crop refuse, green manure or compost. This is very important in order to maintain the soil in good condition and to increase its water holding capacity. Crop refuse or compost are best for this purpose. The organic materials should be ploughed into the soil during seedbed preparation. The second requirement is the use of adequate amounts of commercial fertilizer, N, P and K. The amounts to be used will vary according to local deficiency conditions and according to the crop being grown. The best method is to have the soil tested by one of the soil testing laboratories to determine nutrient requirements, but where this cannot be done the Demonstration Committee for the improvement of maize recommended that 100 lb. of N, 60 lb. of P and 30 lb. of K per acre be applied to the hybrid maize demonstrations. This represents what should be considered a minimum application, even on fertile land, to produce a reasonably good hybrid maize crop. The first application includes all of the P and K and 30 lb. of N. These are mixed, or obtained as a mixed grade, and applied in a band two or three inches to one side and one to two inches deeper than the seed. The remaining 70 lb. of N should be applied by scattering it between the rows when the maize plants are between one and two feet high. Care should be taken not to get this fertiliser on the plants nor closer to the stalks than about 10 inches. This fertiliser should be worked into the top or inch and a half of soil immediately, using a cultivator or other implement. This will prevent loss from washing in case of a heavy rain.

4. Follow proper methods of sowing - For maize this means sowing in lines. The lines may be 24, 30 or 36 inches apart depending on equipment and local conditions. Where lines are 24 inches apart seed should be spaced one foot apart in the lines. With 30 inch lines seed should be 8 to 10 inches apart and with 36 inch lines seed should be 7 to 8 inches apart. More than 20,000 seeds per acre will be sown at these rates. An effort should be made to have approximately 20,000 plants per acre at maturity. Under some conditions it may be necessary to sow at a somewhat heavier rate and than thin to the desired stand when the plants are about 8 inches high. Seed should be sown between one and two inches deep but not deeper than two inches in soil sufficiently moist to bring about immediate germination.

5. Keep all weeds out of the field - Weeds if uncontrolled, may reduce yields 50% or more. Weeds may be controlled with a cultivator, hoe, by pulling or

* According to information given by Dr. N.L. Dhawan.
by chemical means. At present hoeing is the commonest methods. Inter-
cultivate is to be made to raise the soil level around the plants higher than in
between the rows.

6. Control insects and other pests - There is little point in going to the
expense of sowing and fertilizing a crop and then allowing insects, birds or
other pests to destroy, a part or all of it. Borers and other insects should
be controlled with appropriate insecticides.

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endrin 20% granules</td>
<td>(15-20 lb/acre)</td>
</tr>
<tr>
<td>BHC 60% wettable powder</td>
<td>(25 gm/gal)</td>
</tr>
<tr>
<td>Endrin 20 E.C.</td>
<td>(10 cc/gallon)</td>
</tr>
<tr>
<td>Dipterex spray</td>
<td>80% soluble powder (15-20 gm/gal)</td>
</tr>
</tbody>
</table>

Borers often seriously reduce stands by attacking, when the plants are quite
small. It is recommended that spraying or dusting with DDT or Endrex be done
when the plants are about 4 inches high and before any sign of borer is to be
seen. This should be repeated at an interval of 10 days or two weeks till the
crop attains tasseling and silking stage. Other insects should be controlled
as necessary. Steps also are required to protect the crop at maturity from
birds, monkeys, jackals, cattle and other animals.

7. The seventh practice required for good crop production is correct water
management. In this respect equal importance should be given to both drainage
and irrigation. Maize will not grow under conditions of water-logging, so
adequate drainage is absolutely necessary to satisfactory production. Adequate
field drainage must be provided and if there are bunds around the field, these
should be cut in several places to allow quick surface drainage after heavy
rainfall. In addition to surface drainage sufficient sub-surface drainage
should be provided to ensure that the water-table will be 3 feet or more below
the surface. If these requirements cannot be met, then do not plant maize.

It is also very important that irrigation be provided when it is needed.
Maize is a heavy user of water and the plants never be allowed to wilt for want
of moisture. When soil conditions indicate that irrigation should be provided
this should be done before the plants show by wilting that they are suffering
for want of water.

8. In the event that the crop is hybrid maize or any other crop of similar
origin, it is necessary that new seed be obtained each year and that seed
never be taken from the growing crop. This is required because the hybrid
originates by crossing two or more low producing inbred lines, and while the
hybrid is high yielding, the succeeding generations will tend to be like the
parents and performance will rapidly deteriorate.

J. Economics of cultivation:

Cost and returns from maize crop depend mainly on the technique of cultiva-
tion, intensity of input use and the yield obtained. Table 13 lists the various
direct (variable) and indirect (fixed) costs and returns associated with one
hectare of maize crop grown by local and improved methods. The total cost of
growing a hectare of maize by local and improved methods, works out to about
Rs.814 and Rs.1,554, respectively.

The profit from maize would depend on the yield obtained, price of the
product and the cost incurred. Table 13 shows an average yield of 11.32
quintals per hectare under local method and 47 quintals under improved method.
The price of maize produced by local and improved methods remains almost the
same. So, if maize sells, say at Rs. 60 per quintal, it can expect to have a
gross income of Rs.679.20 and Rs.2,820 per hectare, under local and improved
methods, respectively.

The net income per hectare would depend on whether one considers both fixed
and variable costs or variable cost alone. If both are considered a net income
of Rs.1,265.75 per hectare under improved method and a loss of Rs.134.80 per hec-

* According to Economics of Maize Cultivation by Sarvshri Katar Singh and
V.K.Shama.
tare under local method is obtained. However, if only variable costs are taken into account then a net income of Rs.154.20 under local method and Rs.1554.75 under improved method is obtained. However, such a calculation will not be sound economics. With a view to stabilize the net income and spread over the expenses evenly over a number of years, one must take into account both fixed and variable costs.

Table 13 Average production costs and returns from maize* (Rs./ha.)

<table>
<thead>
<tr>
<th>Item</th>
<th>Local method</th>
<th>Improved method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Human labour</td>
<td>300.00</td>
<td>480.00</td>
</tr>
<tr>
<td>2. Implements and machinery</td>
<td>38.00</td>
<td>205.00</td>
</tr>
<tr>
<td>3. Seed</td>
<td>10.00</td>
<td>22.75</td>
</tr>
<tr>
<td>4. Farmyard manure</td>
<td>135.00</td>
<td></td>
</tr>
<tr>
<td>5. Fertilizers</td>
<td>20.00</td>
<td>462.50</td>
</tr>
<tr>
<td>6. Irrigation</td>
<td>-</td>
<td>50.00</td>
</tr>
<tr>
<td>7. Interest on current investment</td>
<td>22.00</td>
<td>45.00</td>
</tr>
<tr>
<td>Total variable cost</td>
<td>525.00</td>
<td>1265.25</td>
</tr>
<tr>
<td>Total fixed cost</td>
<td>289.00</td>
<td>289.00</td>
</tr>
<tr>
<td>TOTAL COST</td>
<td>814.00</td>
<td>1554.25</td>
</tr>
<tr>
<td>Average yield (q./ha.)</td>
<td>11.32</td>
<td>47.00</td>
</tr>
<tr>
<td>Gross income @ Rs.60/q.</td>
<td>679.20</td>
<td>2820.00</td>
</tr>
<tr>
<td>Net income over variable cost</td>
<td>154.20</td>
<td>1554.75</td>
</tr>
<tr>
<td>Net income over total cost</td>
<td>-134.80</td>
<td>1265.75</td>
</tr>
</tbody>
</table>

* According to Economics of Maize Cultivation by Sarvshri Katar Singh and V.K. Sharma.

Explanation of various costs

It would be of interest to know the constituents of both the costs variable as well as fixed. This would help in working out the economics of maize cultivation.

Variable cost:

Human labour: The cost of human labour has been calculated at an average rate of Rs. 3.00 per day, irrespective of the consideration whether labour was actually hired from outside or supplied by the farmer himself. The actual cash expenses on this account would be reduced to the extent, the labour is provided by the farmer and his family members. The actual number of man-days required to produce a hectare of maize will vary according to the frequency of various cultural operations done and the type of power used.

Implements and machinery: Under this head, are included hire charges for tractor and other machines and implements. The cost has been calculated with the assumption that machines and implements were hired from outside and paid for at the rates then prevailing. The actual cash expenses will be lowered to the extent when the farmer uses his own tractor and other machines and implements. For those farmers who use their own bullocks and implements, no costs would be incurred under this head.
Seed: Cost on this account would vary depending on whether local or hybrid seed is used.

Manures and fertilizers: It is the usual practice to apply farmyard manure in maize, particularly under local method where no, or very small quantities of chemical fertilizers are used. However, under improved method, use of chemical fertilizers is a must. The typical fertilizer recommendation for maize under improved method generally includes 125 kg. of N, 75 kg. of P$_2$O$_5$ and 75 kg. of K$_2$O each per hectare.

Irrigations: Irrigation cost depends on the source of irrigation. For instance in Tarai, farmers use both canal and tubewell water. Farmers who have the facilities of tubewell irrigation, generally grow maize by improved method. Canal water, where it is available, is cheaper than the tubewell water but its supply can not be assured at the desired time.

Plant protection: No expenses are generally incurred on this head in Tarai both under local and improved methods. Obviously, because there has been, so far, no serious insect pest or disease problem.

Fixed cost: It includes maintenance cost of bullocks, interest and depreciation cost of farm buildings, machinery and equipments. The actual cost on this account will vary from farm to farm, depending on the type and number of fixed assets. Here average fixed cost has been obtained by on the basis of a survey of 100 farmers in Rudarpur block of Tarai region of Uttar Pradesh.
Maize was introduced to India from America at about the beginning of the 17th century. It is now next only to rice, wheat and jowar, as a food crop. Though consumed all over the country, it is the staple food of people in the hilly and sub-mountaneous tracts of Northern India. It is also grown as fodder, which is sweet, succulent and fit for feeding green or ensiling. The starch extracted from the grain is used for industrial purposes as well.

During the period 1951-62 the area under maize increased from 3.7 million to 5.2 million hectares, while production rose from 2 million to 4.5 million metric tons of grain. Production is increased from 4.5 million metric tons to 5.0 million metric tons with the extensive adoption of hybrids and improved practices, including higher levels of fertilizer application. The total area sown to commercial hybrids in 1966-67 is about 50,000 hectares. In India, maize is essentially a rich land crop. It grows best on fertile, well drained loamy soils that are neither too heavy nor too light.

In 1953, two maize specialists Dr. U.J. Grant and Dr. E. J. Wellhausen visited the country and explored the possibility of establishing a breeding programme on the country wide scale in consultation with the Government of India. They submitted a plan to start a coordinated maize breeding scheme for the improvement of maize.

Based on their recommendations and with the collaboration of Rockefeller Foundation, supplying financial and technical support, Coordinated Maize Breeding Scheme was initiated in 1957.

Before the inception of Coordinated Maize Improvement Scheme, very limited investigations were carried out at different research stations in India. Research in maize breeding and genetics was limited to the states only. There were several factors limiting the progress of breeding programme. Lack of technical personnel, equipments, land, germplasm, etc. were some of the main factors. The most important fact was that the varieties present in the Indian collection were highly uniform. These varieties appeared to have originated from a few introductions. This indicated that there was lack of divergent materials (genetically). There was no coordination among the different research station in the country. Some inbred lines were developed but no early testing was done. Though about 30 advanced generations lines (F4 or more) were available, nothing was known about their combining ability. Collections of exotic germplasm was limited and the inbreds obtained from U.S.A. were found to be unadaptable. Three hybrids, namely, Punjab Hybrid No.1, No.2 and No.3 were developed by the Punjab stations but none of these hybrids were very high yielding (2500-4000 lb/acre). Some inbred lines were developed from the local materials, namely, KT41-70, KT41-267, Jathia, D-74, Jalsa(y)-4-2, Piarka-1-# etc. Nothing was, however, known about their combining ability.

Dr. U.J. Grant and Dr. N.L. Dhawan made extensive survey of the country and they suggested a coordinated approach for maize improvement work in India. Based on their suggestions, the following aspects were carried out.

a) On the agro-climatic basis, the whole country has been divided into four zones** as follows:

Zone 1 - North eastern and western Himalayas
Zone 2 - Northern plains
Zone 3 - Indo-Gangetic plains
Zone 4 - Peninsular India.

* According to Dr. N.L.Dhawan, Dr. B.K.Mukerjee and Mr. N.N.Singh.

**Refer to chapter 1 on the detail.
b) Within each zone, there has been established a main centre, and a number of sub-centres whose main responsibility is to carry out regional testing. However, this pattern is not rigid, but has flexibility since certain substations may have qualified and experienced staff and excellent facilities for actively participating in the work of the main centre in addition to their regional responsibility. Consequently, the programme of work relating to development of experimental materials and their testing are implemented jointly by the main centres and sub-centres within the zone.

c) Inter-disciplinary approach is a very important aspect of the organization set up. In the past, there has been a tendency on the part of the plant breeders and geneticists to claim that any crop improvement has to be collaborated effort between scientists of different disciplines who work as a team and as equal partners.

d) The Coordinating unit forms the corner stones in the overall structure. The normal tendency in the past has been for individual stations to function independently of each other and thereby become insular. History has repeatedly demonstrated that long periods of isolation of any plant or human community has led to loss of productivity. The Coordinating Units plays a key role in perpetually keeping the participating stations creatively functioning. Over the years, through trial and error and through experience, there has been established a working relationship between the coordinating office and other stations. The essential points are –

1. The Project Coordinator is not a man with authority to punish or to reward. He has no such functions. He is one of the members of the team.
2. The Coordinator actively participates in the research programme of each station, and takes the responsibility for the implementation of the project at a station, where technical staff has not yet been recruited or temporarily displaced.
3. He serves as a common link between the various stations, and his office is the agency responsible to bring about a rapid and frequent exchange of ideas, experimental materials, information and data.
4. He encourages research staff to visit the other stations from one station and study the projects being implemented there.
5. He works as a friend and guide and if need be, as a supervisor.
6. He makes periodical visits to various stations and keep them informed of what is happening at other centres.
7. It is his responsibility to arrange for periodic zonal meetings and annual conferences where the progress of research are discussed and research programmes for the next year are planned.
8. It is the responsibility of the Coordinator to prepare the annual progress report of All India Maize Scheme, and keep the participating organizations informed on the progress of the project at each station and the lacunae, if any, that need to be filled and bottlenecks removed.
9. The Coordinator in order to function effectively, should not only have high level of scientific and technical competence, but also the ability to win the confidence and respect of the research staff.
10. He should create the development leadership at different levels of operation. To attain the objective there has to be a free play of scientific ideas and freedom to implement them at the station and zonal levels.

The sources where implementation is planned are the zonal and annual meetings. Scientists of all disciplines meet to review the results of last year and plan for the future. The annual workshop meeting is the nucleus that controls the organism.
The programme of the annual workshop conference first calls for the discipline-wise meetings and then point discussions where each discipline presents to the whole group the results and the plans for the next year. The joint meetings are open for discussion and everyone participates. At these meetings different research problems are presented and discussed, procedures are standardized, priorities are fixed and training programmes are initiated. Such aspects as standardization of procedures is essential since every participating scientist must talk in a common language with regard to the scientific data. To facilitate the work uniform formats for taking data, its analysis and submission are prepared. Decisions are also taken on uniform multi-location testing and uniform experimental procedures.

Different stations were located in each zone and worked as a single unit. Uniform procedures, technique, and nomenclature were formulated which were followed by all stations. A Coordinator was appointed to coordinate the research project being carried out by the different stations. The main projects are listed below:

1. Collection and evaluation of Indian and exotic varieties and races of maize.
2. Derivation of inbred lines from promising germplasms, their testing and production of double crosses.
3. Evaluation of combining ability of maize germplasm collections by intervarietal crosses and test crosses.
4. Development of composite varieties by combining elite varieties and races of maize.
5. Breeding for disease and insect resistance.
6. Breeding for prolific ear character, compact plant type and high quality protein maize.
7. Development of superior sweet corn and pop corn composite, varieties and hybrids.

A brief review of the work done on these aspects are discussed herein.

A. Breeding section*

(i) Derivation of inbred lines and making of double cross hybrids:

After the inception of the Coordinated Maize Improvement Scheme, a large number of inbred lines and hybrids were introduced from USA and the Caribbean region. More than 800 inbred lines were put into top cross trial in 1958 with several single crosses as testers. The introduced double cross hybrids and the Punjab Hybrids were put into trials. 28 promising inbred lines on the basis of their top cross test in 1958 were picked up for further study. Several of the hybrids from Southern USA performed well, particularly deserving mention are NC 27, Texas 26 and Dixie 18. These hybrids though performed well, had dent grains and, therefore, were not very popular with Indian farmers who preferred flint grains (see Plate 9)**

Moreover, the inbred lines of these hybrids were difficult to maintain. A breeding project using indigenous maize materials and other exotic germplasm was undertaken. Emphasis was laid on yellow flint grain type and high yield. More attention was placed in the selection of elite inbred lines having high general combining ability, desirable agronomic characters and resistance to diseases and pests. A large number of inbred lines numbering more than 4,000 were developed from Indian and adapted exotic germplasm. Out of these 52 outstanding inbred lines belonging to several groups like AdeCuba, Punke, G715 Dixie, Jalna (y), K.T.41, Eto, Peru 330, Deac. 2, Venezuela 1, Nar 330, Wf, 9, Kya, Penn 29, GT 122 etc. were picked up. A large number of experimental single crosses were made and double cross performance was predicted from the single

* According to the Progress Reports of the Coordinated Maize Breeding Scheme 1959 to 1968, ICAR, India.

** Plate No. 21: By courtesy of the Rockfeller Foundation in New Delhi.
cross data. All the inbred lines that were developed were screened for diseases and pest resistance. The lines of Ade-Cuba, Cuba 1, G 715 and G 733 were found to be fairly resistant to *Helminthosporium*, downy mildew, bacterial diseases. The materials from Caribbean, Central American and Columbian region were found to be very promising since such lines like NC 7 and NC 13 showed poor adaptation and considerable susceptibility to diseases such as *Sclerospora philippinensis* and the pest *Chilo zonellus*. These were, however, certain exceptions such as inbred lines derived from the Hybrid G 715. The inbred lines were screened for their agronomic performance and disease and pest resistance at the different stations in the different zones. The initial screening of large number of inbred lines was done by top cross testing. The tester used for the evaluation of the inbred lines was usually the best adapted local variety. A list of outstanding inbred lines is given in Appendix V. On the basis of the top cross test data, the good combiners were selected and single crosses were produced. All the single crosses were then put into yield trials conducted at several locations over several years. Since a large number of double crosses are possible from such a large number of elite inbred lines, it was not possible to make all the double crosses and study their performance. Predictions of the performance of double crosses were, therefore, made using Jenkin's Method B, before actually making the double crosses. Only these double crosses were made whose predicted performances were the maximum. These double crosses were then put into large number of trials at different locations. In general, the lines that gave outstanding double crosses were G 7(B), CI 21E, Cuba 342, PH 3, Eto 81, AdeC 257 etc. The different stations in the different zones produced their own experimental double cross hybrids and put them into uniform trials as coordinated trials. A list of promising experimental hybrids, studied for more than two years and their performance in the different zones, is given in Appendix VI. Appendix VII gives the coded pedigree of the experimental double crosses listed in Appendix V.

The hybrids which perform very well in these trials are recommended for the commercial release by the maize breeders to the Central Varietal Release Committee. The hybrids are not released unless they are resistant to diseases and pests.

By 1961, four double cross hybrids, namely, Ganga 1, Ganga 101, Ranjit and Deccan were selected and recommended for release in the plains and peninsular India. In 1962, a new hybrid (VL 54) was developed by the Vivekananda Laboratories and was released in Almora area. In 1963, the white double top cross hybrids Ganga Safed 2 and Hi Starch were released. In 1964, two double cross hybrids Ganga 3 and Him. 123 were released. All these succeeding hybrids were progressively better than the preceding ones. Recently in 1967, a new double cross hybrid Ganga 5 which is resistant to new downy mildew disease has been released. All these inbred lines which had gone into released hybrids were given code number starting with letters CM. A complete list of the released inbred lines and varieties is given in Appendix VIII. Plates (10-21) represent some of these inbred lines and varieties. The parental constitution of the released hybrids and their year of release has been given in Appendix IX. Plate 22** represents some of the released Indian Maize Hybrids.

The direction of crossing in the development of single crosses and the double crosses in case of the released hybrids have been represented in Appendix X. Plates (23 to 26)*** represent some of the male parents of the released hybrids. A short description of each of the hybrids, their area of adaptation, maturity period and yield level is given below:

Ganga Hybrid Makka 1

Pedigree: \((P4(A(Y)-1-3y-#-#)x(P5PB5-3-f)x(P'4-1(B)-#-#-#-#)x(G 715-A36-#-#-#))\)

* According to information given by Dr. N.L.Dhawan.

** Plate No. 22 to Plate No. 24: By courtesy of Dr. N.L.Dawan.

*** Plate No. 25 and Plate No. 26: By courtesy of the Rockfeller Foundation in New Delhi.
Area of adaptation: Indo-gangetic plains, foot-hills of Himachal Pradesh and parts of Gujarat, Maharashtra and Mysore.

Maturity period: 80 to 90 days.

Description: Plants resistant to lodging; tendency to develop two well-filled ears per plant; ears have tight husk cover providing protection against bird damage; attraction small, round, hard and yellow grains.

Grain yield: The hybrid was yielded from 17% to 70% more than local varieties, when grown under recommended agronomic practices.

Fodder: The hybrid has given from 32% to 200% more fodder than local varieties.

Ganga Hybrid Makka 101

Pedigree: (Col.1x38-11(Lot No. etc.) 327mez) x (A Theo-21-f-3-f-#-#) x (G 715-A1-2-2-#) x (Peru 330-#-29C-1-f-#)

Area of adaptation: Indo-gangetic plains

Maturity period: 95 to 105 days

Description: Plants highly resistant to lodging; ears have very tight husk cover, extending beyond the tip of the ear; tendency to develop two big grain-filled ears per plant; very attractive, bold, round, hard, orange-yellow grains; highly resistant to downy mildew, leaf blights and rust; medium tolerant to the maize top shoot borer.

Grain yield: The hybrid has yielded from 22% to 152% more than local varieties, when grown under recommended agronomic practices.

Fodder: The plants are still somewhat green at harvest and make better quality fodder than local varieties. It has given from 42% to 428% more fodder yields than local varieties.

Ranjit Hybrid Makka

Pedigree: (Col.1x38-11(Lot No. etc.) 327mez) x (A Theo-21-f-3-f-#-#) x CI21E(Derivative of U.S.released inbred line) x (Nar 330-#-238-1-f-#)

Area of adaptation: South Rajasthan, Gujarat and Maharashtra

Maturity period: 100 to 110 days

Description: Plants highly resistant to lodging; have a thick stem with a reddish base; ears have tight husk cover; a strong tendency to develop two big grain-filled ears per plant; very attractive, bold, round, hard, orange-yellow grains; highly resistant to downy mildew, leaf blights and rust; medium tolerant to the maize top shoot borer.

Grain yield: The hybrid has yielded from 22% to 150% more than local varieties under recommended agronomic practices.

Fodder: The plants are still somewhat green at harvest and make better quality fodder than local varieties. It has given from 43% to 429% more fodder than local varieties.

Deccan Hybrid Makka

Pedigree: (A Theo-21-f-3-f-#-#) x (Peru 330-#-29C-1-f-#) x CI21E(Derivative of U.S.released inbred line)

Area of adaptation: Peninsular India

Maturity period: 100 to 110 days

Description: Plants have broad, dark green leaves, and thick stem resistant to lodging; very tight husk cover giving protection against bird damage; tendency to develop two big grain-filled ears per plant; bold, hard and bright yellow grain; highly resistant to downy mildew, leaf blights, and rust; disease tolerant to top shoot borer.

Grain yield: The hybrid has yielded from 23% to 145% more than local varieties under recommended agronomic practices.

Fodder: The plants are still somewhat green at harvest and make better quality fodder than local varieties. It has given from 53% to 38% more
fodder than local varieties.

Ganga Safed Hybrid Makka
Pedigree: (Eto PL-13-1-#-2-1-(U.P.) x Tenn 29) x Rudrapur Local (Pantnagar)
Area of adaptation: Indo-gangetic plains or Zones 2 and 3, and also in the areas of Zone 4 where farmers prefer white grain.
Maturity period: 92 - 95 days.
Description: Plants resistant to lodging, moderately susceptible to *Helminthosporium* and rust; appears to be tolerant to top shoot borer; good husk over; tendency to develop two well filled ears per plant; and round, medium sized, white coloured grain.
Grain yield: Ten percent higher than Ganga Hybrid Makka 101 in Zones 2 and 3 for the years 1961 and 1962 and four per cent less than Deccan Hybrid Makka in Zone 4.

Hi-Starch Hybrid Makka
Pedigree: (Eto PL-13-1-#-#-1-(U.P.) x Tenn 29)x Jellicorse
Area of adaptation: Throughout India and recommended wherever market demand exists for this type grain. Performs particularly well in the Himalayas.
Maturity period: Approximately 95 days in plains and peninsular India.
Description: Plants very broad-leafed and resistant to lodging tendency to develop two ears, good husk over, moderately susceptible to *Helminthosporium* and rust; tolerant to top shoot borer and bold, dent to semi-dent, white kernels.
Grain yield: Approximately equal to Ganga 101 in Zones 2 and 3 on an average of 1961 and 1962 data, less than Deccan in Zone 4 and approximately equal to VL 54 in Zone 1.

VL 54:
A double cross hybrid developed at the Almora Station and which has been known by the station code name VL 54, was released for the foot-hills of the Himalayas by the Release Committee at their meeting in New Delhi, on February 10, 1962. The hybrid has been tested extensively at a number of stations of the Coordinated Maize Breeding Scheme over a three year period and has given good performance. It has a tendency to produce two well developed ears with a tight husk cover. Two of the parental inbred lines were selected from NC 7 and NC 13, released inbred lines from U.S.A. while the other two lines were selected from GCL 31 and GCL 33, released lines from Colombia, South America.
A brief description as provided by the Almora Station is presented below:
Pedigree: (GCL 31 x GCL 33) x (NC7(10 derivative of U.S. released inbred lines) x NC 13)
Area of adaptation: Himalayan hills and foot-hills and Indo-Gangetic plains.
Maturity period: 100 - 110 days.
Description: Good vigour, plant aspect and husk over; resistant to lodging moderately resistant to *Helminthosporium* blights, and an excellent pollen producer. Yellow, flintish grain colour and type with medium to high ear placement. Tendency to develop two well filled ears per plant. Medium to long ear length with small ear diameter.
Grain yield: Has given the highest yield at Almora for three successive years significantly higher than Ganga 101 and Deccan. It is also one of the highest yielding hybrids at other stations in Zones 1, 2 and 3.

Himalayan Hybrid Makka 123
Past six years data on the performance of hybrids and other materials, has indicated that the Himalayan Region should be treated as two subzones, namely, the more arid western Himalayas (represented by the stations: Srinagar, Bajaura, Solan and Almora) and the more humid eastern Himalayas (represented by the stations Kalimpong and Gangtok). While the released hybrid VL 54 has shown superior performance in the eastern region, there was a lacuna for a good hybrid for the western Himalayas. Consequently, the Hybrid Maize Release Committee, on
the basis of three years' data, recommended the release of Himalayan Hybrid Makka 123 for this region.

Pedigree:

G121E (Derivative of U.S. released inbred line) x Kys (U. s. inbred line) x (Desc 2-229-1-1-f-f-#-#) x (Eto-190C-4-2-f-f-#)

Area of adaptation: The eastern part of Zone 1 represented by the hilly areas of Jammu and Kashmir, Punjab, Himachal Pradesh and Eastern Uttar Pradesh.

Maturity Period: 105 to 110 days.

Description: Vigorously growing plants, resistant to lodging, Helminthosporium and rust. Well developed ears, possessing a tight husk cover, tendency to develop two ears per plant, tolerant to topshoot borer, yellow semi-flint grains.

Grain yield: In its area of recommendation, the hybrid has given from 60% to 112% more yield than local variety and has proved a superior performer than VL 54.

Ganga Hybrid Makka 3

It is an early maturing yellow flint grained hybrid, which has about the same maturity as the local varieties under cultivation and Ganga Hybrid Makka 1, and about 7 days earlier flowering than Ganga Hybrid Makka 101 and Ranjit.

Pedigree: (G121E x Kys) x (Desc 2-229-1-1-f-f-#-#) x (Eto 190C-4-2-f-f-#)

Area of adaptation: Indo-gangetic plains comprising Zones 2 and 3; also in Peninsular areas where early maturity hybrids are required.

Maturity period: 90 to 95 days

Description: Plants resistant to lodging and moderately resistant to Helminthosporium turcicum, H. maydis, and rust, tolerant to the topshoot borer; good husk cover, well developed ears, possessing bright, orange flint grains.

Grain yield: Over a three year period, it has given from 28 to 47 per cent more yield than local varieties and is slightly superior in yield to Ganga 101 and Ranjit. It has given as good yields as Deccan in Peninsular India.

High yielding maize hybrid Ganga 5

In recent years, the new downy mildew disease (Sclerophthora rayssiae var. zeae) has increased to alarming proportions in the Northern plains, such that in 1967, its severity was to such an extent as to limit the cultivation of the susceptible maize hybrid Ganga 3. Moreover, the parental inbred lines of Ganga 3, namely, CM 109 and CM 110 were found to be highly susceptible and it was not possible to increase the seed particularly of CM 110.

In this period, a number of new experimental hybrids have been under test and it was found that the Experimental Hybrid 2385 showed a high degree of resistance to the new downy mildew disease. In yield trials, over the past 2 to 3 years this has also given the same level of yield as Ganga 3, in the northern plains. The maturity of the Experimental Hybrid 2385 was comparable to the hybrids already released for the different zones.

An additional feature of the Experimental Hybrid 2385 is the fact that of all maize germplasm in the breeding programme, whether released or under experimental test, this hybrid has shown the highest degree of resistance to the topshoot borer of maize.

The female parent, single cross of this Experimental Hybrid is CM 202 x CM 111 which has been one of the most productive single crosses in the breeding programme. Consequently, hybrid seed production becomes more economical and profitable.

Considering the points raised above, this hybrid was recommended for release not only for Northern plains but particularly in regions where the new disease is limiting production.

Pedigree: (G121E)(Cuba 342-2-2y-#-#) x Antigua Gr. 1
Area of adaptation: Northern plains and parts of Peninsular India where the brown stripe downy mildew disease is becoming severe.

Maturity period: 90 to 95 days

Description: Plants relatively compact, with sturdy stalk and broad dark green leaves, single eared type, ears conical with bold semi flint to flint yellow grains, resistant to the leaf blights Helminthosporium turcicum and H. maudi and to the brown stripe downy mildew (Sclerophthora rayssiae) resistant to the stem borer (Chilo zonellus).

Grain yield: Same yield potential as Ganga 3.

(ii) Collection and evaluation of Indian and Exotic germplasm*

All these years, though emphasis was laid on the development of inbred lines and production of double cross hybrids, yet a project was underway to collect and evaluate a large number of Indian and Exotic germplasms. A wide collection of maize germplasm obtained from Mexico and other Latin American countries is being maintained at I.A.R.I. Delhi centre of the Coordinated Maize Breeding Scheme. This material is being used for the development of improved hybrids and composites. The collection includes a large number of varieties of exotic origin.

Under the Maize and Millet collection Project, jointly sponsored by the I.C.A.R. and the Rockefeller Foundation, collection of local varieties were made from the states in India during the period 1959-62. Collection made under this project was handed over to main station, Delhi, for evaluation. Table 14 records the number of collections that were made from different states from the country. It may be noted that out of the total of 1591 collections, the states of Bihar (259), Madhya Pradesh (247), Jammu and Kashmir (221), Uttar Pradesh (186), Punjab (170), W Bengal (94), Assam, Manipur, Tripur and NEFA (96) made the major contribution. While from other states, relatively smaller number of collections were made.

<table>
<thead>
<tr>
<th>State</th>
<th>No. of maize collections made and evaluated</th>
<th>No. of complexes used in the complexes</th>
<th>No. of complexes available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhara Pradesh</td>
<td>27</td>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>Assam, Manipur, Tripura & NEFA</td>
<td>96</td>
<td>71</td>
<td>10</td>
</tr>
<tr>
<td>Bihar</td>
<td>259</td>
<td>154</td>
<td>10</td>
</tr>
<tr>
<td>Bombay</td>
<td>-</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Gujarat</td>
<td>26</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td>Himachal Pradesh</td>
<td>77</td>
<td>56</td>
<td>10</td>
</tr>
<tr>
<td>Jammu and Kashmir</td>
<td>221</td>
<td>134</td>
<td>12</td>
</tr>
<tr>
<td>Kerala</td>
<td>7</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>247</td>
<td>160</td>
<td>15</td>
</tr>
<tr>
<td>Madras</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mysore</td>
<td>9</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Orissa</td>
<td>57</td>
<td>31</td>
<td>3</td>
</tr>
<tr>
<td>Punjab</td>
<td>170</td>
<td>195</td>
<td>13</td>
</tr>
<tr>
<td>Rajasthan</td>
<td>82</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>186</td>
<td>135</td>
<td>11</td>
</tr>
<tr>
<td>West Bengal</td>
<td>94</td>
<td>51</td>
<td>9</td>
</tr>
</tbody>
</table>

Total 1594 1074 113

* According to information given by Dr. N.L. Dhawan.
These collections were grown in observation trials and were evaluated for maturity, plant and ear characters, husk cover, lodging and grain type. Subsequently, these materials were grouped, state-wise on the basis of two to three seasons subsequent to composition. Appendix XI records the number of collections that have been used in making these complexes in each state while the total number of complexes made in each state are also recorded in the last column of the same table.

Considerable variability with regard to maturity, plant type, grain colour and disease reaction were observed. Some of the collections from Punjab, Gujarat and Madhya Pradesh flowered as early as 32-35 days, and some on the other extreme some of the collections from Tripura and Assam did not flower until 85 days.

It may also be worth mentioning that collections made from the states of Jammu and Kashmir, Himachal Pradesh in particular were outstanding. Collections particularly from parts of Assam, Tripura and Agartala showed some very impressive plant type, even though some of them were quite late.

IARI Delhi centre also maintains all the inbred lines which have gone in the released hybrids. The breeders seed is supplied by the Coordinator to the National Seeds Corporation which is responsible for the multiplication and supply of seed to the farmer.

(iii) Composite breeding approach and results obtained:*

The varietal collection being so large, it is practically impossible to make all possible crosses and determine their combining ability. Before any material is used in breeding programme, it is important that its combining ability is known. Therefore, the combining ability is being tested by crossing these materials to testers which are locally adapted materials and released composites. This serves the purpose of initial screening when the number of good combining lines becomes limited, intervarietal crosses in diallel or partial diallel are made. This material serves two purposes - (a) It gives the general combining ability and specific combining ability of the materials under test. (b) It has been experienced that some of the inter-varietal crosses are giving very high heterotic responses and their yield levels are comparable to best double cross hybrids released to date (see Plates 27A and 27B).** Based on these observations the higher yielding F1's of the intervarietal crosses can be advanced to F2 and F3. The cases where there is no or very little decline in advance generations, could be used as commercial variety by farmers. It has got an additional advantage over the hybrids that its seed could be used further without undergoing the performance.

It is realised by most of the maize workers that initial performance of the lines have got an important bearing upon the yield performance of the hybrids. Therefore, if one starts with a population which is already very high yielding, the hybrids developed from these materials will yield still higher. Further in our conventional breeding programme, because of inbreeding there is rapid fixation of genotypes and there is no further chance of improvement by developing inbred lines from these hybrids. Therefore, it is felt that if a base populations could be developed with yield, higher than that of the released hybrids, they can serve as such as a reservoir for tapping better performing inbred lines. It is well known, yield is governed by polygenes and the work done by several workers

* According to information given by Dr. N.L.Dhawan.

** Plate No. 27 to Plate No. 29: By courtesy of Dr. N.L.Dhawan.
have established that hybrid vigour could result from dominance or over-dominance or additive type of gene action. Hybrid vigour resulting from dominance or over dominance is not stable, but very large in magnitude. This type of gene action is utilized in the double cross hybrid production programme. The hybrid vigour resulting from the additive genetic type of gene action is very stable though a little less in magnitude than that resulting from the former. However, it is possible to elevate the yield level of the population progressively by exploiting the additive component more and more. Investigations, carried out by Robinson, Comstock, Lonquist and Gardner and others in U.S.A. show that considerable additive genetic variance exists in the germplasm from north and south America and the Caribbean region. It was felt by Dr. N.L. Dhawan that these exotic germplasms and also the indigenous germplasm should be studied genetically and the components of the genetic variance be estimated so that such germplasm could profitably be used. Investigations carried out by several of Dr. Dhawan's students have revealed that germplasms introduced from central and south America and Caribbean region has a much wider range and a higher level of performance. The first step in the breeding programme was, therefore, to use a good local variety or a varietal complex as a top cross tester in a wide spectrum of introduced materials. The F₁ top crossed was tested and a large number of them gave yields equal to or better than the best double cross hybrids. Heterotic response range as high as 20-30% or more than the better parent. Trials with F₂ generation showed that certain of them gave little decline in F₂ or further generation. Such F₁ varietal crosses or their advanced generation can, therefore, be released for commercial cultivation. A few examples of such varietal crosses and the advanced generation are given in Tables 15 and 16. In certain cases there was improvement in yield which could be due to the breakage of certain undesirable repulsion phase linkages. Based on these concepts a large number of composite populations were developed and studied over various locations. It was also found that the composites possessed a wider adaptability and more buffering capacity for untoward environment.

The early generations of such composites can be further improved by certain breeding procedures. Better F₂ populations are subjected to different recurrent procedures to obtain maximum gains.

Dr. N.L. Dhawan has suggested certain modifications—recurrent selection procedures and also a methodology for developing progressively higher yielding populations and hybrids. These procedures are, herein, described in detail.*

<table>
<thead>
<tr>
<th>Table 15 Maize composites (4 generations) - Grain yield kg/ha at 15% moisture (Northern plains)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry</td>
</tr>
<tr>
<td>--------------------</td>
</tr>
<tr>
<td>Composites</td>
</tr>
<tr>
<td>B₁ x Antigua Gr.1</td>
</tr>
<tr>
<td>(Kisan)</td>
</tr>
<tr>
<td>J₁ x Coastal Trop. Flints</td>
</tr>
<tr>
<td>(Jawahar)</td>
</tr>
<tr>
<td>A₁ X Antigua Gr.1</td>
</tr>
<tr>
<td>Hybrid Ganga 3</td>
</tr>
</tbody>
</table>

Values in bracket percentage of F₁.

*According to the Breeding methodology for Yield and Other characters in Maize, by Dr. N.L. Dhawan, 1965.
Table 16 Maize composites (3 generations) Grain yield kg/ha at 15% moisture
(Northern plains)

<table>
<thead>
<tr>
<th>Entry</th>
<th>(F_1)</th>
<th>(F_2)</th>
<th>(F_3)</th>
<th>% of (F_1)</th>
<th>% of (F_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composites</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B1 x Cuba 111)</td>
<td>4217</td>
<td>3433</td>
<td>3043</td>
<td>81.4</td>
<td>72.1</td>
</tr>
<tr>
<td>(JrxCuballJ)(Sona)</td>
<td>3447</td>
<td>3290</td>
<td>3827</td>
<td>95.4</td>
<td>111.0</td>
</tr>
<tr>
<td>(Puerto Rico Gr.I</td>
<td>3577</td>
<td>3907</td>
<td>4330</td>
<td>109.2</td>
<td>121.0</td>
</tr>
<tr>
<td>x Cost.Trop.Flints)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganga 5</td>
<td>3577</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganga 101</td>
<td></td>
<td>3613</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to Progress Report of the coordinated maize breeding scheme, 1966, ICAR, India.

Modified mass selection: (Fig. 7A)

The population developed in the manner tested above should be grown in a half acre plot in isolation. The plot should be divided into equal sectors, and plants should be selected in each sector in order to minimize the effects of soil heterogeneity and fertility gradient. Equal number of plants should be selected in each sector keeping in view the norms for the characters. Undesirable plants should be detasselled. Ears are harvested from the selected female plants and are screened for undesirable attributes. Equal quantities of seeds are taken from each ear and bulked. The reconstituted population is tested against the base parental population. The shift in the population will be in the direction selection pressure has been exercised. Selection cycle can be repeated so long as the population shows a shift in the direction selection is being done.

Reciprocal recurrent selection: (Fig. 7B)

Parental populations A and B which have given excellent \(F_1 \) and \(F_2 \) performance in hybrid combinations, are suitable for a recurrent selection programme. The inbred lines developed from A are top-crossed to the base population B and vice versa. From top cross test data, the elite inbred lines are selected and selection pressure is exercised in the desired direction. The elite inbred lines from each population are then chain crossed and equal quantities of crossed seed from each line are then bulked to reconstitute the population. If tests reveal that significant improvement has been achieved, the cycle of selection can be repeated.

Bi-parental progeny selection:

One of the main objective in improving a heterozygous population is to prevent the fixation of genotypes and increase the frequency of favourable genes governing the quantitative traits concerned. The production and evaluation of biparents, and reconstitution of the population from the superior biparentals is one such procedure. It can readily be visualised that by selecting elite biparents, in repeated cycles, it should be possible to concentrate favourable genes and eliminate the undesirable ones. A population can thus be developed, which in a panmictic state not only gives a high level of performance for the quantitative traits under selection, but also possesses a low level of plant to plant variability. Such a breeding methodology would be suited to a quantitative trait whose genetic architecture consists predominantly of additive gene effects and complimentary epistasis.
Figure 7. RECURRENT SELECTION PROCEDURES*

7A Modified Mass Selection

1. Select equal number of plants in each sector
2. Detassel undesirable plants
3. Bulk seeds of female plants

7B Reciprocal Recurrent Selection

- Inbreds X B
- A X Inbreds
- T C Test
- Elite inbreds Chain cross
- Bulk
- Reconstitute A1
- Repeat cycle
- Elite inbreds Chain cross
- Bulk
- Reconstitut B1
- Repeat cycle

7C Biparental Selection

Base population: Comp.D
- Make biparental crosses
- Replicated biparental progeny test
- Elite biparentals chain cross
- Bulk
- Reconstitute B1, repeat cycle

* According to Breeding Methodology for Yield and Other characters in Maize by Dr. N.L. Dhawan, 1965.
Figure 7C illustrates the recurrent biparental progeny selection procedure. Briefly stated, in this method, male plants are selected, possessing the desirable characters and each male plant is crossed to a selected female plant. Biparental progeny test will indicate whether selection pressure has been effective. On the basis of the biparental progeny data, remnant seed of the elite biparentals are planted and chain-crossed. Equal quantities of seed from each cross are then bulked. The cycle is repeated as long as tests indicate that the population is not reaching a stage of diminishing returns.

Table 17 presents data on the yield performance of biparental progenies developed from a F2 population of \((\text{Dorado de Tequisate} \times \text{Eto Amarillo})\). The yields of the biparentals range from 132 to 83 per cent of the F1 cross. In all 280 progenies were tested and 24% significantly outyielded the F1 combination (see Plate 28).

Table 17 Performance of bi-parental progenies base population

\[(\text{Dorado de Tequisate} \times \text{Eto Amarillo})_{F2}\]

<table>
<thead>
<tr>
<th>Pedigree</th>
<th>Yield kg/ha</th>
<th>% of F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>5174</td>
<td>100</td>
</tr>
<tr>
<td>F2</td>
<td>4563</td>
<td>90</td>
</tr>
<tr>
<td>BP1</td>
<td>6835</td>
<td>132</td>
</tr>
<tr>
<td>BP2</td>
<td>6632</td>
<td>128</td>
</tr>
<tr>
<td>BP3</td>
<td>6443</td>
<td>125</td>
</tr>
<tr>
<td>BP4</td>
<td>6079</td>
<td>118</td>
</tr>
<tr>
<td>BP5</td>
<td>5484</td>
<td>106</td>
</tr>
<tr>
<td>BP6</td>
<td>5038</td>
<td>94</td>
</tr>
<tr>
<td>BP7</td>
<td>4282</td>
<td>83</td>
</tr>
</tbody>
</table>

Total biparentals tested 280
24% significantly outyielded F1

Table 18 Biparental progeny selection

<table>
<thead>
<tr>
<th>Entry</th>
<th>Yield kg/ha</th>
<th>% of Ganga 101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basi x Eto F1</td>
<td>3184</td>
<td>110</td>
</tr>
<tr>
<td>((\text{Basi} \times \text{Eto})_{F1}) # (F_2)</td>
<td>2539</td>
<td>88</td>
</tr>
<tr>
<td>Ganga 101</td>
<td>2897</td>
<td>100</td>
</tr>
</tbody>
</table>

Reconstituted:
\((\text{Basi} \times \text{Eto})_{-}\#\)
Ganga 101

4863 114
4210 100

* According to the Breeding Methodology for Yield and Other characters in Maize by Dr. N.L. Dhawan, 1965.

Table 18 shows the performance of a reconstituted population, advanced another generation after recombining elite biparentals. The base population was developed by crossing to outstanding varieties, Basi (India) and Eto Amarillo (Colombia). The F1 gave ten per cent more yield than the double cross hybrid Ganga 101, while the F2 yielded 12 per cent less. After a biparental progeny test the population was reconstituted and advanced
another generation by sib mating. It will be seen that it yielded 14 per cent more than Ganga 101.

A designate scheme for the development and improvement of composites is shown in Fig. 8

The various steps for the development of a composite are:

Step 1
The first step in the composite breeding programme is the screening of wide spectrum of base varieties for adaptation, by multilocation tests, and identification of sources possessing resistance to the prevailing diseases and pests, and possessing other desirable attributes.

Step 2
Consists of either making diallel and partial diallel crosses between the elite base varieties, keeping in view the fact of genetic diversity, or using one or more varieties (preferably a varietal complex of the best indigenous varieties in agro-climatic zone), and top-crossing it to the screened base varieties.

Step 3
Constitutes a multi-location test with the F1 and F2 generations of the varietal crosses. Only these combinations that give high yield (as compared to the best check entry), high heterotic response and the least decline in the F2, and also conform to the norms for the other characters, are further utilized in breeding. According to the genetic theory overdominance and epistatic effects will to a considerable extent be dissipated in the F2, and F2 performance will largely be the result of additive gene effects.

Step 4
Certain of the elite F2 populations then serve as composite varieties, which are further tested in advance generations before release. Alternatively, the diallel or top cross data is used for compositing varieties with high general combining ability into combinations of two or four or multiple combinations of selected varieties, followed by advance generation testing. For compositing, the elite varieties are selected from different geographic areas.

Step 5
The outstanding composite populations are subjected to recurrent selection. Response to selection depends upon the magnitude of the additive genetic variance. Recurrent selection can be repeated so long as significant gains are realised in each cycle of selection. Data in literature indicates that mass selection on an average gives gains of 5% and 15% gains from full-sib family selection have been reported. A stage will be reached when the composite plateaus off, thereby indicating that the additive genetic variance has been exhausted.

Step 6
This population is now used for crossing with new germplasms that are being constantly funnelled into the programme. It is anticipated that by the introgression of new germplasms, the composite performance will be again pushed up, and a new spectrum of genetic variability will again become available for mobilization.

Step 7
In the methodology outlined above, the epistatic component of variance has been ignored. This portion of the genetic variance can be used over and above the gains made by exploiting the additive genetic variance by developing and releasing double cross hybrids. Consequently, as the composite yields rise, the double cross yields will also increase by using composites at higher and higher rungs of ladder.
Figure 8. Scheme for the development and improvement of composite varieties*

*According to the Breeding Methodology for Yield and Other characters in Maize by Dr. N.L. Dhawan.
The question arises that in terms of time, which breeding methodology can give more rapid gains. Fig. 9 graphically presents the number of crop seasons needed for the release of composite varieties and double cross hybrids. It will be seen that breeding composites is three crop season faster, and far less complicated. Perhaps, in the ultimate analysis composite breeding will have to supplement the production of double cross hybrids.

Table 19 shows the performance of reconstituted population using different selection procedures in the Coordinated Maize Breeding Scheme against the base population. Several selection procedures have been tried and were tested here. Data indicate that the reciprocal recurrent selection and mass selection and biparental selection are quite effective for the improvement of the populations whereas unit selection, visual rating selection and parent selection are not much effective.

In 1967, six high yielding composites, namely, Amber, Vijay, Jawahar, Kisan, Sona and Vikram were released for commercial cultivation. One advantage with these composites is that the farmers can keep their own seeds to two to three generations. Plates 29A, 29B and 29C show some of the released composites. A short description of each composite is given below:
Figure 9. The time factor in composite vs. double cross hybrid breeding*

Composite breeding:

9 Trials with composite reconstituted and original
8 Reconstitution of Composite
7 Testing Selections
6 Recurrent Selection 1st cycle
5 Release of Composite Varieties
4 Composite populations in F2, F3 and F4
3 Composite populations in F2 and F3
2 Trials with F1 Varietal Crosses
1 F1 Varietal Crosses

Double cross hybrid breeding:

Release of D.C.
Trials with D.C.
Trials with D.C.
Making elite D.C. Prediction of D.C. performance
Single cross Trial
Making of diallel test of Single Cross
S3 inbreds and T.C. trials with S2 lines.
S2 inbreds lines + T.C. trials with S1 lines.
S1 inbred lines + T.C. Trials of S0 plants

base varietal populations

* According to the Breeding Methodology for Yield and Other characters in Maize by Dr. N.L. Dhawan, 1965.
Table 19 Performance of reconstituted composite populations using different selection procedures against the respective base population*(Kharif,1968)

<table>
<thead>
<tr>
<th></th>
<th>Delhi</th>
<th>Ludhiana</th>
<th>Pantnagar</th>
<th>Dholi</th>
<th>Hyderabad</th>
<th>Arbhavi</th>
<th>Chhindwara</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yld</td>
<td>R</td>
<td>Yld</td>
<td>R</td>
<td>Yld</td>
<td>R</td>
<td>Yld</td>
<td>R</td>
</tr>
<tr>
<td>J me</td>
<td>4677</td>
<td>4</td>
<td>3224</td>
<td>26</td>
<td>4973</td>
<td>13</td>
<td>3681</td>
</tr>
<tr>
<td>J me(original)</td>
<td>4406</td>
<td>11</td>
<td>3984</td>
<td>19</td>
<td>5743</td>
<td>4</td>
<td>3114</td>
</tr>
<tr>
<td>J me(Arr)#</td>
<td>4947</td>
<td>2</td>
<td>4761</td>
<td>1</td>
<td>6452</td>
<td>2</td>
<td>3337</td>
</tr>
<tr>
<td>J me(Arr)#-#</td>
<td>4675</td>
<td>5</td>
<td>3692</td>
<td>8</td>
<td>5685</td>
<td>5</td>
<td>3026</td>
</tr>
<tr>
<td>J me(Jrr)#</td>
<td>4236</td>
<td>18</td>
<td>2944</td>
<td>39</td>
<td>5539</td>
<td>6</td>
<td>3654</td>
</tr>
<tr>
<td>J me(Aps)Path-#</td>
<td>3910</td>
<td>31</td>
<td>3000</td>
<td>34</td>
<td>4987</td>
<td>11</td>
<td>3168</td>
</tr>
<tr>
<td>J me</td>
<td>4519</td>
<td>9</td>
<td>3709</td>
<td>7</td>
<td>4705</td>
<td>18</td>
<td>3492</td>
</tr>
<tr>
<td>J me(Jrr)#</td>
<td>4332</td>
<td>16</td>
<td>3626</td>
<td>13</td>
<td>5237</td>
<td>9</td>
<td>3229</td>
</tr>
<tr>
<td>J me(Arr)-#</td>
<td>4788</td>
<td>3</td>
<td>4142</td>
<td>2</td>
<td>4718</td>
<td>17</td>
<td>3445</td>
</tr>
<tr>
<td>Cuba 11J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba 11J (B- original)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba 11J(Arr)-#</td>
<td>3532</td>
<td>36</td>
<td>2997</td>
<td>35</td>
<td>3489</td>
<td>41</td>
<td>3060</td>
</tr>
<tr>
<td>Cuba 11J(Arr)#-#</td>
<td>3202</td>
<td>41</td>
<td>3339</td>
<td>21</td>
<td>3317</td>
<td>44</td>
<td>2972</td>
</tr>
<tr>
<td>Cuba 11J(Brr)#-#</td>
<td>2926</td>
<td>44</td>
<td>2141</td>
<td>48</td>
<td>3513</td>
<td>40</td>
<td>3148</td>
</tr>
<tr>
<td>Cuba 11J(Brr)#</td>
<td>2726</td>
<td>46</td>
<td>2739</td>
<td>44</td>
<td>3366</td>
<td>42</td>
<td>3519</td>
</tr>
<tr>
<td>Cuba 11J(EmS1)</td>
<td>2288</td>
<td>48</td>
<td>2439</td>
<td>47</td>
<td>2848</td>
<td>49</td>
<td>2472</td>
</tr>
<tr>
<td>Cuba 11J(Bms2)</td>
<td>2759</td>
<td>45</td>
<td>2402</td>
<td>46</td>
<td>2907</td>
<td>48</td>
<td>2763</td>
</tr>
<tr>
<td>Cuba 11J(Bpbl)-#</td>
<td>3797</td>
<td>34</td>
<td>2749</td>
<td>43</td>
<td>3032</td>
<td>46</td>
<td>2756</td>
</tr>
<tr>
<td>Cuba 11J(ArrJ)-#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sona</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(J me x Cuba 11J)F1</td>
<td>4048</td>
<td>26</td>
<td>3064</td>
<td>31</td>
<td>3689</td>
<td>38</td>
<td>2959</td>
</tr>
<tr>
<td>Sona (JMS)</td>
<td>4557</td>
<td>8</td>
<td>3420</td>
<td>16</td>
<td>4773</td>
<td>16</td>
<td>3222</td>
</tr>
<tr>
<td>(J me(Arr)-#-# x Cuba 11J(Arr)-#-#) F1</td>
<td>4650</td>
<td>6</td>
<td>3839</td>
<td>5</td>
<td>4644</td>
<td>20</td>
<td>4053</td>
</tr>
<tr>
<td>Sona (AU)-#</td>
<td>3925</td>
<td>30</td>
<td>2916</td>
<td>41</td>
<td>4442</td>
<td>23</td>
<td>2857</td>
</tr>
</tbody>
</table>

* Compiled from the data of Progress Report of the Coordinated Maize Breeding Scheme, 1968, ICAR, India.
<table>
<thead>
<tr>
<th></th>
<th>Delhi Yld</th>
<th>Delhi R</th>
<th>Ludhiana Yld</th>
<th>Ludhiana R</th>
<th>Pantnagar Yld</th>
<th>Pantnagar R</th>
<th>Phool Yld</th>
<th>Phool R</th>
<th>Hyderabad Yld</th>
<th>Hyderabad R</th>
<th>Arbhevi Yld</th>
<th>Arbhevi R</th>
<th>Chhindwara Yld</th>
<th>Chhindwara R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sona (App)-#</td>
<td>3430 37</td>
<td>3650 11</td>
<td>4399 25</td>
<td>3357 11</td>
<td>4937 33</td>
<td>3127 44</td>
<td>3923 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sona (Ar-TC)-#</td>
<td>4112 22</td>
<td>3613 14</td>
<td>3981 31</td>
<td>3924 2</td>
<td>5111 29</td>
<td>3847 26</td>
<td>3997 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sona Ar-#</td>
<td>3854 32</td>
<td>3521 16</td>
<td>4150 27</td>
<td>3506 10</td>
<td>4751 40</td>
<td>3036 45</td>
<td>2909 47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puerto Rico Gr.I(Original)D</td>
<td>3203 40</td>
<td>2585 45</td>
<td>4500 22</td>
<td>2743 46</td>
<td>3681 48</td>
<td>2489 49</td>
<td>3249 42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puerto Rico Gr.I(Lms)</td>
<td>4387 12</td>
<td>3210 27</td>
<td>5139 10</td>
<td>3638 6</td>
<td>5824 6</td>
<td>4303 11</td>
<td>4084 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puerto Rico Gr. I (Lp.s)</td>
<td>3404 38</td>
<td>2979 37</td>
<td>4921 14</td>
<td>2418 34</td>
<td>3844 49</td>
<td>2753 46</td>
<td>3588 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1(B original)</td>
<td>3977 29</td>
<td>3344 20</td>
<td>3856 33</td>
<td>2803 42</td>
<td>4777 39</td>
<td>3327 39</td>
<td>3317 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1(Brr)-#</td>
<td>4114 21</td>
<td>3656 10</td>
<td>3944 32</td>
<td>2972 35</td>
<td>5262 23</td>
<td>4668 7</td>
<td>4071 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1(Brr)-#-#</td>
<td>4110 23</td>
<td>3433 17</td>
<td>3321 43</td>
<td>2945 39</td>
<td>5410 18</td>
<td>4704 6</td>
<td>3986 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1(Hrr)-#</td>
<td>3740 35</td>
<td>3226 25</td>
<td>-</td>
<td>-</td>
<td>5047 30</td>
<td>4203 14</td>
<td>3715 29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIII(B original)</td>
<td>3153 42</td>
<td>3027 32</td>
<td>3982 30</td>
<td>2493 47</td>
<td>4361 43</td>
<td>3200 42</td>
<td>3934 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIII(Brr)-#</td>
<td>4447 10</td>
<td>4006 3</td>
<td>4042 29</td>
<td>3006 36</td>
<td>5161 27</td>
<td>5160 2</td>
<td>3499 36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIII(Brr)-#-#</td>
<td>4219 19</td>
<td>3678 9</td>
<td>4433 24</td>
<td>3141 25</td>
<td>5585 8</td>
<td>5317 1</td>
<td>4222 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIII(Hrr)-#</td>
<td>4099 24</td>
<td>3023 33</td>
<td>-</td>
<td>-</td>
<td>5314 22</td>
<td>4732 5</td>
<td>3665 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antigua 2D</td>
<td>3036 43</td>
<td>2902 42</td>
<td>5051 11</td>
<td>2790 43</td>
<td>4298 44</td>
<td>2698 48</td>
<td>3279 41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antigua 2D (Mbp)-#</td>
<td>2520 49</td>
<td>2936 40</td>
<td>4909 15</td>
<td>3330 19</td>
<td>3913 47</td>
<td>3282 40</td>
<td>3228 43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2(B) original</td>
<td>4362 13</td>
<td>3316 23</td>
<td>3297 45</td>
<td>3114 26</td>
<td>5136 28</td>
<td>3446 37</td>
<td>3120 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2(Bbp1)-#</td>
<td>4357 14</td>
<td>3330 22</td>
<td>3762 36</td>
<td>3492 11</td>
<td>5473 15</td>
<td>3546 32</td>
<td>3752 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2(Bms1)</td>
<td>4162 20</td>
<td>2954 38</td>
<td>3800 35</td>
<td>2959 37</td>
<td>5213 26</td>
<td>3647 29</td>
<td>3669 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2(Bms2)</td>
<td>3980 28</td>
<td>3208 28</td>
<td>3719 37</td>
<td>3013 32</td>
<td>5394 20</td>
<td>3136 43</td>
<td>3883 23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(JlxAntigua Gr.l)(B original)</td>
<td>4079 25</td>
<td>3883 4</td>
<td>6165 3</td>
<td>3377 16</td>
<td>5255 24</td>
<td>3482 35</td>
<td>3804 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(JlxAntigua Gr.l)(Bbp)-#</td>
<td>2802 33</td>
<td>3632 12</td>
<td>5530 7</td>
<td>3567 8</td>
<td>5537 10</td>
<td>4075 18</td>
<td>3568 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Checks

<p>| | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>4025 27</td>
<td>2077 49</td>
<td>3516 39</td>
<td>3567 8</td>
<td>5537 10</td>
<td>2753 46</td>
<td>4400 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganga 3</td>
<td>4264 17</td>
<td>3602 15</td>
<td>4114 28</td>
<td>3107 28</td>
<td>5399 19</td>
<td>3485 36</td>
<td>3887 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delhi Yld</td>
<td>Delhi R</td>
<td>Ludhiana Yld</td>
<td>Ludhiana R</td>
<td>Pantnagar Yld</td>
<td>Pantnagar R</td>
<td>Dholi Yld</td>
<td>Dholi R</td>
<td>Hyderabad Yld</td>
<td>Hyderabad R</td>
<td>Arbhavi Yld</td>
<td>Arbhavi R</td>
<td>Chhindwara Yld</td>
<td>Chhindwara R</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
<td>---------</td>
<td>--------------</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Ganga 5</td>
<td>5308 1</td>
<td></td>
<td>3755 6</td>
<td></td>
<td>3323 20</td>
<td></td>
<td>6130 3</td>
<td></td>
<td>4595 8</td>
<td></td>
<td>4678 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganga 101</td>
<td>1930 49</td>
<td></td>
<td>3288 24</td>
<td></td>
</tr>
<tr>
<td>Ganga Safed 2</td>
<td></td>
<td></td>
<td>5438 8</td>
<td></td>
<td>3607 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deccan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5423 17</td>
<td></td>
<td>4878 4</td>
<td></td>
<td>4726 1</td>
<td></td>
</tr>
<tr>
<td>Jawahar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4944 32</td>
<td></td>
<td>4011 21</td>
<td></td>
<td>4400 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kisan</td>
<td>4266 16</td>
<td></td>
<td>3183 30</td>
<td></td>
<td>4377 21</td>
<td></td>
<td>3431 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4011 21</td>
<td></td>
</tr>
<tr>
<td>C.D. at 5%</td>
<td>779</td>
<td></td>
<td>832</td>
<td></td>
<td>971</td>
<td></td>
<td>708</td>
<td></td>
<td>680</td>
<td></td>
<td>1010</td>
<td></td>
<td>938</td>
<td></td>
</tr>
<tr>
<td>C.V.%</td>
<td>13.2</td>
<td></td>
<td>16.3</td>
<td></td>
<td>13.1</td>
<td></td>
<td>15.8</td>
<td></td>
<td>9.0</td>
<td></td>
<td>18.6</td>
<td></td>
<td>15.2</td>
<td></td>
</tr>
</tbody>
</table>
Amber Composite Makka

Pedigree: BI(Y) was developed by bulking the seeds of 11 varietal crosses which involved five flint varieties (Narino 330, Diacol VI, Venezuela 1, Cornelli 54, Eto Amarillo) and six dent varieties (Jarvis, Ferguson Yellow Dent, Cocker 811 Gr/N 1000/1452, Mexican June, Bolita Amarillo). The crosses were made in 1959 and the population was allowed to random cross pollinate in subsequent generations.

Breeding procedures: Equal quantity of seed of varietal crosses was mixed. The mixed seed was sown in 1959 in three plots at one week's interval. The ears in plot 1 were pollinated with the bulk pollen of plot 2 and the ears of plot 2 were pollinated with the bulk pollen of plot 3. Ears with orange flint grains were harvested from selected plants and seed bulked. This procedure was repeated in 1960. The composite was then maintained by open pollination in isolation. From 1961 onwards, it is being maintained either by open or sib-pollination.

Area of adaptation: Himalayan hills up to an altitude of 1700 meters, and Peninsular India.

Grain yield potential (kg/ha): 6500 to 7800

Salient characters: Recommended for Peninsular India and Himalayan hills up to an altitude of 5000 ft. Maturity period 110 to 115 days; plants tall vigorous growing, bearing broad dark green leaves; partial resistance/tolerance to downy mildew, leaf blights and rust; one big ear per plant; ears long and tapering with uniform kernel rows; grain flat and bold, pale yellow and semi flint.

Vijay Composite Makka

Pedigree: Genetic base is selected open pollinated ears from No. 14 yield trials grown in 1961 kharif. Seeds from selected ears were bulked and the population allowed to random cross pollinate in subsequent generations.

Breeding procedure: After the initial composition in 1961, the composite has been planted in two dates of planting and bulk sib-bed between the 2 dates of planting in 1962 and 1963. Subsequently, it has been maintained in isolation in 1964 and 1965.

Area of adaptation: Indo-gangetic plains

Grain yield potential (kg/ha): 5500 to 6300

Salient characters: Recommended for the northern plains; plants tall growing, with long narrow comparatively lighter green leaves; resistant/tolerant to leaf blights and rust; strong tendency to bear 2 ears per plant; the ears are long and tapering with bold flint to semi-flint yellow grains.

Sona Composite Makka

Pedigree: Cross between J1 and the Cuban orange yellow flint variety Cuba 11J. Cross was made in 1963 and the population allowed to random cross pollinate in subsequent generations.

Breeding procedure: After the initial cross, the F2 was developed by mass sibbing (1964), between rows. Subsequently, it has been maintained in isolation.

Area of adaptation: Indo-gangetic plains

Grain yield potential (kg/ha): 5000 to 6000

Salient characters: Recommended for northern plains; maturity 90 to 100 days; tall vigorous plants, with broad light green leaves; tendency for 2 ears per plant; ears small and conical; grains small, bright orange hard flint.

Jawahar Composite Makka

Pedigree: A1 composite was developed by bulking seeds of 15 varietal crosses, which involved the following varieties: Amarillo-de-Cuba, Basí, Arbhavi Local, HM 1, Eto Amarillo, Pusa Culture LPL 2, Jullundur Local,
Yellow Tuxpan, Cuba Yellow Dent, Peru 330, Cateto, Theobromina, KT 41, Indian Chief, Ferguson, Yellow Dent, 2E Syn and L Syn.

Antigua Gr. 1, a composite developed by the Mexican Programme, from tropical flint varieties, from the island of Antigua. The cross A1 x Antigua Gr. I was made in 1963 and the population allowed to random cross pollinate in subsequent generations.

Breeding procedure: After the initial cross, the F2 was developed by mass sibbing between rows (1964). Subsequently, it has been maintained in isolation.

Area of adaption: Indo-gangetic plains and Peninsular India.

Grain yield potential (kg/ha): 5600 to 6600

Salient characters: Recommended for northern plains and Peninsular India; maturity 100 to 110 days; resistant/tolerant to downy mildew, leaf blights and rust possesses considerable measure of resistance to the top shoot borer (*Chilo Zonellus*) one ear per plant; ears long and cylindrical with tight husk cover; grains orange yellow bold; round and semi-flint.

Kisan Composite Makka

Pedigree: The Coastal Tropical Flint is a composite developed by the Mexican Programme, from flint varieties originating in San Vicente, Barbados and Antigua.

The cross between J1 and Coastal Tropical Flint, was made in 1963 and allowed to random cross pollinate in subsequent generation.

Breeding procedure: After the initial cross, the F2 was developed by mass sibbing between rows (1964). Subsequently, it has been maintained in isolation.

Area of adaptation: Indo-gangetic plains

Grain yield potential (kg/ha): 5600 to 6500

Salient characters: Recommended for the Northern plains; maturity 105 to 110 days; plants compact with thick stem and long, broad dark green leaves; considerable resistance/tolerance to the top shoot borer, downy mildew leaf blights and rust; tendency for 2 ears per plant, ears with tight husk cover; ears cylindrical and short; grains medium in size, yellow, hard flint.

Vikram Composite Makka

Pedigree: Basi is an orange flint variety from Rajasthan. Eto Amarillo is a variety of unknown origin from Colombia.

The cross Basi x Eto Amarillo was made in 1963 and allowed to random cross pollinate in subsequent generations.

Breeding procedure: After initial cross, the F2 was developed by mass sibbing between rows (1964). Subsequently, it has been maintained in isolation.

Area of adaptation: Indo-gangetic plains, particularly the low rainfall areas in Gujarat, Rajasthan and Punjab.

Grain yield potential (kg/ha): 5000 to 6000

Salient characters: Maturity 90 to 100 days; plants vigorous; considerable resistance in drought and partial resistance to downy mildew leaf blights and rust; tendency to bear 2 ears per plant, ears long and tapering, with bold, hard orange-yellow shining flint grains.

It can be seen from the Fig. 8 that at after every cycle of recurrent selection, better inbred lines can be developed from the improved populations and higher yielding double crosses can be produced.

The existing double cross hybrids can also be improved by a method called Step Ladder Breeding as suggested by Dr. N. L. Dhawan.

The breeding procedure outlined here is designed to suit a project which has developed and released for cultivation double cross hybrids.
Figure 10. Step ladder breeding for hybrid maize*

According to the Breeding Methodology for Yield and Other characters in Maize by Dr. N.L. Dhawan, 1965.
Figure 11. Seed production of hybrid maize

- Area under foundation seeds
- Area under certified seeds

* Compiled from the data of NSC, Plans and Progress by the National Seeds Corporation, 1968, New Delhi.
Figure 10 illustrates what has been designated as step ladder breeding for hybrid maize. Starting at a yield level given by a double cross hybrid, the better parental single cross (SC 1) should be used as a top-cross tester on new lines emerging in the programme. From the three-way cross test, the superior combining lines are identified. A new double cross can be predicted where the tester SC 1 forms one parent and a new single cross (SC 2A) developed from two superior lines (as indicated by the three-way cross test) from the other parent. Thus the inferior SC 2 is replaced and the new double cross hybrid not only gives increased yield but also better agronomic performance. In the second cycle, SC 2A is now used as tester and SC 1 is replaced. The cycles of breeding can be repeated, and yield and other characters can be raised step-wise to higher and higher levels of performance.

Table 20 presents data to illustrate the points mentioned above.

Table 20 3-way cross test*

<table>
<thead>
<tr>
<th>Pedigree</th>
<th>Yield (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdeC-A406 x SC Tester</td>
<td>5268</td>
</tr>
<tr>
<td>G101-A37 x SC Tester</td>
<td>4660</td>
</tr>
<tr>
<td>Predicted DC</td>
<td></td>
</tr>
<tr>
<td>(CM 202 x CM 111) x (AdeC-A406 x G101-A37)</td>
<td>4964 (20 per cent increase)</td>
</tr>
<tr>
<td>Ganga 3</td>
<td>4120</td>
</tr>
<tr>
<td>(CM 202 x CM 111) x (CM 109 x CM 110)</td>
<td></td>
</tr>
<tr>
<td>SC Tester</td>
<td>4323</td>
</tr>
<tr>
<td>(CM 202 x CM 111)</td>
<td></td>
</tr>
</tbody>
</table>

* According to the Breeding Methodology for the Yield and Other Characters in Maize by Dr. N.L.Dhawan, 1965.

The single cross parent CM 202 x CM 111 of the double cross hybrid Ganga 3 was used as a top cross tester on new lines. The performance of the double cross (CM 202 x CM 111) x (AdeC-A416 x Ganga 101-A37) was predicted to give 20 per cent more yield than Ganga 3. This double cross is being produced and will be tested against Ganga 3. The other parental single cross of this hybrid, (CM 109 x CM 111) was giving trouble because of its susceptibility to the disease complex prevalent in India.

Further improvement of released composites:

The yield level of the released composites can be further raised by introgressing new germplasm into them. By crossing unrelated varieties with these composites, F1 complexes have been obtained which 10-15% more yield than the parental released composites. Plates 30A, 30B and 30C represent some of such F1 combinations.

(iv) Breeding for prolific eared character, compact plant type and protein content in maize:**

The yield component analysis in maize have revealed that probably the number of ears per plant can make maximum contribution towards the total yield per plant. Keeping these facts in view, the four prolific sources, namely SP2, G.C.E. Fla H94 and T 224 were used to develop an ideal maize population which can serve the base population source for incorporating this character since the original sources do not have the desired agronomic

** According to information given by Dr. B.K.Mukherjee and Mr. N.N.Singh.

*** Plate No. 30: By courtesy of Mr. N.N.Singh.
A composite has been developed from above four populations by practising mass selection for 3 generations. From this population, the bi-parents were made between prolific types at three plant population levels viz. 10,000, 20,000 and 40,000 plant per acre at Delhi and Chhindware, simultaneously. These biparents were put into yield trial to determine their yielding ability and the extent of prolificacy both at Delhi and Chhindware. Based on these performance 15-20 biparents have been selected in each population level and used for the reconstitution of prolific population. The number of ears per plant in biparents ranged from 2 to 3 (see Plate 32). The population was also reconstituted based on the visual observation on number of ears per plant. The two populations thus obtained will be tested next year for their yield performance.

With the rapid advance in the yield levels by changing the plant type in wheat and rice the maize breeders have also tried to reduce the plant height. In many parts of the country, because of prevalence of high velocity winds there is an appreciable loss in yield due to lodging. Therefore, the dwarf plant type should help to reduce lodging. Unfortunately, the dwarfing genes are accompanied by many undesirable genes that reduce the yield and therefore many scientists argue about the possibility of dwarf hybrids. But it is now being felt that we should be able to break this linkage by growing large populations. Secondly, we can look for compact plants which are intermediate in height. Br2 source has been used in maize scheme to incorporate dwarfing gene in composite Kisan, Jawahar, Antigua 2D and all the inbred line which have gone in commercial hybrids. The selection for desired agronomic characters is being done in composites while in inbred lines three back crosses have been made and the inbreds are now uniform. The hybrids have been reconstituted by crossing the parental inbred lines and these dwarf hybrids have been tested on the main stations of each zone.

Most of the present hybrids and composites in cultivation are low in lysine and methionine, amino acids and therefore, these are supposed to be poor in nutrition. Two genes, opaque 2 and floury 2 which have been recently discovered as source of high lysine and methionine are being incorporated in high yielding composites as well as inbred lines of the promising hybrids. Third back cross generation of composites with opaque gene have been produced and it is hoped that a composite with high lysine and methionine content would be released for cultivation fairly soon (see Plate 33**).

Investigations are also being carried out in sweet maize. The sweet maize varieties available are very low yielding. Using Hawaiian Sugar sweet corn as source, and applying composite breeding approach a sweet corn composite has been developed which is fairly high yielding. This composite is being put under yield trials (see Plate 34).

(v) Summary of breeding work being carried out at different stations***

Zone I (Himalayan region)
1. Yield trials: Eight trials comprising of top crosses of composites with Di as tester (F2); elite composites from 1967 data; top crosses of composites with Bl(Y) and J1 as tester and N1(W) and AdeC as testers; a diallel set of crosses of 10 inbred lines; top crosses of Helminthosporium turcicum resistant lines; dwarf hybrids and composites; released hybrids and composites.
2. Advance trials: It was decided that the following materials will be tested in advance trials: Him. 123, Ganga 5, Exptl. Hybrid 450, Composite C1, C2, JML 236, Jawahar, Kisan and Local variety.
3. Recurrent selection: Reciprocal recurrent selection in composite Bl(Y)

* Plate No. 31 and Plate No. 32: By courtesy of the Rockefeller Foundation in New Delhi.
** Plate No. 33 to Plate No. 37: By courtesy of Dr. B.K. Mukherjee.
and Puerto Rico Gr. 1. Mass selection in advance generation of the cross Bl(Y) x Puerto Rico Gr. 1 and the two parents.

4. Building new high yielding germplasms: Top cross the elite materials to 3 heterozygous testers with a view to identify new source materials which in combination with testers would provide a further boost in yield.

5. Development of composites with male sterile background: A number of elite composites, such as Amber, C1, C2, etc. will be used and the Texas source of male sterility.

Zone 2 (North-west plains)

 i) S1 lines in reconstituted population, maley, Cuba 11J (Arr)-#-# and J1(Arr)-#-# will be developed at Delhi.
 ii) J1(Arr)-#-# will be increased in isolation at Ludhiana, Cuba 11J (Arr)-#-# will be increased at Udaipur while J1(Arr)-#-# x Cuba 11J(Arr)-#-# will be increased at Delhi.
 iii) Reciprocal bi-parents will be developed at Ludhiana station.
 iv) The top-crosses of the two populations (S1 lines) will be made in Rabi and shall be tested in 6 yield trials in Kharif 1969 in zone 2.

2. New introductions received from within the country and abroad shall be tested in two yield trials at the main stations of Zone 2, 3 and 4. One trial shall be put up at Delhi while other will be by the IACP(Trials 27 and 28). Materials selected from the trial will be further utilized in the breeding programme.

3. Development of early maturing composite population from different geographic sources. Four sets of dialleles each of 10 parental varieties (selected on the basis of their agronomic performance over a period of 2 to 3 years were selected from the different geographic areas like India, Europe, South America and Russia) will be tested at Delhi, Hyderabad, Pantnagar. Based on the performance early composite populations shall be developed.

4. Development and selection for prolificacy. Following criteria shall be used for selection in prolific composite.
 i) Number of barren plants under different plant populations
 ii) Number of ears per plant in different plant populations
 iii) Yield per plant
 iv) Yield of the second ear

5. Improvement of Hawaiian sugar sweet corn. Bi-parent and unit selection was practised in Hawaiian sugar. Both sets of populations shall be tested for yield and uniformity and the populations shall be reconstituted.

6. Incorporation of O2 and F12 in elite composite population through back crossing will be continued.

7. Evaluation of different selection procedures, namely, recurrent selection, reciprocal recurrent selection, bi-parental selection, mass and unit selection was practised in composite Sona and appropriate populations have since been reconstituted. These selected population shall be tested against the base population with a view to assessing the level of improvement and efficiency of different procedure.

8. Yield trials: Following yield trials will be conducted during Kharif, 1968.

 Trial 8: All released hybrids and composites will be tested to determine the consistency of performance and area of adaptation. This trial shall be continued over a period of 3 years.

 Trial 14: Uniform double cross hybrid trial zone 2 shall contribute 15 experimental hybrids.

 Trial 16: With composite population in advance generation zone 2 will contribute 30 composites.

 Trial 17: Evaluation of reconstituted populations developed through recurrent selection and other procedures.

 Trial 18: Composite crosses in F1 and F2 generations, selection of
materials based on the performance in 1967 Kharif

Trial 19 (Zonal) - composite population in F₁ and F₂ generations.
Trial 20 (Zonal) - Experimental hybrids initial screening.
Trial 21 (Zonal) - Early maturing germplasms
Trial 22 (Zonal) - Trial with composites in advanced generations.

9. The varietal collection and elite composite populations shall also be maintained.

Zone 3 (North-East plains)

1. Maintenance of inbred lines, and evaluating them for agronomic characters, diseases and pests.
2. Maintenance and increase of seeds of elite varieties and composite populations.
3. Evaluation of varieties and composites by top crossing to a broad genetic base testers.
4. Conversion of the inbred lines of released hybrids into brachytic plant type by back cross programme and the reconstitution and testing of the dwarf hybrids against their normal counterpart.
5. Bi-parental progeny selection in elite composites.
6. Recurrent selection in the composites BI(Y), Puerto Rico Gr. I and Antigua 2D.
7. Studies on male sterility on the production of seed of hybrids.
8. Breeding for the prolific ear character and protein quantity and quality.
9. Yield trials with the following materials:
 i) Elite composites
 ii) Top crosses of composites in reciprocal recurrent selection
 iii) Bi-parental progenies of Antigua 2D.
 iv) White single crosses
 v) Varietal crosses of early yellow and white varieties.
 vi) New experimental double and double top crosses.

Zone IV (Peninsular India)

A. **Testing programme:**

1. Hybrids: Promising double crosses of 400 and 4,000 series will be evaluated at all the locations in Zone IV during Kharif and at Hyderabad and Arbhavi during Rabi. Hybrids 4207, 4227, 4307, 4437, 4147 and 4417 which have yielded 60 to 80% more than Deccan, may be included in uniform cooperative trials in Zones 1, 3 and 4.

2. **Top crosses of composites:** 11 composites which were received from Mexico have been top crossed to 4 testers (Amber, Jawahar, H₁ and J₁). These will be evaluated in Zone 4.

3. **Top crosses of inbred lines:** About 100 S₂ lines from composites and biparents and 15 S₃ lines from Deccan will be top crossed to Comp. B as tester parent and tested during Rabi 1968 at Hyderabad. Thirteen U.S. Argentina lines top crossed to two testers will be evaluated at Arbhavi and Chhindwara.

4. **Single crosses:** The single crosses of the 10 selected inbred lines of Rabi set 2 will be tested at Hyderabad and Arbhavi during Rabi 1968.

5. **Three-way crosses:** Nine three way white crosses of inbreds from the variety Sunnari with (CM 400 x CM 300) as common female parent along with two double top crosses and two varietal crosses will be tested at Chhindwara and Godhra.

6. **Advance trials:** The entries to be tested were decided at joint meeting and are given under decision taken.

A. **Breeding programme**

1. Reciprocal recurrent selections: First cycle comp. BI(BI), BII(BI) and Cuba 11J(Brl) developed at Hyderabad, and BI(HrI) and BII(HrI) developed at

Chhindwara will be evaluated in Zone IV with 8 replications and 4 rows each. First cycle comp. A2 will be advanced to F2 and F3. The 126 S1 lines from BI(BrI) will be top crossed to BI(BrI) and lines from BI(BrII) to BI(BrII) respectively.

2. Biparental progeny selection: The first cycle comp. A2 (BbpI), Cuba 11J(B bpI) and J1 x Antigua Gr.I (B bpI) will be evaluated in Zone 4. The biparental progenies in the first cycle populations will be made in Radi 1968.

3. Mass selection: A2(Bm2) and Cuba 11J(Bm2) will be evaluated and further mass selection will be continued.

4. Development of new composites: Comp. BIV and Comp HI will be tested in Zone 4 along with promising and released composites and also reconstituted composites.

5. Development of new inbred lines: Inbreeding will be started at Hyderabad in the following:
 i) Al x Puerto Rico Gr. I, F3
 ii) Coastal Tropical Flints x Doeto, F3
 iii) Antigua 1D
 iv) C2
 v) Al x Antigua Gr. I, F3
 vi) Antigua 3D

6. Improvement of lines: Back cross programmes for incorporation of opaque 2, prolificacy and dwarfness in selected inbred lines and also in promising comp. will be continued.

B. Agronomy section*

The objective of the project is to study the response of maize germplasms from different parts of the world to various agronomic practices.

Six sets of experiments were conducted at one or more locations during Rabi 1966-67 and Kharif, 1967. These were experiments on date of planting, nitrogen x plant populations, micronutrient, phosphorus x potash and tolerance of moisture stress and excess. The germplasms selected for the first four sets of experiments were Solan Local representing Indian germplasms, Mexican June Composite (Mexico and South Western United States), A-do-Cuba (the Caribbean area) and Doeto (representing Central and South America). These five germplasms were common at all the locations. Besides a hybrid and an open pollinated variety grown at the location were included as checks. The results obtained during the year indicated that:

1. Date of planting: In general, planting maize 10 to 20 days before the usual date of planting resulted in higher yields at almost all the locations. The yields in the later plantings depend upon the pattern of distribution of rainfall at the location.

2. N & Plant population experiment: All the germplasms gave significantly higher yield at 150 kg N/ha as compared to 50 kg N/ha. The differences between 150 and 250 kg N/ha were not significant at Hyderabad, Bajaura, Solan and Dholi. At other locations they were significant. The grain yield of hybrid increased by about 700 and 900 kg/ha at Delhi and Chhindwara by the application of 250 kg/ha as compared to 150 kg N/ha which means about additional profit of rupees one hundred per hectare. There was a definite increase in yield by increasing plant population from 25 to 50 thousands per hectare. 75 thousand plants/ha were beneficial to Ganga 3 and KT 41 at Delhi to all the germplasms at Ludhiana and to Deccan at Hyderabad. Only SSIII at Bajaura, and Solan, Mexican June and Deccan at Chhindwara were adversely affected by high plant populations. For all other germplasms the optimum plant population was between 50 and 75 thousand/ha.

3. P x K experiment: The response to phosphorus was significant at Bajaura, Godhra and Hyderabad. The grain yield of hybrid increased by 12,200 and 3200 kg/ha respectively at these locations by the application of 60 kg P2O5/ha.

The response to 50 kg K2O/ha was significant only at Bajaura and

Chhindwara.

4. Micronutrient experiment: Significant response to zinc was observed at Ludhiana and Chhindwara where 24 kg zinc sulphate/ha increased the grain yield by 1400 and 600 kg/ha at the respective stations. When zinc and iron were applied magnesium and manganese increased the grain yield at Hyderabad.

5. Response to moisture stress: The flowering stage was found to be most critical stage when moisture stress at tasselling stage resulted in the reduction in yield to an extent of 40%. The moisture stress at other stages did not depress the yield significantly.

6. Response to excess moisture: Excess of moisture for three and six days significantly reduced the yield of all the germplasms. The reduction in yield was more when the plants were subjected to excess moisture at knee-high stage than at flowering stage. There were some differences in the tolerance of germplasms to excess of moisture but more data are needed to draw definite conclusions.

C. Pathology section*

The investigations carried out in pathology section are listed below:

1. Bacterial stalk rot control trial: This experiment was repeated this year to study the effect of Clorox solution in controlling the bacterial stalk-rot. There were five replications. The variety was Ganga Hybrid Makka 101.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Treatments</th>
<th>Stand count</th>
<th>Infected plants</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>One week interval</td>
<td>634</td>
<td>58</td>
<td>9.2</td>
</tr>
<tr>
<td>2.</td>
<td>Two week interval</td>
<td>700</td>
<td>73</td>
<td>10.5</td>
</tr>
<tr>
<td>3.</td>
<td>Four week interval</td>
<td>633</td>
<td>74</td>
<td>11.7</td>
</tr>
<tr>
<td>4.</td>
<td>Control</td>
<td>660</td>
<td>93</td>
<td>14.1</td>
</tr>
</tbody>
</table>

2. Selection and development of disease resistant germplasms of maize:

A. Screening of S3 inbred lines of Cuba 11J and Antigua Gr. II against H. maydis leaf blight and downy mildew.

Since 1965 Kharif screening of Cuba 11J and Antigua Gr.II is being done at UPAU, for resistance against H. maydis as well as the downy mildew. Out of 65 cultures tested cultures of Antigua Gr.II in 1966 Kharif, only 58 cultures showed resistance in 1967 Kharif. Similarly, in Cuba 11J out of 28 cultures tested in 1966 Kharif only 16 cultures showed resistance to leaf blight and the downy mildew.

B. Selection of plants in D1 complex resistant to bacterial stalk rot using artificial inoculation.

Bacterial juice was injected into the first internode of plants of D1 complex with the help of a hypodermic syringe. The disease appeared after a week to fortnight of inoculation. All such plants which succumbed to the inoculation and fell down were discarded and only those which did not show any symptoms of disease were selected for further work. Such plants were maintained through sibbing and biparental pollination as a source of re-

sistance for future use.

C. Evaluation maintenance and screening of maize germplasms, composites, inbred lines and synthetics against the disease downy mildew and *Helminthosporium maydis*.

1. Composites:— Several lines of different composites were sown in 1967 *Kharif* season to study their reaction to the above diseases for developing disease resistant germplasms. All the lines were inoculated twice artificially at 10 days interval with *H. maydis* inoculum. These lines were also graded for downy mildew. The natural infection of downy mildew fungus was quite severe and some lines could not even attain proper growth and did not reach maturity. It was more severe in B1 x Cuba 11J and A2 lines. J1 x Coastal Tropical Flints lines were found more resistant than J1 x Cuba 11J and Al x Antigua Gr. I lines.

2. The list of certain outstanding lines and synthetics which were found resistant to *H. maydis* and downy mildew is given in the table. The rating for both are indicated against each line:

<table>
<thead>
<tr>
<th>Pedigree</th>
<th>Origin</th>
<th>Downy mildew</th>
<th>H. maydis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eto.182-C-1-2-f-f-#-#-1-#-#-#</td>
<td>NP66K 4216</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Eto-61B-#-1-f-f-f-#-#-#-#-#</td>
<td>" 4211</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>CM 113-#-3-#-#-#</td>
<td>" 4227</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CM 201-#-1-#-#-#-#-#</td>
<td>" 4316</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CM 106-#-#-#-#-#</td>
<td>" 4293</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>A2-Synthetic-#-#-#</td>
<td>" 5373</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: #; Sibbing, $; #-#-#-#-#

Collection and isolation work

A. Collection of specimen of the following diseases were made
i) Leaf spots caused by:
 a) *H. maydis*
 b) *H. turcicum*
 c) *H. corboum*

ii) Bacterial stalk rot
iii) Bacterial cob rot
iv) Fungal cob rot
v) Downy mildews

B. A number of isolates were made from the different samples of stalk rot for further study.

C. Collection of diseased material for further use as infection material in field experiments:
 i) Downy mildew affected leaves have been collected and preserved in gunny bags.
 ii) *H. maydis* affected leaves for inoculation to be used next year.
 iii) Chopped bacterial stalk-rot plants.

D. Serological tests of *Corynebacterium* sp. are in progress.

E. Sub-cultures of fungi and bacteria which have been isolated from different maize leaf spots and stalk rot during the *kharif* season were made at regular interval for future use.

D. Entomology section*

The investigations carried out at the different centres are summarised below:

Delhi Centre

1. Chemical control of *Chilo zonellus*: With a view to find out a suitable insecticide for the control of *C. zonellus* Swinhoe, different insecticides were screened under field conditions. For these studies a hybrid, Ganga 101, was sown in a randomized block design in Kharif, 1967. There were seven insecticidal treatments and one control (untreated) each having five replications.

Observations in the standing crop showed that the percentage of infested plants in various treatments varied from 0 to 11.11 in lindane, 1.67 to 6.67 in endrin, 4.44 to 10.00 in BHC, 4.44 to 10.00 in malathion, 5.00 to 18.33 in DDT+BHC, 5.00 to 22.22 in DDT+Lindane and 0 to 26.67 in rogor as against 3.33 to 44.44 in the control (untreated) from time to time. Observations recorded at harvest showed that all the treatments except rogor significantly reduced the number of infested plants as compared to untreated plots.

2. Screening of maize germplasms for resistance to *C. zonellus*: The germplasms were screened for their resistance to *C. zonellus* under natural infestation. Fourteen germplasms of maize were sown in a randomized block design. Four rows of each of these germplasms were sown in a randomized block design. Four rows of each of these germplasms were replicated three times. Pre- and post-harvest observations showed that there was no significant difference in the number of infested plants and tunnel length in all the fourteen germplasms of maize screened.

3. Building of resistance in promising germplasms: Seeds of Al x Antigua Gr. 1 collected during Kharif, 1966, from 82 biparental crosses (R x R = 23 crosses, R x S = 44 crosses and S x S = 15 crosses) were sown in the one row plots and two row plots during Kharif, 1967. On the basis of borer resistance alone, seeds were obtained from the progenies of 19 biparents. Similarly, seeds were also collected from 24 biparental progenies. Selected on the basis of both borer resistance and agronomical characters, viz. grain yield, disease resistance, plant vigour, size of the ear, placement of the ear, husk cover, lodging resistance and date of silking etc. Seeds belonging to the above two categories were sown separately in two row plots at Amberpet (Hyderabad) Maize Research Station during Rabi, 1967-68 and chain crossed. The crop was harvested to bulk the seed for further trials.

4. Improved technique for the mass rearing of maize stem borers: The mass rearing of *C. zonellus* on artificial diet (Keaster and Harrendorf, 1965) was continued. *Sesamia inferens* Walk., the pink stem borer of maize could also be reared successfully on the same artificial diet for three successive generations. Fourth successive generation was in progress.

5. Studies on the technique for measuring resistance of maize germplasms to *C. zonellus*: Preliminary field studies to compare the effectiveness of insects reared on artificial diet with those reared on maize stem in evaluating plant resistance correctly, were undertaken during Kharif, 1967. For this, a single cross homozygous germplasm of maize, CM 103 x CM 104, was sown in a randomized block design. There were three sets of experiments, viz. insects reared on (i) artificial diet, (ii) maize stem, both reared under controlled conditions of temperature and humidity, and on (iii) stem under field conditions (Stevenson's screen). On each plant in the middle whorl stage of growth, thirty eggs of *C. zonellus* (black head stage) reared under three different conditions were released separately in two row plots replicated three times.

Observations on the borer injury showed that there was no significant difference in damage in between the borers reared only for one generation on artificial diet and maize stem. The studies will be repeated in 1968.

6. Studies on the influence of time of infestation by *C. zonellus* on the yield of maize crop: For these studies, maize Him. 123 was sown in a randomized block design. There were four treatments, viz. T1, T2, T3 and T4 and one control (untreated).
T1 plots were given only one endrin application, 15 days after sowing. Similarly, T2, T3 and T4 plots were given 2, 3 and 4 applications of endrin, respectively, at 15 days interval after sowing. Observations recorded on the infestation at harvest showed that there was significant reduction in the number of infested plants in T3 and T4 only i.e. crop protected against C. zonellus for 45 and 60 days, respectively.

7. Survey of maize crop for insect pests and their natural enemies:
Survey was carried out twice in Kangra valley, Simla hills and in the plains of Punjab and once only in Kulu valley. In Kulu and Kangra valley, Chilo infestation was very low - 0 to 5.0%. In Simla hills the borer attack varied from 4.0 to 53.0% from time to time. In the plains of Punjab, the borer infestation varied from 11.0 to 34.0%.

In South India four contiguous maize growing tracts in Karimnagar, Warangal, Yellareddy and Nizamabad were selected for the survey of maize crop for insect pests and their natural enemies. Observations recorded in the cultivator's field showed that C. zonellus was the predominant pest. The average infestation at Karimnagar, Warangal, Yellareddy and Nizamabad were 29.0%, 32.0%, 29.0% and 31.0% respectively. There was also stray incidence of Sesamia inferens, Marasmia trapezalis, Rhopalosiphum maidis and Chrotogonus sp. Lady bird beetles, Chilomenes sp. were found feeding on aphids.

8. Biological studies on C. zonellus:
Biological studies on C. zonellus carried out under laboratory conditions showed that the average incubation period was 6.4 days. The average larval period was observed to be 23.6 days in June-July and 25.1 days in July-August. In September-October the larvae, after completing 49.2 days, entered into hibernation in the last week of October. The pupal period was 5.2 to 6.2 days for male pupae and 8.6 to 9.5 days for female pupae. Average longevity of the male moth was 2.7 days for the female moth.

9. Effect of the date of spring sowing of maize on the incidence of Atherigona sp. and loss in yield due to its attack:
For this experiment hybrid, Ganga 3, was sown in a randomized block design. The sowing will be continued up to the last week of April in order to find out as to how long and up to what extent maize is infested by Atherigona sp. It was observed that 'dead hearts' were formed in 18.84%, 36.23% and 40.50% of the plants in the 1st, 2nd and 3rd sowings (7th February, 14th February and 22nd February, respectively) due to attack of shoot fly.

On the basis of dissection of 10% of the plants (25 days after sowing), the highest infestation, 62.5% was recorded in the 3rd week of sowing as compared to 37.50%, 59.37% and 50.0% in the 1st, 2nd and 4th sowings respectively. On the basis of egg counts on the plants, the highest number was recorded again in the 3rd sowings (81.29%) as compared to 43.75%, 75.0% and 65.62% in the 1st, 2nd and 4th week sowing respectively. Further studies were in progress.
CHAPTER III

SYSTEMS, METHODOLOGY AND PRACTICES IN THE COORDINATED PROJECT

In the Coordinated scheme, a uniform system for all the procedures is followed by all the stations covered by the scheme. The uniform procedures are decided every year in the Maize Breeders' Conference. The Coordinated Scheme for maize improvement includes all the disciplines, namely, (i) Breeding, (ii) Pathology, (iii) Entomology and (v) Agronomy. The work to be carried out under the different disciplines are discussed at the time of the Conference. The various systems followed in breeding as discussed herewith.

Maintenance of seed stock

Each station has some suitable type of seed cabinets (see Plate 35). Seed stocks are stored in numerical order by plot numbers, location and year. The breeding book can be used for recording seed inventory. This inventory should be corrected as and when seeds are used up. Seed stocks are usually kept in waterproof envelopes but if the seed quantity is more, they are kept in cloth bags. Origin of the seed is written on the envelopes or on labels and tied on the cloth bag. One label bearing the origin of the seed is always kept inside the envelope or the cloth bag. To keep the seeds viable for 3-4 years, seeds store is airconditioned and the air inside is dehumified constantly. The seed stocks of inbred lines and other important germplasms are replaced by fresh stock every three years.

Record keeping

Data are recorded in field books. The field books are usually of two types. One type of field books are for yield trials while the second type are for breeding materials.

Yield trial field books: These consist of two types. One type contains only the master sheets of the various trials and is used usually for the study of the material grown in trial (Appendix XII). This gives information on the various entries, their origin and the plot numbers for the different replications. Three copies of each are usually made.

The other type is used for recording data in the field. This contains columns for various characters in which data are taken. This book contains only the plot numbers typed in ink which appear in order from the beginning of the last unlike the plot numbers which in case of the first type are randomized (Appendix XIII). The entry numbers are written below plot numbers with a pencil. After the data has been taken, the strips are torn along the perforations, and are arranged according to the entry numbers. For sorting the strips, a special type of box with pigeon holes is used (Plate 36). Since there are four replications, each hole will contain four strips being the same entry number. These four strips with same entry number are then again assembled according to the replication, replication 1 appearing at the top and replication 4 appearing at the bottom and then pasted at the back (see Plate 37).

Breeding block field book: The field book for the breeding block give information on plot numbers, pedigree of material, origin, number of rows grown and columns for various characters on which data are to be recorded.

A uniform pedigree system of nomenclature is followed for the different types of materials developed during the breeding programme. The pedigree system followed in case of various types of material are discussed herewith. The programme of breeding is written in the book.

1) Inbred lines: The nomenclature consists of three parts, namely, the original variety from which derived, the station, identification and family

* According to information given by Dr. N.L.Dhawan, Dr. Joginder Singh and Dr. B.K.Mukherjee.
number and the history of breeding (i.e. sibbing or selfing). For instance an inbred line KT41-A21-3-1-4-#-# gives information on the following:

Variety name: (KT 41)
Station identification: (A)
Family number: (21)
History of breeding: (-4-3-1-4-#-#)

represents sibbing and the number of sibs will indicate number of generations of sibbing. After four generations of sibbing (-#-#-#-#) the fifth generation of sibbing is written as (f): For example, KT 41-A21-3-1-4-#-#-#-#-# is written as KT 41-A21-3-1-4-f.

ii) Varieties: Varieties are represented by their full pedigree.

iii) Composites: A station which develops a composite from the multiple varietal crosses assigns its own code letter and a number which is not repeated again. Composites which are introduced from outside, the country will retain the original names. Composites developed from varietal crosses are represented with their full pedigree until they are released e.g. a varietal cross Basii x Eto Amarillo was advanced and found a composite and called as A6 (being developed by Delhi and A being its code letter) under experimental stage. On its release, it was named as Vikram. The name given at the time of release is usually some popular vernacular name which would appeal to the farmers.

iv) Top crosses: Top crosses are reported with the full pedigree of the tested and the tester material.

v) Introduced material: Such materials are usually represented by full pedigree and are not given any station code letter.

vi) Double cross and double top cross: Double crosses are given experimental hybrid number. The experimental hybrid numbers are coded that they indicate the zone in which they are produced, the hybrid number and the year in which they are developed. Double crosses developed in the different zones in India recorded as follows:

<table>
<thead>
<tr>
<th>Zone</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000 series</td>
</tr>
<tr>
<td>2</td>
<td>2000 series</td>
</tr>
<tr>
<td>3</td>
<td>3000 series</td>
</tr>
<tr>
<td>4</td>
<td>4000 series</td>
</tr>
</tbody>
</table>

For instance, if zone 1 develops an experimental double cross hybrid in 1966, it will be numbered as Expt Hyb. No.1016. The first digit of the code number stands for the zone, the middle two digits give the hybrid number and the last digit indicates the year in which hybrid is produced.

vii) Biparental progenies: Biparental progenies which are produced by crossing two plants at a time within a population are named as BP-A1, BP-A2, BP-A3 and so on. BP stands for biparent, A stands for station code (A being for Delhi), and 1, 2 etc. for the number of biparents.

viii) Reconstituted populations developed by different methods of selection:

For example, if different types of selections are carried out in the base population Puerto Rico Gr. I, then under different selection procedures, the pedigrees are written as follows:

- a) Reciprocal Recurrent Selection : Puerto Rico Gr.1 (Arr)
- b) Mass selection : Puerto Rico Gr.1 (Ams)
- c) Top cross selection : Puerto Rico Gr.1 (Asyn)
- d) per se selection of inbreds : Puerto Rico Gr.1 (Aps)
- e) Biparental selection : Puerto Rico Gr.1 (Abp)
- f) Unit selection : Puerto Rico Gr.1 (Aus)

It will be noted that the first letter in the parenthesis relates to station code where the selection has been carried out and is followed by the method of
Selection in small letters.
The code letters for the different stations of the Coordinated Maize Breeding Scheme are listed below:

<table>
<thead>
<tr>
<th>Station</th>
<th>Code letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delhi</td>
<td>A</td>
</tr>
<tr>
<td>Hyderabad</td>
<td>B</td>
</tr>
<tr>
<td>Srinagar</td>
<td>C</td>
</tr>
<tr>
<td>Pantnagar</td>
<td>D</td>
</tr>
<tr>
<td>Ajmer</td>
<td>E</td>
</tr>
<tr>
<td>Almora</td>
<td>F</td>
</tr>
<tr>
<td>Arbhavi</td>
<td>G</td>
</tr>
<tr>
<td>Chhindwara</td>
<td>H</td>
</tr>
<tr>
<td>Godhra</td>
<td>I</td>
</tr>
<tr>
<td>Ludhiana</td>
<td>J</td>
</tr>
<tr>
<td>Kalimpong</td>
<td>K</td>
</tr>
<tr>
<td>Bajaura</td>
<td>L</td>
</tr>
<tr>
<td>Dholi</td>
<td>M</td>
</tr>
<tr>
<td>Gangtok</td>
<td>N</td>
</tr>
<tr>
<td>Salan</td>
<td>P</td>
</tr>
</tbody>
</table>

Yield trials

Three different types of yield trials are conducted, namely,

a) Uniform yield trials: These trials are conducted within a zone. They are laid out in a 7 x 7 simple lattice design with minimum of four replications. Out of 49 entries, 45 entries are of the experimental materials and 4 entries are of checks with which the experimental materials are compared.

b) Coordinated trials: These trials are conducted all over the country and includes experimental materials which have already been tested in uniform yield trials and proved promising. These trials are also laid out in 7 x 7 simple lattice design. Each trial includes 43 entries and 6 checks. Usually four replications are used.

c) Advance trials: Advance trials are usually conducted on farmers' fields under the supervision of research staff. This trial generally includes released materials or promising hybrids which have been tested in Coordinated trials. In each station, usually three advance trials are conducted. The maximum number of entries put into these trials are 10 and are laid out in replicated randomized block design.

Method of recording data

Field data are recorded in specially designed field books which have been described earlier. Master sheets for 7 x 7 lattice design with plot number already randomized are available for a large number of trials which have been numbered. Blank master sheets belonging to the particular trial number are filled with pedigree of the materials to be tested and field books are made accordingly.

Uniform procedures have been set for recording the different characters. These procedures for the various characters are discussed below:

i) Yield: Just prior to harvest, plant population counts are made for each plot. The ears of the whole plot are harvested without the husks and total green ear weight are recorded in the harvest sheets or the field books (see Plates 38A*, 38B and 38C). Five ears are picked up randomly and two rows of grains from each ear are removed from the ears by means of a moisture sampler collected in plastic bags or cans for determining moisture percentage in the grains at harvest (Plate 39). Ten ears are kept in small cloth bags, labelled and dried in dryers. Later those ears are shelled to determine

* Plate No. 38 to Plate No. 41: By courtesy of the Rockefeller Foundation in New Delhi.
shelling percentage. Using the moisture percentage in grains at harvest, ear weight per plot at zero plant moisture is worked out. The mean values for ear weight at zero percent moisture is adjusted by Lattice Covariance for plant stand differences. Grain yield in kilograms per hectare at 15% moisture is then calculated after making adjustments for shelling percentage as given below:

\[
\text{Grain yield in kg. per plot at 15\% moisture} = \frac{\text{Adjusted ear weight in kg. per plot at 0\% moisture} \times 100}{100} \times \frac{100}{85} = \frac{\text{Shelled weight in kg. per plot at 0\% moisture}}{85}
\]

Grain yield in kg. per plot at 15% moisture is then converted into kg. per hectare by flat adjustment based on the plot size.

ii) Moisture content of grains at harvest: About 5-7 of the harvested ears are selected at random and the grains of 2-3 rows are removed from each ear and mixed. The moisture percentage is directly determined by means of Universal Moisture Tester (see Plate 40).

iii) Shelling percentage: The ten ears harvested for each plot are dried, weighed individually and shelled (see Plate 41). Shelling percentage is calculated by dividing the mean weight of the shelled grains by the mean weight of the shelled ears and expressed as percentage.

iv) Days to silk: The number of days to silk is determined by the number of days taken for 75 per cent of the total number of plants in a plot to silk.

v) Vigour (1-5): Plants are graded for vigour from 1-5. Plants with most vigorous plants with thick stem, broad leaves and dark green colour are generally graded while plants which are thin, tall, lanky with yellowish green narrow leaves are graded as 5.

vi) Plant aspect (1-5): It differs from vigour notes in the sense that the size and placement of ears and other agronomic characters are also taken into account. This data is generally taken at the dry silk stage. The best rating is while the poorest is 5.

vii) Notes on insect pest: Data on the infestation of corn borer (Chilo zonellus) is taken in percentages. In a plot total number of plants are counted and also plants showing dead heart or heavy infestation are counted on the basis of infested plants and total plants percentage of infestation is worked out.

viii) Disease notes:

Helminthosporium:
Data is recorded on the basis of rating 1 (good) to 5 (poor)
The various grades are shown in Plate 42.*

Physoderma: Same as Helminthosporium

Downy mildew: Data recorded in percentages. The total number of plants to number of infested plants per plot are taken into account.

New downy mildew: (Sclerophthora rayssiae) Data recorded on the basis of 1 (good) to 5 (poor).

Bacterial stalk rot: Data to be submitted in percentages.
Mean over four replications to be rounded to whole numbers.

Tabulation and analysis of data:
After the data have been recorded, they are transferred from the field books and harvest sheets to the summary sheets. Before the availability of computer facility for analysis, data were analysed in electrical calculators. For this purpose, special proforma have been devised for yield to work out the corrected green weight and adjust it to stand and moisture corrections for all the four replications for each entry (see Appendix XV). The method—

* Plate No. 42: By courtesy of Dr. B.K. Mukherjee.
ology for yield conversion and correction has been described in connection with yield.

Most yield trials are generally laid out in 7 x 7 simple lattice design with four replications. Each entry usually has a two row plot in each replication. The whole field is divided into blocks. Each block contains rows 30 feet in length. The row to row distance is 2.5 feet. Between 30 feet blocks, a gap of 3 feet is kept and after two 30 feet blocks, an alley of 6 feet is kept (see Appendix XIV). The 6 feet alleys are used for irrigation and also for taking plot to plot observations. Sowing of different plots is done always from left to right and the plots are labelled in the same manner. For instance, if the plot numbers start from 1001, it will start from the left as shown above and extend up to the last row in the block (e.g. 1150 in the fig.). The next plot number (e.g. 1151) continues just opposite in the next block (see Appendix XIV) and so on. The labels are tied with wire on the first plant of the first row (on the left) of each plot. At the time of sowing 50 seeds are sown in each row but later plants are thinned to 30 to 35 plants keeping plant to plant distance 1' to 9".

Field plot technique

Land preparation: The land should be deep, well drained relatively levelled and graded to facilitate irrigation and drainage. The different operations used for the preparation of the land are as follows:

i) Ploughing: Plough to a depth of 12-15 cm. With a mould-board plough. If there is a hard pan or perennial weeds in the field, a deeper ploughing and sub-soiling is useful. Ploughing should be followed by one or two discing (see Plates 43A and 43B*).

ii) Harrowing: Harrow the soil with a trifal in two directions followed by a spring tooth harrow.

iii) Levelling: After the harrowing, the soil should be levelled with a plane.

Fertilizer application:

Fertilize the crop adequately and properly. The amount of each nutrient should be based on the soil test recommendation. However, in general, 120-150 kg nitrogen (N), 60-80 kg phosphate (P₂O₅) and 50-60 kg Potash (K₂O) should be applied per hectare. It is desirable to apply zinc sulphate at the rate of 10-15 kg. per hectare. For the best results these fertilizers should be applied properly and at an appropriate time. Mix thoroughly all of phosphorus, all of potash, one third of the total nitrogen and all of zinc sulphate. Apply these in bands by means of a fertilizer drill (see Plate 44). The bands should be placed at right angles to the directions in which rows are to be made. The remaining nitrogen should be applied in two equal splits, one at knee-high stage and another before tasseling. After drilling the fertilizers, mix them well by means of a spiked-tooth harrow.

Row making and layout: After the fertilizer has been spread and mixed in the soil, rows are made. Furrows are made across the field 75 cm. apart. These furrows are usually 6" deep and also serve as rows. After the rows have been made, the whole field is divided into blocks the details of which have been given earlier.

Planting: Planting of experimental material is usually done by hand. The seeds are usually dibbled within each row (furrow). The seeds are planted at a distance of 18-20 cm. In a 30 ft. row, usually 50 seeds are planted. Later on plant population is thinned to 30-35 plants per row. Thinning is usually done before three weeks from planting.

Irrigation: The fields are irrigated usually by means of gated pipes. Water is allowed to flow gently within rows. Furrow irrigation by siphon or otherwise are also used (see Plates 45A, 45B and 45C).

Weed control: For controlling weeds, a pre-emergence spray of Tafazine at

* Plate No. 43 to Plate No. 53: By courtesy of the Rockefeller foundation in New Delhi.
the rate of 1.0 to 1.25 kg. in 300 liters of water soon after planting and before irrigation is done. This would effectively control all the annual grassy and broad leaf weeds at least for five weeks. Tafazine should be sprayed uniformly and without overlapping. This can be done by using a boom sprayer mounted on a tractor. If Tafazine is not used, the weeds in the rows can be removed by hand hoes and these between the rows by inter-cultivation (see Plate 46). Where tafazine has been used, the inter-cultivation should be done after 3 weeks followed by earthing up at 6 weeks.

Pest control: To control stem borers, spray endrin (0.07%) when the plants are young and apply granular endrin (2%) in whorls of the plants when they are about 20 cm. tall and thereafter when needed. Dusting of BHC at the seedling stage is also effective (see Plate 47).

Application of minor elements: Minor elements usually are not applied under normal conditions. However, when deficiency symptoms of these start coming up in the crop, spraying of minor elements is resorted to as a correcting measure. Zinc, manganese, magnesium and boron are mostly found lacking. The following dosage is used per hectare for foliar spray. 250 gm. each of boron (Boric Acid), manganese (MnSO4), and magnesium (Mg SO4) are dissolved in 180-200 litres of water and sprayed on the foliage by means of a micron sprayer.

Top dressing: The second dose of nitrogen (50-60 kg/ha) is applied as bands on one side of each row when the plants are about knee-high. The third and final dose of nitrogen (50-60 kg/ha) is applied in similar manner when the tassels begin to appear. This application is very important and should not be delayed since nitrogen requirement is utmost at this time and delaying will result in nitrogen deficiency affecting grain yield.

Water management: Do not allow the plants to wilt due to shortage of moisture especially when the plants are flowering. Irrigate the crop at the first signs of drought wilting. Also do not allow the water to stand in the fields even for 24 hr. else the yield will suffer.

Pollination techniques

Maize is a naturally cross pollinated crop. To obtain desired cross combinations or selfed ears, artificial pollination methods have been devised. Before artificial pollination is carried out, the following materials are required.

1. Ear shoot bags
2. Tassel bags
3. Clipper stapler
4. Fastener clips
5. Silking knife
6. Charcoal pencil
7. Pollination Apron (see Plate 48)

Step 1: The ear shoot when it has emerged out of the axil of the leaf, is cut horizontally with a sharp knife (see Plate 49). After it has been cut an ear shoot bag made of butter paper, is put over it (see Plate 50). This makes the silks be cut uniformly. The ear-shoot bag ward off any pollen floating in the air.

Step 2: When the silk emerge out while can be seen through the bag, a plant which is to be used as male is selected. Only those plants are selected which show a little dehisced anthers at the top of the branch and is expected to shed pollen next day. The tassel is shaken to remove the already shed pollens, covered with a tassel bag and fastened with a clip (see Plates 51A, and 51C).

Step 3: The next day, the tassel bag is shaken well and removed with the pollen inside (see Plate 52). It is immediately folded in half and taken to the plant which is ready for pollination. The ear-shoot bag is removed the pollen is dusted and covered simultaneously with the same tassel bag. The tassel bag is secured by means of the clipper stapler around the stem (see Plates 53A, 53B, 53C and 53D).
CHAPTER IV

HYBRID SEED PRODUCTION AND ROLE OF NATIONAL SEED CORPORATION**

National Seed Corporation was set up in 1963 - at a time when the concept of certified seed was not fully known to the farmers. The farmers were also showing their unwillingness to accept the truth of hybrid potential. The Corporation had, therefore, to work strenuously in its seed production, publicity and educational drives to quickly make the farmers aware of the usefulness of hybrid vigour and the superiority of certified seeds. The impact at the initial stages of the programme remained slow but sure. In the subsequent years, when the results of demonstrations of hybrid varieties at farmers' fields became known to the farmers, the response became heavy and extensive. The release of new varieties of hybrid jowar and hybrid bajra in 1964-65 and their performance further convinced the farmers of high yielding potential of hybrids. This resulted in the sudden increase in demand of hybrid seeds. N.S.C. took up the challenge boldly and organised seed production of hybrid maize, to meet the rising demands to full extent.

Broadly NSC's initiative in organising the certified seed production programme in the country helped not only the seed industry in many ways but also provided basic technical know-how about the latest techniques in agricultural production capable of helping in the increase of food production in the country. Important features of this assistance can be summarised as under:

* Development of quality consciousness in seeds
* Introduction of seed certification on large scale in hybrids, vegetables and other crops for the first time in India.
* Popularization of hybrid maize
* Establishment of large number of seed processing plants in the private and government sectors.
* Help indigenous manufacture of seed sowing and processing equipment to replace imports.
* Organization of training programmes for seed producers.

State Government personnel and others for certified seed production.

Organizing the production of certified seeds, is a very big step forward in improving the basic input of agriculture, that is seed. To make certified seed available to the fullest extent is, however, a task of great magnitude and this cannot be handled by one or a few agencies. The cooperation of all interested individuals and institutions is necessary to successfully take up this task. The National Seeds Corporation seeks to provide the necessary assistance and guidance to the programme of organizing a certified seed industry in the country, which would assure the farmer of the availability of the best quality seed of the newly evolved hybrids and other varieties.

Seed production efforts

Foundation seed: Availability of reliable foundation seed is the first requisite of certified seed production. Breeder's seed in germplasm quantities is supplied periodically by the various crop breeders. These small quantities of breeder's seed are multiplied for the production of foundation seed. The National Seeds Corporation has set up its own farms for producing high quality foundation seed stocks of different crops. In order to meet the fast increasing demand for certified seed and to boost up certified seed production, NSC is arranging the foundation seed production through contrast growers also on a restricted scale.

The foundation seed crop is inspected by a team of experts drawn from various organisations. These inspections certify the foundation seed crop as to its high quality and genetic purity.

NSC seeks to produce and maintain adequate stocks of foundation seeds to act as buffer during seasons of crop failures.

Certified seed

Quality control: Quality is the key factor in the seed and every effort has to be made to ensure such quality factors as trueness to variety; optimum moisture for safe storage; freedom from weed-seeds and admixtures; and high germination. Seed conforming to such standards and having the proper pedigree is termed "certified seed" and the standards for the same are laid down in advance. NSC ensures that the seed produced under its supervision is above the minimum standards established for the crop. For this NSC maintains a cadre of trained technical personnel. They assist the seed producers in the growing of seed crop and production of certified seeds. It is primarily the responsibility of the producer to follow the recommended practices, such as, removing off-type plants, detasseling etc., so that the crop may be approved for seed purposes. The inspectors may recommend rejection of crops as unfit for seed production if the same do not conform to the prescribed field standards. The inspection staff is primarily to assist seed producers in carrying out production and processing practices which can help them in the production of high quality seed. The inspection and certification services provided by NSC constitute a great asset to the seed producer. The farmer is given definite guidance and is educated on the use of improved agricultural practices. An awareness as to the superiority of the certified seed is also brought to his mind enabling him to distinguish really good seed from the bad one. This is important because the farmer is willing to pay a good price for the seed provided he is sure of the quality.

Seed processing: Field inspection is only one part of quality control. The processing of seeds is the next step. The seed is dried to a prescribed moisture content by artificial means, cleaned and graded and is treated with fungicides and insecticides. Seed testing forms an essential part of the process. Samples of seeds to be sold are drawn and sent to government laboratories for testing germination, moisture content, purity and other factors. Seeds are put in bags and sealed effectively and a blue tag/label is put as a mark of certification. This tag declares the variety, germination percentage and other quality particulars.

Maintenance of the required standards in the whole process of seed production and processing is very essential for ensuring overall quality of the seed. It is possible to maintain the standards only by the use of modern seed production and processing equipment. NSC assists the seed producers, state governments and others engaged in seed production in the setting up of processing plants and in the availability of equipment. In this direction, NSC is also being indigenous manufacturers in the production of machinery and equipment which were earlier imported or made available by USAID and other international organizations like Rockefeller Foundation, etc.

Packaging: Seed is made available to the farmer in effective package which is moisture proof where necessary. The certified seed is not sold loose but only in convenient packages which are prepared in different suitable sizes. The packaging material used is generally either cloth, polythene or polythene inside of cloth bags. In all cases it is ensured that the packages are sealed in a manner that they may not be tampered with. The farmers' assurance that the seed in the bag is pure, is the presence of the blue label/tag and the seal on each seed bag.

In every seed package a leaflet giving details of cultural practices is made available. The instructions provide the recommended cultural practices on sowing, fertilizer application, weeding, plant protection measures etc. The interest of the farmer is best served not only by giving him good seed but also by providing simultaneously the know-how necessary to make the best use of the seed. The leaflet put inside each certified seed bag provides this
Hybrid seed producer

The production of hybrid seeds is a highly technical process. It needs training, skill and personal supervision. The seed crop is to be watched right from sowing up to harvesting. Sowing, cultivation, manuring, detasseling and harvesting has to be done right and at proper time. At the same time, it is within the reach of a progressive farmer to grow a good crop. The National Seeds Corporation gives necessary guidance wherever possible in raising the seed crop. Literature on various aspects of seed production is available with NSC and can be supplied free on request.

As a policy, each State Government is responsible to produce enough seed for achieving its target. The Corporation supplies foundation seed to State to State Governments who, in turn, supply it to the registered growers for production of certified seeds. In the event of a shortage, the Corporation organizes seed production by contracting with farmers for procurement of seed at pre-determined prices, very often in off-seasons. For instance, the Corporation has been growing paddy seeds and hybrid seeds of maize, sorghum and bajra in the rabi-summer season in south. Similarly, an initial increase of wheat seed of newly evolved varieties was arranged in Ootacamund hills in the Kharif season of 1967. Number of seed growers of hybrids in the country has been speedily going up, this number being 1,332 in kharif, 1967 only, state-wise break-up, is given in Table 21.

The National Seeds Corporation conducts regularly short courses in seed production. Seed producers can avail of this facility.

The main requirements for becoming a certified seed producer are listed below:

I.

A. Technical method

1. **Foundation seed**: The producer must get his foundation seed supplies from the NSC.

2. **Isolation requirements**: The seed production plot shall have a minimum isolation distance as prescribed in the seed certification standards.

3. **Selection of land**: The recommended initial minimum unit of seed production should be 25 acres with a scope of further expansion, either individually or with the help of other growers by forming a cooperative, an association or a company.

4. **Growing the seed crop**: Full instructions regarding all the operations connected with producing a seed crop are available on request. It will be in the interest of the producer to follow these instructions properly.

5. **Detasseling and roguing**: Detasseling in the case of maize and roguing in the case of sorghum and bajra are the most important operations. Any mistake or lack of attention on the part of producer may lead to rejection of his crop. The producer must inform the Corporation a week before the flowering is expected to start. The new producers will be given necessary instructions for proper detasseling and roguing. Each seed field will be inspected for proper detasseling, roguing, isolation etc., by the representatives of the Corporation.

6. **Harvesting of the crop**: The harvesting operation should be done after obtaining the approval of the Corporation's representative in the area.

7. **Drying and processing**: Drying, shelling or threshing, cleaning and processing will be done under the supervision of the Corporation's representative.
Table 21. Number of hybrid seed Producers state-wise*

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Name of state</th>
<th>No. of producers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Andhra Pradesh</td>
<td>126</td>
</tr>
<tr>
<td>2.</td>
<td>Assam</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>West Bengal</td>
<td>2</td>
</tr>
<tr>
<td>4.</td>
<td>Bihar</td>
<td>19</td>
</tr>
<tr>
<td>5.</td>
<td>Delhi</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>Haryana</td>
<td>35</td>
</tr>
<tr>
<td>7.</td>
<td>Himachal Pradesh</td>
<td>32</td>
</tr>
<tr>
<td>9.</td>
<td>Kerala</td>
<td>1</td>
</tr>
<tr>
<td>10.</td>
<td>Madras</td>
<td>4</td>
</tr>
<tr>
<td>11.</td>
<td>Madhya Pradesh</td>
<td>176</td>
</tr>
<tr>
<td>12.</td>
<td>Maharashtra</td>
<td>179</td>
</tr>
<tr>
<td>13.</td>
<td>Mysore</td>
<td>393</td>
</tr>
<tr>
<td>14.</td>
<td>Orissa</td>
<td>9</td>
</tr>
<tr>
<td>15.</td>
<td>Punjab</td>
<td>241</td>
</tr>
<tr>
<td>16.</td>
<td>Rajasthan</td>
<td>31</td>
</tr>
<tr>
<td>17.</td>
<td>Uttar Pradesh</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1332</td>
</tr>
</tbody>
</table>

B. Certification requirements
The certification of the seed will be subject to the following general conditions:
1. The requirements in respect of isolation, detasseling, roguing, etc. will conform to the minimum certification standards.
2. The moisture content in the seed at the time of bagging shall not exceed 12%.
3. The seed shall meet the minimum standards of purity and germination.
4. Screen sizes used for grading must have prior approval of the seed inspection officer.
5. Certification tags and seals will be supplied by the NSC on cash payment. Other certification material can be supplied by the Corporation on cash payment if indent is placed well in time.

II. Estimated cost of production
1. Entire cost of land preparation, sowing, irrigation, interculture, manures and fertilizers, roguing, detasseling, harvesting etc. will be met by the producer.
2. Estimated cost on major items is as follows:

<table>
<thead>
<tr>
<th>Item</th>
<th>Rs./acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of foundation seed</td>
<td>80.00</td>
</tr>
<tr>
<td>Inspection fee</td>
<td>25.50</td>
</tr>
<tr>
<td>Approx. cost of fertilizers required</td>
<td>150.00</td>
</tr>
<tr>
<td>Approx. cost of plant production</td>
<td>30.00</td>
</tr>
<tr>
<td>Approx. cost of detasseling or roguing</td>
<td>15.00</td>
</tr>
<tr>
<td>Total</td>
<td>300.00</td>
</tr>
</tbody>
</table>
3. Drying and processing cost:

A. Drying and processing cost per quintal of finished seed 20.00(Approx.)

B. Cost of certification material viz. bag, tag, leaflet, seed treatment, material, thread, seal etc. 14.00/q.

Since the inception of National Seed Corporation in 1963, considerable progress has been made in the multiplication of hybrid maize as can be seen from Table 22 and Fig. 11, the acreage under foundation seed production of hybrid maize was 189.0 in 1963 but by 1967 it increased to 2394.0.

The area planted to certified seed production also increased from 1607. acres in 1963 to 20,000. acres by 1967. The total production of certified seed was only 8.206 quintals but by 1966 total production increase to 7632 quintals. The popularity of hybrid maize among the farmers can be judged from the fact that while in 1963 only 1.22% of the total maize acreage of the country was under hybrid maize, by 1967 the total area under hybrid maize increased to 10.58% (Table 23).

Table 22. Progress of hybrid maize seed production in India*

<table>
<thead>
<tr>
<th>Period</th>
<th>Acreage under foundation seed production of hybrid maize (Inbreds, single cross and varieties)</th>
<th>Area planted to certified seed (acres)</th>
<th>Production of certified seed (quintals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960-61</td>
<td>-</td>
<td>4.5</td>
<td>45.8</td>
</tr>
<tr>
<td>1961-62</td>
<td>90.0</td>
<td>191.5</td>
<td>1341.6</td>
</tr>
<tr>
<td>1962-63</td>
<td>180.0</td>
<td>1154.5</td>
<td>6861.5</td>
</tr>
<tr>
<td>1963-64</td>
<td>189.0</td>
<td>1607.0</td>
<td>8226.0</td>
</tr>
<tr>
<td>1964-65</td>
<td>276.0</td>
<td>2188.0</td>
<td>12678.0</td>
</tr>
<tr>
<td>1965-66</td>
<td>783.0</td>
<td>8568.0</td>
<td>30795.0</td>
</tr>
<tr>
<td>1966-67</td>
<td>1355.0</td>
<td>14624.0</td>
<td>76320.0</td>
</tr>
<tr>
<td>1967-68</td>
<td>2394.0</td>
<td>20000.0</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 23. Area under Hybrid Maize*

<table>
<thead>
<tr>
<th>Period</th>
<th>Area planted to commercial maize (hectares)</th>
<th>Area planted throughout India (ha)</th>
<th>A/B x 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960-61</td>
<td>312</td>
<td>4,353,500</td>
<td>0.0071</td>
</tr>
<tr>
<td>1961-62</td>
<td>9145</td>
<td>4,493,200</td>
<td>0.20</td>
</tr>
<tr>
<td>1962-63</td>
<td>46770</td>
<td>4,579,400</td>
<td>1.02</td>
</tr>
<tr>
<td>1963-64</td>
<td>56071</td>
<td>4,584,200</td>
<td>1.22</td>
</tr>
<tr>
<td>1964-65</td>
<td>86417</td>
<td>4,591,100</td>
<td>1.88</td>
</tr>
<tr>
<td>1965-66</td>
<td>209908</td>
<td>4,764,700</td>
<td>4.41</td>
</tr>
<tr>
<td>1966-67</td>
<td>520222</td>
<td>5,073,800</td>
<td>10.25</td>
</tr>
<tr>
<td>1967-68</td>
<td>590247</td>
<td>5,576,700</td>
<td>10.58</td>
</tr>
</tbody>
</table>

Future outlook

In the last five years the National Seeds Corporation has promoted a hybrid seed industry and popularized certified seeds of vegetables. The Corporation's activities in the coming years would be further strengthened in various directions, the more important of which are indicated below:

Foundation seed: In addition to producing foundation seeds of hybrids and composites of maize, jowar and bajra, the Corporation will undertake production of foundation seed of varieties of all-India importance. The scope of foundation seed production will be extended to cover commercial and fodder crops.

Pre-release multiplication: It is well known that many times when a variety is released, farmers are not able to obtain seeds thereof. Such a situation is sometimes exploited by certain individuals. To prevent such occurrences, the Corporation will undertake pre-release multiplication of seeds as soon as a variety is known to be promising. Though this means a certain measure of risk that the seed produced has to be discarded if the variety is not released the objective is to make available sufficient quantity of foundation seed along with the release of each variety.

Breeder seed: The Corporation will place advance orders at research stations to facilitate the production of breeder seed in adequate quantities and in accordance with prescribed procedures.

Certified seed: The timely availability of quality certified seeds is of great importance to the agricultural progress of the country. Farmers must be able to obtain seeds, which are reliable, at the time and place they want. The Corporation proposes to develop a marketing system both for its own direct sales and for sales by other seeds organizations so that there is extensive availability of high quality seed to the farmers. A major bottleneck in the agricultural development programmes will thus be removed. The varieties and quantities of production for certified seed that will be taken by the Corporation will be determined in the light of farmers' performance and the activities of other agencies in the field.

New technologies: The Corporation is dedicated to forge-ahead with new varieties and new technologies in the field of seed. Constant efforts are being made to improve the processing and storage techniques and to try out new and promising varieties in the field. As a part of its endeavour to spread new processing technology, the Corporation will provide active guidance to seed companies and state governments in setting up processing plants. It will also set up a few seed processing plants on its own and on behalf of state governments. It will provide consultative services in this field and also undertake processing of seeds on a custom basis. As a major seed organization the Corporation aims at serving the farmers in all their requirements.

The lines of activity given above are only indicative of the Corporation's endeavour to explore the avenues by which it can be of greater use to the farmers. As a leader in the field of seed interested in promoting the entire seed industry, the Corporation will continue to provide active assistance to the states and to other seed organizations in private cooperative and public sector so that there is a vigorous and healthy seed industry operating and serving the interest of farmers.

Exports: With the vastly increased availability of quality seed of field crops as well as vegetables, it has now become possible to step up the export of seeds to foreign countries. The Corporation proposes to make intensive efforts to explore foreign markets and step up export of seeds produced by the Corporation. The Corporation will also assist other agencies in the field who desire to export seeds to foreign countries. With this end in view, the Corporation proposes to arrange for the testing of suitable varieties of seeds grown in India and in foreign countries and also evaluate
Possibilities of seed production of varieties suitable for foreign countries.

NSC units: National Seeds Corporation Offices have been opened in almost all the major cities in almost all the states. This helps in speedy and efficient distribution of seeds to Indian farmers. A list of address of NSC units is given in Appendix XV.
All the grain that farmer grows does not reach to consumer. Much of it is wasted in storage by insects, rodents and fungi. The total loss, so caused, has been estimated to be of the value of Rs. 3 to 4 billions annually. Ironically about the same value, India expend in importing grain from various countries to feed Indian teeming millions. This implies that through elimination of losses in storage alone, we could hope for self sufficiency. This problem, thus demands serious study and confrontation.

In case of maize, the problem, of late, has become quite serious. With the availability of a number of new high yielding maize hybrids and composites, there is now more maize in farm storage than ever before. This has got to be saved from the ravages of the storage pests.

Losses through insect infestation

Most of the grain goes waste due to damage by insects, rodents and fungi.

Out of several hundred species of insects that are associated with stored grain and their products, the following are far more destructive to maize than others:

1. *Sitophilus oryzae* Linn (Rice weevil)
2. *Rhizopertha dominica* Fab. (Lesser grain borer)
3. *Tribolium castaneum* Staint. (Red rust flour beetle)
4. *Cadra cautella* Walk
5. *Corcyra cephalonica* Staint. (Grain moths)

However, of these, rice weevil, lesser grain borer, and grain moth (*S. cerealella*) are the three main culprits, responsible for maximum damage to maize in stores. Whereas, the red rust flour beetle, which is also popularly known as scavenger beetle, feeds on the material which has already been infested by other insect pests.

Losses by these insect are caused in two ways, one by feeding and resultant loss in weight and nutrients of the grain and other through various types of contamination.

The adult female insect lays eggs on the grain, other articles of the store and even sometimes on cracks and crevices of walls and floors. The larva on hatching starts feeding on the grain. However, in case of beetles, both larva as well as adult damage the grain.

Reduction in weight and nutrients from insect feeding is maximum during rainy season, particularly between July to September. Seed germination is also not infrequently affected by insect and mite feeding on the embryo. In fact, larva of certain species of insects like red rust flour beetle has been known to be selective in attack. The embryo, often being the main target.

Secondary losses to grain are caused by heating which is most common, particularly in mechanised farms, where harvesting is done with combines which tend to bring grain into store, faster and often with high moisture content. The lack of proper storage facilities and the resulting pressure on driver capacity during harvesting, result in grain being inadequately handled. Such grain becomes an ideal medium for breeding of insects, endemic infestation of which exists in most of the farm stores. The metabolic heat produced due to breeding of insects after a few weeks causes hot spots which spread rapidly through much of bulk. The affected grains are often reduced to a mouldy mass.

According to Let not these pests damage your stored maize by Dr. B.P. Khare and Shri H.N. Singh. India.
Losses due to fungi

Fungi and bacteria are usually present in grain and grain products. Ripening grain in the field is generally infested subepidermally with fungi, mainly Alternaria which can cause discoloration and loss of germination, unless the moisture content is promptly reduced to or below 14%. There is also a group of storage fungi, particularly Aspergillus (with a number of species of Penicillium being involved at higher moisture contents and lower temperature) which seldom invades grain before harvest. However, in storage, it has been found to be responsible for discoloration, and loss of germination besides contributing markedly to the risk of grain heating. The affected grains, if consumed, could be injurious to human beings. As for instance, Aspergillus flavus can cause liver tumour, cirrhosis and other mammalian troubles.

Control

Store houses: Infestation in stores is mostly transmitted through rats. Besides, endemic infestations in the store that has not been treated or the neighbouring infested stores can be a ready source of infestation. Infested sacks, containers, carts and other transport too contribute in the spread of infestation. The treatment of such infestation involves, thorough sweeping and scrubbing of godowns and their surroundings, removal of bird nests, filling or rat holes, cracks and crevices in stores.

Stores should be sprayed both from inside and outside with a suitable insecticide, e.g., DDT 2.5% water dispersible powder, in one continuous spray. The transport for stored grain can also be treated in the same way. Old bags and other containers, however, should be fumigated with a suitable fumigant, particularly aluminium phosphide.

Seed: Mixing of seed with poisonous dusts like DDT 2% and Malathion 2% ensures effective and long-term protection against insects. All the same, it does not affect the viability of seed. Wet treatment of seed with DDT 50% wettable powder at the rate of 2 oz. per gallon of slurry has also been reported to be effective.

Malathion 2% dust can be mixed at the rate of one kg. in two metric tons of seed. Besides spray of Malathion premium grade 50% emulsifiable liquid 25 cc. mixed in one litre of water has also been found to give a good control.

Grain: It would be advisable not to treat the grain with any poisonous chemical which is stored for consumption purposes. In such a case, surface treatment of bags with Malathion 50% E.C. liquid mixed with water in the ratio of 1:300, DDT 50% W.P. mixed with water in the ratio of 1:25 has been found to be quite effective. The admixture thus formed in each case can be sprayed over the bags at the rate of three litres per 100 square metre.

In case, infestation build-up is noticed at any stage, it would be desirable to fumigate with any of the suitable fumigants like aluminium phosphide (2 tablets/ton of grain), Ethylene di-bromide (460 ml./20 cub. metre space) and Ethylene di-chloride and Carbon Tera-chloride. ED/CT Mixture (30-35 lb./1000 md. of grain).

Protection against fungal attack:

Grain with seed coat managed by insects or during handling is more susceptible to invasion of storage fungi and rapidly affects the germination of seed. The affected grains, if consumed, could also be harmful to human beings. Mould growth, therefore, should be prevented by lowering down the temperature of grain and moisture content in storage (should not exceed more than 14%). Fungicide tests have not given satisfactory results. In such a case, sun drying of mouldy grain has been found to be profitable.
CHAPTER VI
MAIZE IN INDIA—An analysis

Having been associated with work in maize in India for the last one year and having participated in almost all the phase of Coordinated Maize Breeding Project, I have analysed to some extent the present and future of maize in India. India is a vast country lying between 8°N and 36°N in latitude; it has subtropical and mild temperate climate. Maize, therefore, can be grown almost all the year round in one or the other place of the country. At present, there is also no lack of high yielding hybrids and varieties but still maize production in India rates far behind as compared to other countries. What are the reasons or bottlenecks limiting the maize production and hindering India from being one of the major exporters of maize? I shall attempt to enumerate some of the reasons which, I think, are responsible for such a slow growth in overall production of maize. A look at the total cropped area and area under good irrigation indicates that the irrigation facilities are much less than adequate and most of the farmers are at the mercy of timely and adequate rainfall. Vagaries of rainfall can be considered as a major important climatic factor limiting the yield of maize grown during Kharif season.

The maize grown in India, primarily as a rainfed crop, during Kharif season. The amount and distribution of rainfall varies widely from year to year. Besides, it often so happens that either too much or too little rainfall is received during one or the other stage of the crop. Stormy winds accompanied by rains are common in the months of September of October in Tarai region as also in Bihar. These often cause extensive damage to vast areas of maize by inducing lodging and stalk breakage. Under such conditions, even improved varieties would not be of much help and total production, therefore, suffers.

It is, therefore, imperative that irrigation facilities are developed in each village. Tubewells, canals and other resources should be improved. Though, work on these lines have started since the last so many years, the progress seems to be too slow.

Almost all through the Northern Plains region, sizable areas under maize are subjected to water-logging during one or other part of the season. As is well-known, maize does not like wet feet and grain yield is drastically reduced with water-logging lasting for even two or three days. Under these conditions, the roots are damaged due to want of aeration and a large amount of soil nitrogen goes back to atmosphere because of denitrification. This is the reason, why in these areas, maize yields well only once in two or three years. Such areas could, therefore, be considered as marginal for maize production.

The damage due to excessive rains could be reduced to a great extent, if the land is levelled and graded properly and if the field drains are provided to take away the excess of water during heavy rains. This surface drainage helps to prevent rise in water-table and water-logging. The farmers could open these drains every 20 to 25 meters, depending upon the slope in their field. Planting maize on ridges is beneficial, as it allows enough aeration for the roots during periods of excessive rainfall.

The Indian farmers make use of manures and fertilizers only sparingly. The maize fields in India, in general, therefore, receive little quantities of manures and fertilizers. The hunger symptoms on the crop are often marked. Under such conditions, it is, therefore, not possible to fully exploit the yield potential of this otherwise high yielding crop. Maize hybrids and composites, in particular, are crops of high fertility condition. These have been known to respond economically upto 150 to 250 kg/ha. The maize crop gives 15 to 25 kg. grain per kg. N applied upto these levels (usually 4 kg. grain pays for 1 kg. N).

The response to phosphorus and potash depends very much on the fertility status of the soil and previous history of fertilization. If the soil test
indicates low or medium available phosphorus, an increase in the grain yield of the order of 50 to 200 per cent could be realised. Very few farmers are aware of this fact but rarely get the soil test done.

Maize crop is highly sensitive to deficiency of zinc in the soil. The crop remains stunted and develops lighter coloured bands between midrib and edges of the upper leaves. Zinc deficiency has been observed in maize crops in some areas in Punjab, Kashmir, Delhi, Tarai, Andhra Pradesh and Gujarat.

A timely application of these fertilizers, is, therefore, of prime importance. The farmers in India, in general, are very careless about maintaining the recommended plant population.

The agronomic experiments have shown that there should be about 50 to 65 thousand maize plants per hectare to exploit the yield potential of the hybrids or composites. However, the plant stand in many maize fields is very low because of several reasons. Improper planting methods, water-logging or prolonged dry period during seedling stage, damage done by rats and crows and dead hearts caused by shoot fly or shoot borers could result in lower plant stand. Adequate steps should be taken by the farmers to avoid loss of plant stand.

Timely weed and pest control is very much neglected in the farmers' fields. Proper management in maize field calls for timely and adequate measures to control weeds, as maize is a very poor competitor of weeds. Two or three hand weedings and two or three cultivations are usually required to control weeds. Use of simazin or atrazin at the rate of 1 to 2 kg. of 50 W.P. material in 200 litres of water per hectare as a pre-emergence spray, eliminates most of the annual grassy and broad-leaf weeds for at least six to eight weeks from planting. The use of these herbicides ensures adequate weed control even when the rains do not allow any cultural weed control operation.

Shoot borers and shoot fly could do considerably damage to plant stand and/or to the grain yields. Timely use of insecticides would help escape damage from these insects. Leaf blight and stalk rot diseases could be very serious in humid conditions. The best approach to the problem is to develop and use resistant variety, composite or hybrids of maize.

These are some of the factors which have to be tackled at the farmers' fields.

Considering the research in maize, I have no doubt that India has opened new frontiers in maize breeding. The development and release of composites speak volumes in favour of maize scientists in India and particularly of Dr. N. L. Dhawan, the doyen of maize research in India. Under his dynamic and enthusiastic guidance, maize research in India has progressed so much in such a short time. Indian scientists are engaged in meeting the challenge of some of the difficult problems like developing disease and pest resistant hybrids and varieties, developing lodging resistance compact hybrids, hybrids to withstand high population and high fertilization, etc. Dr. Dhawan and his colleagues have played their role admirably and the future of the maize breeding scheme seems to be extremely bright and promising.

Coming back to the production of hybrid seed and extension activity, there are many works left to be done. The expansion of seed production business has been very limited and confined to a solitary semi-Government concern. Private seed companies are few and even these are not inclined to produce the seeds or support research in this direction.

Extension activity is very limited and little attempts are being made to educate the Indian farmer about the improved cultural practices. The farmers are also very slow and reluctant in taking up the new methods. They are still following the age-old practices and get contented with whatever yield may obtain from their holdings.

The prospects, however, are not that bleak. The farmers of Punjab are getting aware of the new agriculture revolution and are dissipating this message of new light and hope to their brethren in other parts of the country.
REFERENCES

Baghel S. S. (1968): Genetic Analysis of number of ears per plant and other components of yield in maize, a thesis submitted to IARI (New Delhi) for the degree of doctor of philosophy in genetics.

Dhawan N. L. (1964): Objectives and breeding procedure in maize. Progress report of the First Inter Asian Corn Improvement Workshop. 75-79.

Dhawan N. L. (1964): Primitive maize in Sikkim. Maize genetics cooperation news letter (38) 69-70. Department of Botany, Indiana University, Bloomington, Indiana U.S.A.

Dhawan N. L. (1965): Breeding methodology for yield and other characters in maize. Progress report of the 2nd Inter Asian Corn Improvement Workshop, 4-14.

Director general of observatories. (1968): Table of sunrise, sunset and moonrise, moonset for 1968. The Indian ephemeris and nautical almanac for the year. 1 - 368.

Government of India. (1968): Breakthrough in agriculture through better seeds. Ministry of Food, Agriculture, Community Development and Cooperation, Department of Agriculture, New Delhi.
Grant U. J. and E. J. Wellhausen (1955): A study of corn breeding and production in India.
India Meteorological Department: Climatological tables of observatories in India (1951-1960), New Delhi.
Indian Council of Agricultural Research. (1959):
Progress Report including coordinated yield trials. Coordinated maize breeding scheme, ICAR, New Delhi.
Indian Council of Agricultural Research. (1960):
Progress Report including coordinated yield trials. Coordinated maize breeding scheme, ICAR, New Delhi.
Indian Council of Agricultural Research. (1961):
Progress Report including coordinated yield trials. Coordinated maize breeding scheme, ICAR, New Delhi.
Indian Council of Agricultural Research. (1962):
Progress Report including coordinated yield trials. Coordinated maize breeding scheme, ICAR, New Delhi.
Indian Council of Agricultural Research. (1963):
Progress Report including coordinated yield trials. Coordinated maize breeding scheme, ICAR, New Delhi.
Indian Council of Agricultural Research. (1964):
Progress Report including coordinated yield trials. Coordinated maize breeding scheme, ICAR, New Delhi.
Indian Council of Agricultural Research. (1964):
Progress Report APPENDIX TABLES. Coordinated maize breeding scheme, ICAR, New Delhi.
Indian Council of Agricultural Research. (1965):
Progress Report including coordinated yield trials. Coordinated maize breeding scheme, IARI, New Delhi.
Indian Council of Agricultural Research. (1965):
Progress Report APPENDIX TABLES. Coordinated maize breeding scheme, IARI, New Delhi.
Indian Council of Agricultural Research. (1966):
Progress Report, APPENDIX TABLES. Coordinated maize breeding scheme, IARI, New Delhi.
Indian Council of Agricultural Research. (1967):
Progress Report, APPENDIX TABLES.
Coordinated maize breeding scheme, IARI, New Delhi.
Indian Council of Agricultural Research. (1968)
Progress Report, APPENDIX TABLES.
Coordinated maize breeding scheme, IARI, New Delhi.
Indian Council of Agricultural Research. (1968):
Indian Council of Agricultural Research. (1969):
Progress Report APPENDIX TABLES.
Coordinated maize breeding scheme IARI, New Delhi.
Indian Council of Agricultural Research. (1967):
Annual Report of the response of various maize germplasm sources to different agronomic practices. Grant No FG-IN-147, IARI, New Delhi.
Indian Council of Agricultural Research. (1968):

Krantz B. A. 1959: Soil fertility and soil management, a report of the Rockefeller Foundation in India, New Delhi.

Mukherjee B. K. (1962): Studies on the predicted and actual performance of double cross maize hybrid with respect to yield and other characters, a thesis to IARI (New Delhi) for the degree of Master of Science in Botany.

Mukherjee B. K. (1966): Studies on combining ability and genetic analysis of yield and other characters in varieties of maize (Zea may's Linn.) A thesis to IARI (New Delhi) for the degree of doctor of philosophy in botany.

National seed corporation LTD: Cultural practices for hybrid maize for high yields and increased profits, New Delhi-8.

National seeds corporation and Rockefeller Foundation:
Seed certification manual. New Delhi.

National seeds Corporation and Rockefeller Foundation:
Seed production manual. New Delhi.

National seeds Corporation and Rockefeller Foundation:
Seed processing, Storage and Distribution manual. New Delhi.

Pandey R. S. (1966): Genetic analysis of grain yield and certain ear and tassel characters in six varieties of maize (Zea Maya Linn), a thesis to IARI (New Delhi) for the degree of master of Science in Botany.

Rojas Basilio A. and G. F. Sprague: A comparison of variance components in corn yield trials, III. General and specific combining ability and their interaction with location and years, Quantitative genetics and related topics, Department of genetics, North Carolina state college, Raleigh, North Carolina.

Singh Joginder (1964): Results of the coordinated agronomic trials in India. Progress Report of the First Inter Asian Corn Improvement Workshop, 113-123.

Tripathi B. K. (1968): Genetic studies on prolific ear character in maize (New Mays Linn), a thesis to IARI (New Delhi) for the degree of Ph D. in Genetics.

Plate 1 Brawn stripe downy mildew

Plate 2 Downy Mildew

Plate 3 Leaf rust
Plate 4 Black bunde

4-A

Plate 5 Charool rot

Plate 6 Common sumat

Plate 7 Stem borer damage

7-A

7-B
Plate 7 Stemborer damage -C

Plate 8 Grass hopper damage

Plate 9 Grain type of Indian local variety, hybrid and US hybrid

Plate 10 Elite in red line CM 104

10-A

10-B

10-C

CM 10-4-115-#-

CM 104-#-bulk 2-

Note: (1) CM indicator "Coordinated Maize" meaning that the particular line was evolved under the All-India Coordinated Maize Improvement Scheme.
(2) # indicates sibbing.
Plate 11 Elite inbred line CM 106

Plate 12 Elite inbred line CM 109

Plate 13 Elite inbred line CM 110

Plate 14 Elite inbred line CM 112
Plate 15 Elite inbred line CM 113

Plate 16 Elite inbred line CM 201

Plate 17 Elite inbred line CM 202

Plate 18 Elite inbred line CM 205
Plate 19 Elite inbred line CM 300

Plate 20 Elite inbred line CM 400

Plate 21 Antigua Gr. 1 CM 500

Plate 22 Some of the released hybrids

Plate 23 Male parents of released hybrid
Plate 24 Male parents of released hybrid

Plate 25 Male parents of released hybrid

Plate 26 Male parents of released hybrid

Plate 27 Hybrid vigour in varietal cross 27-A

Plate 28 Biparental progeny breeding
Plate 29 Release composites

29-A 29-B 29-C

Plate 30 Future improvement of released composites

30-A 30-B 30-C
Plate 31 Sikkim primitive maize - A living fossil but source for prolificacy

31-A

Plate 32 Multi-eares segregates

Plate 33 High lysine opaque composite

OPAQUE COMPOSITE
Plate 34 Sweet corn composite

Plate 35 Seed storage cabinets

Plate 36 Apparatus for sorting out data entry-replication wise

Plate 37 Method for putting of data strips
Plate 38 Harvesting and weighing

38-A

38-B

Plate 39 Taking of moisture sample

38-C
Plate 42 Scale for Rating *Helminthosporium Turcicum* Leaf blight
Plate 40 Moisture testing of grains with the universal moisture tester

Plate 41 Shelling of ears

Plate 43 Ploughing 43-A

Plate 44 Fertilizer application 43-B
Plate 45 Irrigation

45-A

45-B

Plate 46 Inter cultivation

Plate 47 Dusting of insecticides
Plate 48 Pollination apron

Plate 49 Cutting of ear shoot for uniform silking

Plate 50 Putting ear shoot bag
Plate 51 Putting tassel bag

51-A

51-B

51-C

Plate 52 Collecting pollen
Plate 53 Pollination Procedures

53-A

53-B

53-C

53-D
Appendix 1 Climatological data of different stations

I—(1) Srinagar

Latitude: **34°05'N**
Longitude: **74°50'E**
Height above M.S.L. **1,586 meters**

<table>
<thead>
<tr>
<th>Month</th>
<th>Station level pressure (mb.)</th>
<th>Air temperature mean of Daily Max. (°C)</th>
<th>Rainfall monthly total (mm.)</th>
<th>Mean wind speed (km.p.h.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Daily Min. (°C)</td>
<td>Relative humidity (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>845.7</td>
<td>4.4</td>
<td>-2.3</td>
<td>88</td>
</tr>
<tr>
<td>February</td>
<td>844.2</td>
<td>7.9</td>
<td>-0.8</td>
<td>87</td>
</tr>
<tr>
<td>March</td>
<td>843.4</td>
<td>13.4</td>
<td>3.5</td>
<td>84</td>
</tr>
<tr>
<td>April</td>
<td>843.0</td>
<td>19.3</td>
<td>7.4</td>
<td>77</td>
</tr>
<tr>
<td>May</td>
<td>840.5</td>
<td>24.6</td>
<td>11.2</td>
<td>71</td>
</tr>
<tr>
<td>June</td>
<td>836.7</td>
<td>29.0</td>
<td>14.4</td>
<td>75</td>
</tr>
<tr>
<td>July</td>
<td>834.4</td>
<td>30.8</td>
<td>18.4</td>
<td>73</td>
</tr>
<tr>
<td>August</td>
<td>835.6</td>
<td>29.9</td>
<td>17.9</td>
<td>79</td>
</tr>
<tr>
<td>September</td>
<td>839.8</td>
<td>28.3</td>
<td>12.7</td>
<td>77</td>
</tr>
<tr>
<td>October</td>
<td>644.7</td>
<td>22.6</td>
<td>5.7</td>
<td>82</td>
</tr>
<tr>
<td>November</td>
<td>846.5</td>
<td>15.5</td>
<td>-0.1</td>
<td>85</td>
</tr>
<tr>
<td>December</td>
<td>846.4</td>
<td>8.6</td>
<td>-1.8</td>
<td>88</td>
</tr>
</tbody>
</table>

Annual total or mean: **841.7**

Number of years: **30**

I—(2) Almora

Latitude: **29°35'N**
Longitude: **79°40'E**
Height above M.S.L. **1,280 meters**

Based on observation from 1964 to 1968

<table>
<thead>
<tr>
<th>Month</th>
<th>Air temperature mean of Daily Max. (°C)</th>
<th>Rainfall monthly total (mm.)</th>
<th>Mean wind speed (km.p.h.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daily Min. (°C)</td>
<td>Relative humidity (%)</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>January</td>
<td>20.8</td>
<td>0.3</td>
<td>34.6</td>
</tr>
<tr>
<td>February</td>
<td>23.7</td>
<td>2.1</td>
<td>49.3</td>
</tr>
<tr>
<td>March</td>
<td>27.6</td>
<td>3.3</td>
<td>23.8</td>
</tr>
<tr>
<td>April</td>
<td>32.9</td>
<td>7.2</td>
<td>340.7</td>
</tr>
<tr>
<td>May</td>
<td>37.0</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>37.8</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>32.4</td>
<td>15.3</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>31.8</td>
<td>15.3</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>31.8</td>
<td>12.1</td>
<td></td>
</tr>
</tbody>
</table>

* Compiled from the data of Climatological Tables of Observatories in India (1931-1960)
Appendix I-(2) (Cont'd)

<table>
<thead>
<tr>
<th>Month</th>
<th>Air temperature mean of Daily Max. °C</th>
<th>Daily Min. °C</th>
<th>Rainfall monthly total mm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>October</td>
<td>30.3</td>
<td>7.9</td>
<td>11.6</td>
</tr>
<tr>
<td>November</td>
<td>25.3</td>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td>December</td>
<td>21.8</td>
<td>1.7</td>
<td>21.0</td>
</tr>
<tr>
<td>Annual total or mean</td>
<td>29.5</td>
<td>7.7</td>
<td>1,040.4</td>
</tr>
<tr>
<td>Number of years</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

I-(3) Simla for Solan

Latitude: 30°06'N.
Longitude: 77°10'E.
Height above S.M.L. 2202 meters

<table>
<thead>
<tr>
<th>Month</th>
<th>Station level pressure mb.</th>
<th>Air temperature mean of Daily Max. °C</th>
<th>Daily Min. °C</th>
<th>Relative humidity %</th>
<th>Rainfall monthly total mm.</th>
<th>Mean wind speed km.p.h.</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>781.7</td>
<td>8.5</td>
<td>1.9</td>
<td>48</td>
<td>65.2</td>
<td>3.9</td>
</tr>
<tr>
<td>February</td>
<td>780.8</td>
<td>10.3</td>
<td>3.1</td>
<td>45</td>
<td>47.6</td>
<td>4.3</td>
</tr>
<tr>
<td>March</td>
<td>781.5</td>
<td>14.4</td>
<td>6.8</td>
<td>37</td>
<td>58.1</td>
<td>4.7</td>
</tr>
<tr>
<td>April</td>
<td>781.8</td>
<td>19.2</td>
<td>11.2</td>
<td>32</td>
<td>37.6</td>
<td>4.5</td>
</tr>
<tr>
<td>May</td>
<td>780.5</td>
<td>23.4</td>
<td>15.0</td>
<td>34</td>
<td>53.7</td>
<td>4.4</td>
</tr>
<tr>
<td>June</td>
<td>778.0</td>
<td>24.3</td>
<td>16.2</td>
<td>53</td>
<td>147.5</td>
<td>3.7</td>
</tr>
<tr>
<td>July</td>
<td>776.8</td>
<td>21.0</td>
<td>15.6</td>
<td>86</td>
<td>414.5</td>
<td>2.8</td>
</tr>
<tr>
<td>August</td>
<td>778.3</td>
<td>20.1</td>
<td>15.2</td>
<td>89</td>
<td>385.4</td>
<td>2.4</td>
</tr>
<tr>
<td>September</td>
<td>780.8</td>
<td>20.0</td>
<td>13.8</td>
<td>75</td>
<td>195.2</td>
<td>2.7</td>
</tr>
<tr>
<td>October</td>
<td>784.3</td>
<td>17.9</td>
<td>10.8</td>
<td>47</td>
<td>45.4</td>
<td>3.1</td>
</tr>
<tr>
<td>November</td>
<td>783.9</td>
<td>15.0</td>
<td>7.5</td>
<td>31</td>
<td>6.7</td>
<td>3.1</td>
</tr>
<tr>
<td>December</td>
<td>782.9</td>
<td>11.3</td>
<td>4.2</td>
<td>36</td>
<td>23.7</td>
<td>3.5</td>
</tr>
<tr>
<td>Annual total or mean</td>
<td>780.9</td>
<td>17.1</td>
<td>10.1</td>
<td>51</td>
<td>1480.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Number of years</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>
I—(4) Gangtok*

Latitude: 27°15'N
Longitude: 88°40'E
Height above M.S.L. 1370 meters

<table>
<thead>
<tr>
<th>Month</th>
<th>Air temperature mean of Daily Max. °C</th>
<th>Daily Min. °C</th>
<th>Rain fall Monthly total mm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>14.07</td>
<td>0.11</td>
<td>25.4</td>
</tr>
<tr>
<td>February</td>
<td>15.06</td>
<td>1.61</td>
<td>64.5</td>
</tr>
<tr>
<td>March</td>
<td>19.06</td>
<td>5.39</td>
<td>130.0</td>
</tr>
<tr>
<td>April</td>
<td>21.33</td>
<td>8.39</td>
<td>290.3</td>
</tr>
<tr>
<td>May</td>
<td>22.44</td>
<td>10.28</td>
<td>494.0</td>
</tr>
<tr>
<td>June</td>
<td>23.28</td>
<td>10.72</td>
<td>526.3</td>
</tr>
<tr>
<td>July</td>
<td>23.57</td>
<td>13.33</td>
<td>632.5</td>
</tr>
<tr>
<td>August</td>
<td>23.97</td>
<td>13.11</td>
<td>576.3</td>
</tr>
<tr>
<td>September</td>
<td>23.28</td>
<td>12.60</td>
<td>490.2</td>
</tr>
<tr>
<td>October</td>
<td>21.56</td>
<td>9.11</td>
<td>135.6</td>
</tr>
<tr>
<td>November</td>
<td>18.17</td>
<td>4.89</td>
<td>46.5</td>
</tr>
<tr>
<td>December</td>
<td>15.72</td>
<td>1.17</td>
<td>22.6</td>
</tr>
</tbody>
</table>

Annual total or Mean

20.12

7.70

3,434.2

* According to information given by Sikkim Maize Breeding Center

I—(5) Kalimpong

Latitude: 27°04'N.
Longitude: 88°28'E.
Height above M.S.L. 1209 metres

<table>
<thead>
<tr>
<th>Month</th>
<th>Station level Pressure mb.</th>
<th>Air temperature mean of Daily Max. °C</th>
<th>Daily Min. °C</th>
<th>Relative humidity %</th>
<th>Rain fall monthly total mm.</th>
<th>Mean wind speed km.p.h.</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>881.4</td>
<td>15.5</td>
<td>7.8</td>
<td>78</td>
<td>13.6</td>
<td>8.6</td>
</tr>
<tr>
<td>February</td>
<td>880.3</td>
<td>16.7</td>
<td>9.1</td>
<td>77</td>
<td>18.7</td>
<td>8.8</td>
</tr>
<tr>
<td>March</td>
<td>879.5</td>
<td>20.6</td>
<td>12.2</td>
<td>70</td>
<td>34.3</td>
<td>9.5</td>
</tr>
<tr>
<td>April</td>
<td>878.6</td>
<td>23.1</td>
<td>15.0</td>
<td>72</td>
<td>71.3</td>
<td>10.2</td>
</tr>
<tr>
<td>May</td>
<td>876.7</td>
<td>24.1</td>
<td>17.3</td>
<td>82</td>
<td>146.0</td>
<td>9.0</td>
</tr>
<tr>
<td>June</td>
<td>874.0</td>
<td>24.4</td>
<td>18.9</td>
<td>88</td>
<td>405.3</td>
<td>7.8</td>
</tr>
<tr>
<td>July</td>
<td>873.6</td>
<td>24.1</td>
<td>19.2</td>
<td>87</td>
<td>635.0</td>
<td>7.4</td>
</tr>
<tr>
<td>August</td>
<td>874.6</td>
<td>24.3</td>
<td>19.3</td>
<td>87</td>
<td>488.7</td>
<td>7.5</td>
</tr>
<tr>
<td>September</td>
<td>876.8</td>
<td>24.1</td>
<td>18.8</td>
<td>89</td>
<td>343.7</td>
<td>7.5</td>
</tr>
<tr>
<td>October</td>
<td>880.0</td>
<td>23.3</td>
<td>16.1</td>
<td>82</td>
<td>87.6</td>
<td>8.4</td>
</tr>
<tr>
<td>November</td>
<td>881.5</td>
<td>20.0</td>
<td>11.6</td>
<td>78</td>
<td>13.2</td>
<td>8.7</td>
</tr>
<tr>
<td>December</td>
<td>881.9</td>
<td>17.3</td>
<td>8.8</td>
<td>76</td>
<td>4.9</td>
<td>8.7</td>
</tr>
</tbody>
</table>

---Contd.
Appendix I-(5) (Cont'd)

<table>
<thead>
<tr>
<th></th>
<th>Annual total or mean</th>
<th>Number of years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>878.3 21.5 14.5 81</td>
<td>30 30 30 30 30 30</td>
</tr>
</tbody>
</table>

I-(6) New Delhi (Safdarjganj)

Latitude: 29°35'N.
Longitude: 77°12'E.
Height above S.M.L. 216 meters

<table>
<thead>
<tr>
<th>Month</th>
<th>Station level pressure mb.</th>
<th>Air temperature mean of</th>
<th>Relative humidity %</th>
<th>Rainfall total mm.</th>
<th>Mean wind speed km.p.h.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Daily Max. °C</td>
<td>Daily Min. °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>992.2</td>
<td>21.3</td>
<td>7.3</td>
<td>72</td>
<td>24.9</td>
</tr>
<tr>
<td>February</td>
<td>989.7</td>
<td>23.6</td>
<td>10.1</td>
<td>59</td>
<td>21.8</td>
</tr>
<tr>
<td>March</td>
<td>986.9</td>
<td>30.2</td>
<td>15.1</td>
<td>47</td>
<td>16.5</td>
</tr>
<tr>
<td>April</td>
<td>983.2</td>
<td>36.2</td>
<td>21.0</td>
<td>32</td>
<td>6.8</td>
</tr>
<tr>
<td>May</td>
<td>978.3</td>
<td>40.5</td>
<td>26.6</td>
<td>31</td>
<td>7.9</td>
</tr>
<tr>
<td>June</td>
<td>974.5</td>
<td>39.9</td>
<td>28.7</td>
<td>48</td>
<td>65.0</td>
</tr>
<tr>
<td>July</td>
<td>974.3</td>
<td>35.3</td>
<td>27.2</td>
<td>73</td>
<td>211.1</td>
</tr>
<tr>
<td>August</td>
<td>976.5</td>
<td>33.7</td>
<td>26.1</td>
<td>77</td>
<td>172.9</td>
</tr>
<tr>
<td>September</td>
<td>980.3</td>
<td>34.1</td>
<td>24.6</td>
<td>70</td>
<td>149.7</td>
</tr>
<tr>
<td>October</td>
<td>986.6</td>
<td>33.1</td>
<td>18.7</td>
<td>54</td>
<td>31.2</td>
</tr>
<tr>
<td>November</td>
<td>990.5</td>
<td>28.7</td>
<td>11.8</td>
<td>46</td>
<td>1.2</td>
</tr>
<tr>
<td>December</td>
<td>992.3</td>
<td>25.4</td>
<td>8.0</td>
<td>63</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Annual total or mean: 983.8 31.7 18.8 56 714.2 9.8

Number of years: 30 23 23 23 23 23

I-(7) Ludiana

Latitude: 30°56'N.
Longitude: 75°52'E.
Height above M.S.L. 247 metres

<table>
<thead>
<tr>
<th>Month</th>
<th>Station level pressure mb.</th>
<th>Air temperature mean of</th>
<th>Relative humidity %</th>
<th>Rainfall total mm.</th>
<th>Mean wind speed km.p.h.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Daily Max. °C</td>
<td>Daily Min. °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>988.6</td>
<td>20.2</td>
<td>5.8</td>
<td>83</td>
<td>34.6</td>
</tr>
<tr>
<td>February</td>
<td>986.2</td>
<td>23.3</td>
<td>8.4</td>
<td>78</td>
<td>33.7</td>
</tr>
<tr>
<td>March</td>
<td>983.5</td>
<td>29.0</td>
<td>12.9</td>
<td>67</td>
<td>29.1</td>
</tr>
<tr>
<td>April</td>
<td>980.1</td>
<td>36.5</td>
<td>18.5</td>
<td>47</td>
<td>11.0</td>
</tr>
</tbody>
</table>

---Contd.
Appendix I-(7) (Cont'd)

<table>
<thead>
<tr>
<th>Month</th>
<th>Station level pressure mb</th>
<th>Air temperature mean of Daily Max. °C</th>
<th>Daily Min. °C</th>
<th>Relative humidity %</th>
<th>Rainfall monthly total mm.</th>
<th>Mean wind speed km.p.h.</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>975.0</td>
<td>41.2</td>
<td>24.2</td>
<td>37</td>
<td>9.5</td>
<td>4.8</td>
</tr>
<tr>
<td>June</td>
<td>971.3</td>
<td>41.1</td>
<td>27.1</td>
<td>49</td>
<td>54.4</td>
<td>4.9</td>
</tr>
<tr>
<td>July</td>
<td>971.2</td>
<td>36.0</td>
<td>26.7</td>
<td>74</td>
<td>187.5</td>
<td>4.2</td>
</tr>
<tr>
<td>August</td>
<td>973.2</td>
<td>34.7</td>
<td>26.1</td>
<td>79</td>
<td>175.0</td>
<td>3.4</td>
</tr>
<tr>
<td>September</td>
<td>977.4</td>
<td>35.3</td>
<td>23.9</td>
<td>74</td>
<td>118.5</td>
<td>2.9</td>
</tr>
<tr>
<td>October</td>
<td>983.3</td>
<td>33.9</td>
<td>17.5</td>
<td>64</td>
<td>33.9</td>
<td>2.2</td>
</tr>
<tr>
<td>November</td>
<td>987.3</td>
<td>28.8</td>
<td>10.1</td>
<td>64</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>December</td>
<td>988.8</td>
<td>22.9</td>
<td>6.2</td>
<td>79</td>
<td>14.3</td>
<td>1.9</td>
</tr>
</tbody>
</table>

| Annual Total or Mean | 980.5 | 31.9 | 17.3 | 66 | 704.5 | 3.3 |
| Number of years | 30 | 30 | 30 | 30 | 30 | 30 |

I-(8) Ajmer

Latitude: 26°27'N.
Longitude: 74°37'E.
Height above M.S.L. 486 meters

<table>
<thead>
<tr>
<th>Month</th>
<th>Station level pressure mb</th>
<th>Air temperature mean of Daily Max. °C</th>
<th>Daily Min. °C</th>
<th>Relative humidity %</th>
<th>Rainfall monthly total mm.</th>
<th>Mean wind speed km.p.h.</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>961.6</td>
<td>22.2</td>
<td>7.3</td>
<td>65</td>
<td>11.7</td>
<td>3.4</td>
</tr>
<tr>
<td>February</td>
<td>959.6</td>
<td>25.3</td>
<td>9.9</td>
<td>53</td>
<td>6.1</td>
<td>4.4</td>
</tr>
<tr>
<td>March</td>
<td>957.7</td>
<td>30.7</td>
<td>15.7</td>
<td>40</td>
<td>5.9</td>
<td>6.3</td>
</tr>
<tr>
<td>April</td>
<td>954.9</td>
<td>35.9</td>
<td>21.9</td>
<td>31</td>
<td>3.0</td>
<td>8.4</td>
</tr>
<tr>
<td>May</td>
<td>951.3</td>
<td>39.5</td>
<td>27.3</td>
<td>39</td>
<td>9.3</td>
<td>13.1</td>
</tr>
<tr>
<td>June</td>
<td>947.1</td>
<td>38.1</td>
<td>27.7</td>
<td>56</td>
<td>66.5</td>
<td>14.6</td>
</tr>
<tr>
<td>July</td>
<td>946.0</td>
<td>33.2</td>
<td>25.6</td>
<td>75</td>
<td>187.4</td>
<td>11.6</td>
</tr>
<tr>
<td>August</td>
<td>947.9</td>
<td>30.9</td>
<td>24.3</td>
<td>80</td>
<td>174.6</td>
<td>9.5</td>
</tr>
<tr>
<td>September</td>
<td>951.9</td>
<td>32.1</td>
<td>23.7</td>
<td>70</td>
<td>71.0</td>
<td>8.4</td>
</tr>
<tr>
<td>October</td>
<td>957.5</td>
<td>32.9</td>
<td>17.8</td>
<td>52</td>
<td>16.5</td>
<td>4.0</td>
</tr>
<tr>
<td>November</td>
<td>960.9</td>
<td>28.9</td>
<td>10.9</td>
<td>54</td>
<td>3.7</td>
<td>2.5</td>
</tr>
<tr>
<td>December</td>
<td>962.0</td>
<td>24.4</td>
<td>7.7</td>
<td>62</td>
<td>1.7</td>
<td>2.5</td>
</tr>
</tbody>
</table>

| Annual total or mean | 954.9 | 31.2 | 18.3 | 56 | 557.4 | 7.4 |
| Number of years | 30 | 30 | 30 | 30 | 30 | 30 |
I — (9) Pantnagar

Latitude: 27°25'N
Longitude: E
Height above M.S.L. 260 meters

<table>
<thead>
<tr>
<th>Month</th>
<th>Air Temperature (°C)</th>
<th>Relative humidity (%)</th>
<th>Rainfall (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max.</td>
<td>Min.</td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>16.1</td>
<td>40</td>
<td>14.0</td>
</tr>
<tr>
<td>May</td>
<td>40.2</td>
<td>30</td>
<td>6.1</td>
</tr>
<tr>
<td>June</td>
<td>38.8</td>
<td>52</td>
<td>181.5</td>
</tr>
<tr>
<td>July</td>
<td>32.8</td>
<td>90</td>
<td>427.9</td>
</tr>
<tr>
<td>August</td>
<td>32.2</td>
<td>83</td>
<td>460.4</td>
</tr>
<tr>
<td>September</td>
<td>32.4</td>
<td>79</td>
<td>226.1</td>
</tr>
<tr>
<td>October</td>
<td>31.8</td>
<td>62</td>
<td>17.6</td>
</tr>
<tr>
<td>November</td>
<td>26.8</td>
<td>63</td>
<td>2.8</td>
</tr>
</tbody>
</table>

I — (10) Patna for Dholi

Latitude: 25°37'N.
Longitude: 85°10'E.
Height above M.S.L. 53 metres

<table>
<thead>
<tr>
<th>Month</th>
<th>Station level pressure (mb.)</th>
<th>Air Temperature (°C)</th>
<th>Relative humidity (%)</th>
<th>Rainfall (mm)</th>
<th>Mean wind speed (km.p.h.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Daily Max.</td>
<td>Daily Min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>1011.5</td>
<td>23.6</td>
<td>11.0</td>
<td>71</td>
<td>21.1</td>
</tr>
<tr>
<td>February</td>
<td>1008.7</td>
<td>26.3</td>
<td>13.4</td>
<td>62</td>
<td>20.2</td>
</tr>
<tr>
<td>March</td>
<td>1005.3</td>
<td>32.9</td>
<td>18.6</td>
<td>45</td>
<td>6.7</td>
</tr>
<tr>
<td>April</td>
<td>1001.8</td>
<td>37.6</td>
<td>23.3</td>
<td>41</td>
<td>8.2</td>
</tr>
<tr>
<td>May</td>
<td>997.4</td>
<td>38.9</td>
<td>26.0</td>
<td>56</td>
<td>28.3</td>
</tr>
<tr>
<td>June</td>
<td>993.6</td>
<td>36.7</td>
<td>27.1</td>
<td>71</td>
<td>139.0</td>
</tr>
<tr>
<td>July</td>
<td>993.6</td>
<td>32.9</td>
<td>26.7</td>
<td>81</td>
<td>265.8</td>
</tr>
<tr>
<td>August</td>
<td>995.4</td>
<td>32.1</td>
<td>26.6</td>
<td>83</td>
<td>307.1</td>
</tr>
<tr>
<td>September</td>
<td>999.2</td>
<td>32.3</td>
<td>26.3</td>
<td>80</td>
<td>242.5</td>
</tr>
<tr>
<td>October</td>
<td>1005.4</td>
<td>31.9</td>
<td>23.0</td>
<td>70</td>
<td>62.8</td>
</tr>
<tr>
<td>November</td>
<td>1009.5</td>
<td>28.9</td>
<td>16.1</td>
<td>62</td>
<td>5.7</td>
</tr>
<tr>
<td>December</td>
<td>1011.6</td>
<td>24.9</td>
<td>11.7</td>
<td>67</td>
<td>2.4</td>
</tr>
</tbody>
</table>
Appendix I—(10) (Cont'd.)

<table>
<thead>
<tr>
<th>Month</th>
<th>Station level pressure mb.</th>
<th>Air temperature mean of Daily Max. °C</th>
<th>Daily Min. °C</th>
<th>Relative humidity %</th>
<th>Rainfall monthly total mm.</th>
<th>Mean wind speed km.p.h.</th>
</tr>
</thead>
</table>

Annual

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>total or mean</td>
<td>1002.7</td>
<td>31.6</td>
<td>20.8</td>
<td>66</td>
<td>1109.8</td>
<td>6.8</td>
</tr>
<tr>
<td>Number of years</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

I —(11) Hyderabad (Begampet)

Latitude: 17°27'N.
Longitude: 78°28'E.
Height above S.L. 545 metres

<table>
<thead>
<tr>
<th>Month</th>
<th>Station level pressure mb.</th>
<th>Air temperature mean of Daily Max. °C</th>
<th>Daily Min. °C</th>
<th>Relative humidity %</th>
<th>Rainfall monthly total mm.</th>
<th>Mean wind speed km.p.h.</th>
</tr>
</thead>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>954.3</td>
<td>28.6</td>
<td>14.6</td>
<td>78</td>
<td>1.7</td>
<td>8.1</td>
</tr>
<tr>
<td>February</td>
<td>952.7</td>
<td>31.2</td>
<td>16.7</td>
<td>64</td>
<td>11.4</td>
<td>8.9</td>
</tr>
<tr>
<td>March</td>
<td>951.3</td>
<td>34.8</td>
<td>20.0</td>
<td>54</td>
<td>13.4</td>
<td>9.6</td>
</tr>
<tr>
<td>April</td>
<td>949.3</td>
<td>36.9</td>
<td>23.7</td>
<td>51</td>
<td>24.1</td>
<td>10.9</td>
</tr>
<tr>
<td>May</td>
<td>946.1</td>
<td>38.7</td>
<td>26.2</td>
<td>50</td>
<td>30.0</td>
<td>12.4</td>
</tr>
<tr>
<td>June</td>
<td>944.3</td>
<td>34.1</td>
<td>24.1</td>
<td>71</td>
<td>107.4</td>
<td>23.8</td>
</tr>
<tr>
<td>July</td>
<td>944.0</td>
<td>29.8</td>
<td>22.3</td>
<td>83</td>
<td>165.0</td>
<td>22.1</td>
</tr>
<tr>
<td>August</td>
<td>945.2</td>
<td>29.5</td>
<td>22.1</td>
<td>82</td>
<td>146.9</td>
<td>18.3</td>
</tr>
<tr>
<td>September</td>
<td>947.0</td>
<td>29.7</td>
<td>21.6</td>
<td>82</td>
<td>163.3</td>
<td>12.6</td>
</tr>
<tr>
<td>October</td>
<td>950.3</td>
<td>30.3</td>
<td>19.8</td>
<td>73</td>
<td>70.8</td>
<td>8.9</td>
</tr>
<tr>
<td>November</td>
<td>953.0</td>
<td>28.7</td>
<td>16.0</td>
<td>68</td>
<td>24.9</td>
<td>8.0</td>
</tr>
<tr>
<td>December</td>
<td>954.5</td>
<td>27.8</td>
<td>13.4</td>
<td>71</td>
<td>5.5</td>
<td>7.4</td>
</tr>
</tbody>
</table>

| Annual total or mean | 949.3 | 31.7 | 20.0 | 69 | 764.4 | 12.6 |
| Number of years | 30 | 30 | 30 | 30 | 30 | 30 |

I —(12) Dohad for Godhra

Latitude: 22°50'N.
Longitude: 74°16'E.
Height above S.L. 533 metres

<table>
<thead>
<tr>
<th>Rainfall monthly total mm.</th>
<th>Mean wind speed km.p.h.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I —(12) Dohad for Godhra

Latitude: 22°50'N.
Longitude: 74°16'E.
Height above S.L. 533 metres

<table>
<thead>
<tr>
<th>Rainfall monthly total mm.</th>
<th>Mean wind speed km.p.h.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Month</td>
<td>Station level pressure mb.</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------</td>
</tr>
<tr>
<td></td>
<td>Daily Max. °C</td>
</tr>
<tr>
<td>January</td>
<td>978.1</td>
</tr>
<tr>
<td>February</td>
<td>976.9</td>
</tr>
<tr>
<td>March</td>
<td>974.9</td>
</tr>
<tr>
<td>April</td>
<td>972.6</td>
</tr>
<tr>
<td>May</td>
<td>969.5</td>
</tr>
<tr>
<td>June</td>
<td>966.2</td>
</tr>
<tr>
<td>July</td>
<td>965.0</td>
</tr>
<tr>
<td>August</td>
<td>966.2</td>
</tr>
<tr>
<td>September</td>
<td>970.0</td>
</tr>
<tr>
<td>October</td>
<td>974.6</td>
</tr>
<tr>
<td>November</td>
<td>977.6</td>
</tr>
<tr>
<td>December</td>
<td>978.8</td>
</tr>
</tbody>
</table>

Annual total or mean: 972.5 32.5 19.9 63 788.2 16.3

Number of years: 30 24 24 24 30 21

I — (13) Chhindwara

Latitude: 22°06'N.
Longitude: 79°00'E.
Height above M.S.L. 685 Meters
I — (14) Bangalore for Arbhavi

Latitude: 12°58' N.
Longitude: 77°35'
Height above M.S.L. 921 metres

<table>
<thead>
<tr>
<th>Month</th>
<th>Station level pressure mb.</th>
<th>Air temperature mean of Daily Max. °C</th>
<th>Daily Min. °C</th>
<th>Relative humidity %</th>
<th>Rainfall monthly total mm</th>
<th>Mean wind speed km.p.h.</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>913.1</td>
<td>26.9</td>
<td>15.0</td>
<td>77</td>
<td>3.3</td>
<td>10.4</td>
</tr>
<tr>
<td>February</td>
<td>912.3</td>
<td>29.7</td>
<td>16.5</td>
<td>67</td>
<td>10.2</td>
<td>9.7</td>
</tr>
<tr>
<td>March</td>
<td>911.4</td>
<td>32.3</td>
<td>19.0</td>
<td>63</td>
<td>6.1</td>
<td>9.4</td>
</tr>
<tr>
<td>April</td>
<td>910.3</td>
<td>33.4</td>
<td>21.2</td>
<td>70</td>
<td>45.7</td>
<td>9.0</td>
</tr>
<tr>
<td>May</td>
<td>908.2</td>
<td>32.7</td>
<td>21.1</td>
<td>75</td>
<td>116.5</td>
<td>11.5</td>
</tr>
<tr>
<td>June</td>
<td>907.1</td>
<td>28.9</td>
<td>19.7</td>
<td>82</td>
<td>80.1</td>
<td>17.1</td>
</tr>
<tr>
<td>July</td>
<td>907.2</td>
<td>27.2</td>
<td>19.2</td>
<td>86</td>
<td>116.6</td>
<td>17.5</td>
</tr>
<tr>
<td>August</td>
<td>907.7</td>
<td>27.3</td>
<td>19.2</td>
<td>86</td>
<td>147.1</td>
<td>15.2</td>
</tr>
<tr>
<td>September</td>
<td>908.9</td>
<td>27.6</td>
<td>18.9</td>
<td>85</td>
<td>142.7</td>
<td>12.1</td>
</tr>
<tr>
<td>October</td>
<td>910.3</td>
<td>27.5</td>
<td>18.9</td>
<td>83</td>
<td>184.9</td>
<td>8.2</td>
</tr>
<tr>
<td>November</td>
<td>911.6</td>
<td>26.3</td>
<td>17.2</td>
<td>78</td>
<td>54.3</td>
<td>8.5</td>
</tr>
<tr>
<td>December</td>
<td>912.8</td>
<td>25.7</td>
<td>15.3</td>
<td>78</td>
<td>16.2</td>
<td>9.6</td>
</tr>
</tbody>
</table>

Annual total or mean: 910.1 28.8 18.4 77 923.7 11.5

Number of years: 30 30 30 30 30 30
APPENDIX II

Area under maize in different states *(thousand hectares)*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhra Pradesh</td>
<td>175.6</td>
<td>187.8</td>
<td>187.8</td>
<td>189.4</td>
<td>189.4</td>
<td>205.6</td>
<td>190.6</td>
<td>184.1</td>
</tr>
<tr>
<td>Assam</td>
<td>15.0</td>
<td>14.6</td>
<td>15.4</td>
<td>15.4</td>
<td>15.4</td>
<td>16.6</td>
<td>15.0</td>
<td>13.8</td>
</tr>
<tr>
<td>Bihar</td>
<td>450.0</td>
<td>269.0</td>
<td>377.0</td>
<td>254.0</td>
<td>401.0</td>
<td>370.0</td>
<td>468.0</td>
<td>916.0</td>
</tr>
<tr>
<td>Bombay</td>
<td>210.4</td>
<td>223.8</td>
<td>204.0</td>
<td>225.4</td>
<td>178.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Delhi</td>
<td>0.8</td>
<td>1.2</td>
<td>1.6</td>
<td>1.2</td>
<td>1.6</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Haryana</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Himachal Pradesh</td>
<td>112.1</td>
<td>109.7</td>
<td>112.1</td>
<td>112.5</td>
<td>113.7</td>
<td>115.4</td>
<td>114.5</td>
<td>117.0</td>
</tr>
<tr>
<td>Gujarat</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>196.7</td>
<td>201.5</td>
<td>187.8</td>
</tr>
<tr>
<td>Jammu and Kashmir</td>
<td>149.7</td>
<td>160.3</td>
<td>95.5</td>
<td>184.9</td>
<td>208.4</td>
<td>140.4</td>
<td>210.4</td>
<td>207.2</td>
</tr>
<tr>
<td>Kerala</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>447.2</td>
<td>425.3</td>
<td>412.8</td>
<td>421.3</td>
<td>424.1</td>
<td>451.6</td>
<td>464.6</td>
<td>462.1</td>
</tr>
<tr>
<td>Madras</td>
<td>6.1</td>
<td>12.5</td>
<td>8.1</td>
<td>4.9</td>
<td>5.3</td>
<td>5.7</td>
<td>6.5</td>
<td>6.1</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>27.5</td>
<td>28.3</td>
<td>26.3</td>
</tr>
<tr>
<td>Manipur</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mysore</td>
<td>10.5</td>
<td>10.9</td>
<td>10.9</td>
<td>13.4</td>
<td>13.4</td>
<td>10.5</td>
<td>10.5</td>
<td>10.5</td>
</tr>
<tr>
<td>Orissa</td>
<td>9.0</td>
<td>9.0</td>
<td>10.0</td>
<td>10.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Punjab</td>
<td>396.6</td>
<td>395.4</td>
<td>387.7</td>
<td>406.3</td>
<td>408.3</td>
<td>463.0</td>
<td>501.8</td>
<td>539.4</td>
</tr>
<tr>
<td>Rajasthan</td>
<td>422.9</td>
<td>528.9</td>
<td>559.0</td>
<td>540.2</td>
<td>497.8</td>
<td>586.4</td>
<td>580.3</td>
<td>604.3</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>860.3</td>
<td>1025.9</td>
<td>1049.7</td>
<td>959.5</td>
<td>1017.0</td>
<td>1083.3</td>
<td>1093.4</td>
<td>1091.8</td>
</tr>
<tr>
<td>West Bengal</td>
<td>65.9</td>
<td>62.7</td>
<td>63.1</td>
<td>66.8</td>
<td>51.4</td>
<td>53.8</td>
<td>54.2</td>
<td>56.3</td>
</tr>
<tr>
<td>Total India</td>
<td>3604.9</td>
<td>3869.1</td>
<td>3749.3</td>
<td>3695.5</td>
<td>3740.9</td>
<td>4078.8</td>
<td>4265.3</td>
<td>4332.5</td>
</tr>
</tbody>
</table>

*Compiled from the data of Area, Production and Yield of Principal Crops in India 1949-50 to 1967-68. Summary Table

--- Con td.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhra Pradesh</td>
<td>176.8</td>
<td>195.5</td>
<td>180.1</td>
<td>202.0</td>
<td>206.7</td>
<td>215.6</td>
<td>227.0</td>
<td>252.8</td>
</tr>
<tr>
<td>Assam</td>
<td>14.2</td>
<td>15.0</td>
<td>17.0</td>
<td>20.4</td>
<td>21.8</td>
<td>23.6</td>
<td>23.7</td>
<td>24.4</td>
</tr>
<tr>
<td>Bihar</td>
<td>770.0</td>
<td>825.0</td>
<td>859.0</td>
<td>821.5</td>
<td>744.6</td>
<td>743.4</td>
<td>857.9</td>
<td>989.1</td>
</tr>
<tr>
<td>Bombay</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Delhi</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.0</td>
<td>0.6</td>
<td>0.9</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>Haryana</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>85/0</td>
<td>87.0</td>
</tr>
<tr>
<td>Himachal Pradesh</td>
<td>114.5</td>
<td>116.5</td>
<td>117.0</td>
<td>121.9</td>
<td>119.8</td>
<td>220.5</td>
<td>230.6</td>
<td>255.8</td>
</tr>
<tr>
<td>Gujarat</td>
<td>191.0</td>
<td>217.7</td>
<td>223.4</td>
<td>240.1</td>
<td>236.4</td>
<td>230.1</td>
<td>225.2</td>
<td>239.7</td>
</tr>
<tr>
<td>Jammu and Kashmir</td>
<td>216.1</td>
<td>231.5</td>
<td>250.1</td>
<td>240.1</td>
<td>250.1</td>
<td>249.0</td>
<td>240.5</td>
<td>251.0</td>
</tr>
<tr>
<td>Kerala</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>454.9</td>
<td>476.7</td>
<td>477.1</td>
<td>489.9</td>
<td>494.8</td>
<td>525.7</td>
<td>559.3</td>
<td>589.2</td>
</tr>
<tr>
<td>Madras</td>
<td>6.1</td>
<td>5.7</td>
<td>5.7</td>
<td>5.9</td>
<td>3.2</td>
<td>2.9</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>26.3</td>
<td>27.1</td>
<td>25.5</td>
<td>27.8</td>
<td>29.0</td>
<td>29.5</td>
<td>38.1</td>
<td>38.9</td>
</tr>
<tr>
<td>Manipur</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mysore</td>
<td>10.9</td>
<td>10.9</td>
<td>11.3</td>
<td>14.3</td>
<td>13.9</td>
<td>12.9</td>
<td>15.2</td>
<td>15.4</td>
</tr>
<tr>
<td>Orissa</td>
<td>9.0</td>
<td>13.0</td>
<td>13.0</td>
<td>20.4</td>
<td>21.7</td>
<td>47.0</td>
<td>52.9</td>
<td>55.2</td>
</tr>
<tr>
<td>Punjab</td>
<td>562.9</td>
<td>524.5</td>
<td>582.3</td>
<td>585.4</td>
<td>591.0</td>
<td>412.0</td>
<td>444.0</td>
<td>469.2</td>
</tr>
<tr>
<td>Rajasthan</td>
<td>647.1</td>
<td>679.6</td>
<td>694.0</td>
<td>669.7</td>
<td>709.4</td>
<td>740.6</td>
<td>740.4</td>
<td>745.5</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>1048.9</td>
<td>1085.5</td>
<td>1078.1</td>
<td>1086.4</td>
<td>1120.5</td>
<td>1170.0</td>
<td>1261.8</td>
<td>1472.1</td>
</tr>
<tr>
<td>West Bengal</td>
<td>56.3</td>
<td>52.6</td>
<td>55.0</td>
<td>54.5</td>
<td>54.4</td>
<td>50.3</td>
<td>49.1</td>
<td>51.5</td>
</tr>
<tr>
<td>Total</td>
<td>4353.5</td>
<td>4493.2</td>
<td>4579.4</td>
<td>4584.2</td>
<td>4618.0</td>
<td>4764.7</td>
<td>5073.8</td>
<td>5576.9</td>
</tr>
</tbody>
</table>
APPENDIX II

MAIZE PRODUCTION IN DIFFERENT STATES *(thousand tons)*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhra Pradesh</td>
<td>198.0</td>
<td>134.0</td>
<td>128.0</td>
<td>112.0</td>
<td>113.0</td>
<td>118.0</td>
<td>118.0</td>
<td>108.0</td>
</tr>
<tr>
<td>Assam</td>
<td>6.0</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Bihar</td>
<td>450.0</td>
<td>269.0</td>
<td>377.0</td>
<td>254.0</td>
<td>401.0</td>
<td>370.0</td>
<td>468.0</td>
<td>916.0</td>
</tr>
<tr>
<td>Bombay</td>
<td>81.0</td>
<td>263.0</td>
<td>180.0</td>
<td>187.0</td>
<td>84.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Delhi</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>(b)</td>
<td>1.0</td>
<td>1.0</td>
<td>(b)</td>
<td>1.0</td>
</tr>
<tr>
<td>Haryana</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Himachal Pradesh</td>
<td>65.0</td>
<td>64.0</td>
<td>66.0</td>
<td>74.0</td>
<td>74.0</td>
<td>70.0</td>
<td>139.0</td>
<td>107.0</td>
</tr>
<tr>
<td>Gujarat</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jammu and Kashmir</td>
<td>121.0</td>
<td>157.0</td>
<td>69.0</td>
<td>135.0</td>
<td>151.0</td>
<td>103.0</td>
<td>190.0</td>
<td>173.0</td>
</tr>
<tr>
<td>Kerala</td>
<td>(b)</td>
<td>(b)</td>
<td>(b)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>198.0</td>
<td>216.0</td>
<td>221.0</td>
<td>194.0</td>
<td>189.0</td>
<td>186.0</td>
<td>461.0</td>
<td>304.0</td>
</tr>
<tr>
<td>Madras</td>
<td>6.0</td>
<td>13.0</td>
<td>9.0</td>
<td>5.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15.0</td>
<td>14.0</td>
</tr>
<tr>
<td>Manipur</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mysore</td>
<td>4.0</td>
<td>7.0</td>
<td>5.0</td>
<td>6.0</td>
<td>6.0</td>
<td>8.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Orissa</td>
<td>9.0</td>
<td>9.0</td>
<td>10.0</td>
<td>10.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Punjab</td>
<td>587.0</td>
<td>525.0</td>
<td>440.0</td>
<td>395.0</td>
<td>651.0</td>
<td>625.0</td>
<td>501.0</td>
<td>699.0</td>
</tr>
<tr>
<td>Rajasthan</td>
<td>247.0</td>
<td>648.0</td>
<td>573.0</td>
<td>524.0</td>
<td>313.0</td>
<td>556.0</td>
<td>553.0</td>
<td>513.0</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>805.0</td>
<td>665.0</td>
<td>801.0</td>
<td>616.0</td>
<td>479.0</td>
<td>785.0</td>
<td>611.0</td>
<td>1013.0</td>
</tr>
<tr>
<td>West Bengal</td>
<td>45.0</td>
<td>42.0</td>
<td>41.0</td>
<td>45.0</td>
<td>38.0</td>
<td>39.0</td>
<td>36.0</td>
<td>46.0</td>
</tr>
</tbody>
</table>

* Compiled from the data of Area, Production and Yield of Principal Crops in India. 1959-50 to 1967-68. Summary Table.*
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhra Pradesh</td>
<td>143.0</td>
<td>174.0</td>
<td>138.0</td>
<td>162.0</td>
<td>252.6</td>
<td>182.9</td>
<td>172.8</td>
<td>307.0</td>
</tr>
<tr>
<td>Assam</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.5</td>
<td>10.9</td>
<td>12.3</td>
<td>12.7</td>
<td>13.1</td>
</tr>
<tr>
<td>Bihar</td>
<td>770.0</td>
<td>825.0</td>
<td>858.0</td>
<td>893.0</td>
<td>584.4</td>
<td>757.2</td>
<td>948.7</td>
<td>1129.8</td>
</tr>
<tr>
<td>Bombay</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Delhi</td>
<td>1.0</td>
<td>(b)</td>
<td>(b)</td>
<td>0.3</td>
<td>0.1</td>
<td>0.5</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Haryana</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>102.0</td>
<td>86.0</td>
<td>127.7</td>
</tr>
<tr>
<td>Himachal Pradesh</td>
<td>116.0</td>
<td>155.0</td>
<td>154.0</td>
<td>172.1</td>
<td>192.4</td>
<td>293.4</td>
<td>364.1</td>
<td>436.5</td>
</tr>
<tr>
<td>Gujarat</td>
<td>230.0</td>
<td>295.0</td>
<td>267.0</td>
<td>239.3</td>
<td>301.9</td>
<td>210.0</td>
<td>145.2</td>
<td>280.5</td>
</tr>
<tr>
<td>Jammu and Kashmir</td>
<td>199.0</td>
<td>215.0</td>
<td>241.0</td>
<td>189.9</td>
<td>214.5</td>
<td>159.2</td>
<td>221.8</td>
<td>190.8</td>
</tr>
<tr>
<td>Kerala</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>506.0</td>
<td>429.0</td>
<td>440.0</td>
<td>603.2</td>
<td>556.8</td>
<td>479.2</td>
<td>454.2</td>
<td>457.9</td>
</tr>
<tr>
<td>Madras</td>
<td>7.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.5</td>
<td>3.5</td>
<td>3.2</td>
<td>3.2</td>
<td>3.1</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>13.0</td>
<td>14.0</td>
<td>13.0</td>
<td>19.9</td>
<td>21.8</td>
<td>22.0</td>
<td>47.0</td>
<td>52.7</td>
</tr>
<tr>
<td>Manipur</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11.3</td>
<td>33.8</td>
<td>5.0</td>
</tr>
<tr>
<td>Mysore</td>
<td>9.0</td>
<td>11.0</td>
<td>11.0</td>
<td>10.7</td>
<td>11.6</td>
<td>7.7</td>
<td>10.5</td>
<td>9.0</td>
</tr>
<tr>
<td>Orissa</td>
<td>9.0</td>
<td>13.0</td>
<td>13.0</td>
<td>12.2</td>
<td>17.7</td>
<td>32.9</td>
<td>49.4</td>
<td>50.4</td>
</tr>
<tr>
<td>Punjab</td>
<td>617.0</td>
<td>652.0</td>
<td>523.0</td>
<td>810.8</td>
<td>788.0</td>
<td>681.0</td>
<td>614.0</td>
<td>773.3</td>
</tr>
<tr>
<td>Rajasthan</td>
<td>655.0</td>
<td>629.0</td>
<td>750.0</td>
<td>609.4</td>
<td>779.9</td>
<td>641.7</td>
<td>613.7</td>
<td>1024.7</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>619.0</td>
<td>683.0</td>
<td>915.4</td>
<td>777.9</td>
<td>888.2</td>
<td>1121.0</td>
<td>1076.1</td>
<td>1167.2</td>
</tr>
<tr>
<td>West Bengal</td>
<td>35.0</td>
<td>29.0</td>
<td>35.0</td>
<td>35.7</td>
<td>38.8</td>
<td>42.5</td>
<td>39.6</td>
<td>45.8</td>
</tr>
<tr>
<td>Total</td>
<td>4306.0</td>
<td>3915.0</td>
<td>4202.0</td>
<td>4449.0</td>
<td>4658.1</td>
<td>4760.0</td>
<td>4893.6</td>
<td>6275.1</td>
</tr>
</tbody>
</table>
Yield per hectare (kg/ha) in different states

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhra Pradesh</td>
<td>1146</td>
<td>725</td>
<td>693</td>
<td>601</td>
<td>621</td>
<td>583</td>
<td>842</td>
<td>596</td>
</tr>
<tr>
<td>Assam</td>
<td>534</td>
<td>628</td>
<td>463</td>
<td>602</td>
<td>695</td>
<td>695</td>
<td>540</td>
<td>475</td>
</tr>
<tr>
<td>Bihar</td>
<td>652</td>
<td>399</td>
<td>602</td>
<td>488</td>
<td>695</td>
<td>640</td>
<td>475</td>
<td>443</td>
</tr>
<tr>
<td>Bombay</td>
<td>391</td>
<td>1072</td>
<td>897</td>
<td>455</td>
<td>628</td>
<td>628</td>
<td>398</td>
<td>837</td>
</tr>
<tr>
<td>Delhi</td>
<td>1255</td>
<td>899</td>
<td>628</td>
<td>628</td>
<td>628</td>
<td>398</td>
<td>837</td>
<td></td>
</tr>
<tr>
<td>Haryana</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Himachal Pradesh</td>
<td>590</td>
<td>593</td>
<td>599</td>
<td>641</td>
<td>661</td>
<td>617</td>
<td>1233</td>
<td>929</td>
</tr>
<tr>
<td>Gujarat</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1017</td>
<td>1375</td>
<td>444</td>
</tr>
<tr>
<td>Jammu and Kashmir</td>
<td>822</td>
<td>995</td>
<td>734</td>
<td>739</td>
<td>735</td>
<td>741</td>
<td>917</td>
<td>849</td>
</tr>
<tr>
<td>Kerala</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>450</td>
<td>516</td>
<td>545</td>
<td>467</td>
<td>446</td>
<td>418</td>
<td>1009</td>
<td>668</td>
</tr>
<tr>
<td>Madras</td>
<td>1004</td>
<td>1053</td>
<td>1130</td>
<td>1046</td>
<td>1159</td>
<td>1076</td>
<td>1099</td>
<td>1171</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Manipur</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mysore</td>
<td>390</td>
<td>651</td>
<td>465</td>
<td>456</td>
<td>456</td>
<td>772</td>
<td>869</td>
<td>869</td>
</tr>
<tr>
<td>Orissa</td>
<td>370</td>
<td>370</td>
<td>405</td>
<td>418</td>
<td>399</td>
<td>399</td>
<td>418</td>
<td>411</td>
</tr>
<tr>
<td>Punjab</td>
<td>1504</td>
<td>1344</td>
<td>1153</td>
<td>988</td>
<td>1620</td>
<td>1381</td>
<td>1014</td>
<td>1317</td>
</tr>
<tr>
<td>Rajasthan</td>
<td>583</td>
<td>1245</td>
<td>1081</td>
<td>985</td>
<td>639</td>
<td>964</td>
<td>934</td>
<td>863</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>951</td>
<td>657</td>
<td>776</td>
<td>652</td>
<td>979</td>
<td>734</td>
<td>569</td>
<td>943</td>
</tr>
<tr>
<td>West Bengal</td>
<td>715</td>
<td>680</td>
<td>660</td>
<td>685</td>
<td>751</td>
<td>735</td>
<td>675</td>
<td>831</td>
</tr>
<tr>
<td>India</td>
<td>796</td>
<td>786</td>
<td>794</td>
<td>704</td>
<td>821</td>
<td>772</td>
<td>812</td>
<td>936</td>
</tr>
</tbody>
</table>

Compiled from the data of Area, Production and Yield of Principal Crops in India. 1949-50 to 1967-68, Summary Table.
APPENDIX IV (Cont'd)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhra Pradesh</td>
<td>822</td>
<td>890</td>
<td>766</td>
<td>836</td>
<td>1222</td>
<td>848</td>
<td>761</td>
<td>1214</td>
</tr>
<tr>
<td>Assam</td>
<td>430</td>
<td>467</td>
<td>471</td>
<td>466</td>
<td>500</td>
<td>521</td>
<td>536</td>
<td>537</td>
</tr>
<tr>
<td>Bihar</td>
<td>973</td>
<td>1007</td>
<td>1038</td>
<td>1087</td>
<td>785</td>
<td>1019</td>
<td>1106</td>
<td>1142</td>
</tr>
<tr>
<td>Bombay</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Delhi</td>
<td>837</td>
<td>?</td>
<td>?</td>
<td>300</td>
<td>667</td>
<td>556</td>
<td>533</td>
<td>375</td>
</tr>
<tr>
<td>Haryana</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Himachal Pradesh</td>
<td>1029</td>
<td>1331</td>
<td>1316</td>
<td>1412</td>
<td>1606</td>
<td>1331</td>
<td>1520</td>
<td>1706</td>
</tr>
<tr>
<td>Gujarat</td>
<td>1224</td>
<td>1335</td>
<td>1196</td>
<td>997</td>
<td>1277</td>
<td>913</td>
<td>645</td>
<td>1170</td>
</tr>
<tr>
<td>Jammu and Kashmir</td>
<td>936</td>
<td>928</td>
<td>964</td>
<td>791</td>
<td>858</td>
<td>639</td>
<td>922</td>
<td>760</td>
</tr>
<tr>
<td>Kerala</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Madhya Pradesh</td>
<td>1130</td>
<td>900</td>
<td>922</td>
<td>1231</td>
<td>1115</td>
<td>912</td>
<td>812</td>
<td>1117</td>
</tr>
<tr>
<td>Madras</td>
<td>1171</td>
<td>1053</td>
<td>1053</td>
<td>1017</td>
<td>1094</td>
<td>1103</td>
<td>1067</td>
<td>1069</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>502</td>
<td>517</td>
<td>510</td>
<td>716</td>
<td>752</td>
<td>746</td>
<td>1234</td>
<td>1355</td>
</tr>
<tr>
<td>Manipur</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2216</td>
<td>4447</td>
<td>902</td>
<td>-</td>
</tr>
<tr>
<td>Mysore</td>
<td>837</td>
<td>1009</td>
<td>973</td>
<td>748</td>
<td>835</td>
<td>597</td>
<td>691</td>
<td>584</td>
</tr>
<tr>
<td>Orissa</td>
<td>411</td>
<td>382</td>
<td>382</td>
<td>598</td>
<td>816</td>
<td>691</td>
<td>934</td>
<td>913</td>
</tr>
<tr>
<td>Punjab</td>
<td>1114</td>
<td>1243</td>
<td>898</td>
<td>1385</td>
<td>1333</td>
<td>1653</td>
<td>1383</td>
<td>1648</td>
</tr>
<tr>
<td>Rajasthan</td>
<td>998</td>
<td>926</td>
<td>1081</td>
<td>910</td>
<td>1099</td>
<td>867</td>
<td>829</td>
<td>1375</td>
</tr>
<tr>
<td>Uttar Pradesh</td>
<td>560</td>
<td>629</td>
<td>915</td>
<td>716</td>
<td>793</td>
<td>958</td>
<td>853</td>
<td>793</td>
</tr>
<tr>
<td>West Bengal</td>
<td>632</td>
<td>551</td>
<td>636</td>
<td>655</td>
<td>713</td>
<td>845</td>
<td>807</td>
<td>889</td>
</tr>
<tr>
<td>India</td>
<td>914</td>
<td>935</td>
<td>972</td>
<td>989</td>
<td>1009</td>
<td>999</td>
<td>964</td>
<td>1125</td>
</tr>
</tbody>
</table>

APPENDIX V* List of outstanding inbred lines

<table>
<thead>
<tr>
<th>Pedigree</th>
<th>Parental Source</th>
<th>Zones in which the lines performed well</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1-2-#-#-1-#</td>
<td>India</td>
<td>*</td>
</tr>
<tr>
<td>AS5-A2a-1-2-#-1-1-1-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>AS5-A20-1-2-#-1-1-2</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Basi E-90</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Basi E-102</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Basi E-103</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>BPI3-Al-2-#-#-#-1</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>BPI3-Al-2-#-#-#-2</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>BPI3-Al-2-#-#-2-3</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>DK-Al-1-#-#-4-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>DK-Al-1-#-1-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>D-Al-#-#-1-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>GdGkl-Al-1-3-1-#-#-#-bulk</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>GdGkl-Al-1-4-1-#-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>GdGkl-Al-1-5-1-#-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>G2-3</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Jalna(y)-4-2-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Jalna(y)-4-3</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>KT41-Al4-#-2-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>KT41-Al5-#-#-#-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>KT41-Al25-#-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>KT41-A64-2-#-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>KT41-Al37-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>KT41-A256-1</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Knr-1-B35-1-1-2-#-2</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Knr-1-B35-1-1-2-2</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Knr-1-B35-1-2-2-1</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Knr-1-B35-1-2-2-1-1#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>LYEK(574)-4-1-1-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Mid(R)-2(b)-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>PB5A-1-2wh</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>PB4 Bulk-3-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>PB5-A6-#-#-#-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>PB3-A6-#-#-1-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>P2P2-Al1-1-#-#-5</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>P2P2-Al7-5-#-#-#-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>P5PB5-3-f</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>P4A(y)-1-3y-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>P4-A2-1(TC)-5-1-1-1-#-#-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>P4'-1(A)-3y</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>P4'-1(B)-2</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>P4'-1(B)-4-#-#</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>P4'-2-1-(y)</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>P4'-5y-3y</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

APPENDIX V (Cont'd)

<table>
<thead>
<tr>
<th>Pedigree</th>
<th>Parental source</th>
<th>Zones in which the lines performed well</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pia-Al-#-#-#-2</td>
<td>India</td>
<td>*</td>
</tr>
<tr>
<td>P6-Al-1-#-#-#-1-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Pia-Al-#-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Sl-JLW-86-@bulk</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>S1 5011-l-1</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>S2 5011-l-7-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>S3 KT41-216-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>S3 MY-188-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>S4 4503-l-@bulk</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>S5 4925-2-@bulk</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Tin-Al-2-1-1-1-#-2</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Tin-Al-2-1-1-1-#-2</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>WRK(II)-1-2-1-1-1-5-1-1-1-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>WRK(II)-1-2-1-1-1-5-1-1-1-1</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>YRK(40)-88-1-1-1-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>YRK(40)-72-1-1-1-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>A Theo-1A-1-f-#-#-#</td>
<td>Colombia</td>
<td>*</td>
</tr>
<tr>
<td>A Theo-21(B)-#-2-f</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>A Theo-21(B)-f-#-3-f-#-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>A Theo-29C-f-#-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>A Theo-198C-1-f-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>A Theo-29C-f-#-#-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>A Theo-11260-f-f-#-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>B1 Theo-1A86-1-f-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>B1 Theo-178B-2-1-1-1-f-#-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Col 1-325B-1-1-f-#-#-#-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>(Col 1x89-11)(lot no. etc)(3a7mez)-f-f</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Desc 2-1-29-#-a-#-b-f-f</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Desc 1-1-88-1-f-f-f-#-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Desc 2-229-1-1-f-f-f-#-#-#-#-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-#-B2-5-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-1-l-2109-f-#-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-3-1-f-#-#-#-#-#-#-#-2</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-13-1-f-#-#-#-2-f-f</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-20A-f-f-#-#-#-1</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-25-f-#-1-f-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-25A-f-#-1-f-@bulk-#-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-25A-#-1-f-f-f-#-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-25A-f-#-1-f-f-#-3-#-#-#-#-2</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-26A-1-f-f-#-#-#-#-2</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-70B-2-f-f-#-#-#-#-#-2</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-81-f-f-#-#-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-81A-#-1-#-2-1-1-2-f</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-81B-#-1-f-f-#-#-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-182-1-f-f</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-182-1-2-f-f-f-#-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-182-1-2-f-f-f-#-#-3</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-185C-1-#-6-f-f</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-246-f-f-#</td>
<td>"</td>
<td>*</td>
</tr>
<tr>
<td>Eto-249B-#-#-#-b-#-#-#-#</td>
<td>"</td>
<td>*</td>
</tr>
</tbody>
</table>
APPENDIX V (Cont'd)

<table>
<thead>
<tr>
<th>Pedigree</th>
<th>Parental Source</th>
<th>Zones in which the lines performed well</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdeC-A122-##-#-#-#</td>
<td>Caribbean</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A151-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A151-1-1</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A187-##-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A257-#-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-295-#-3</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A397-##-##-2-#-3</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A397-1-##-##</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A397-1-2-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A406-#-2</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A405-2-1</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A406-2-2</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A406-2-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A408-2-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A408-##-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A408-2-#a</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A408-4-1</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A17-1-2-#-#-1-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Cuba 1-#-#-4-1-f-##-##-##</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba 2-#-2-#-2-f-##-##-##-##</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba 2-1-##-1-f-##-##-##</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba 2-24-##-##-##-##-##-##</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba 24-##-##-##-##-##-##-##-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba 43-##-1-##-##-##-##-##-##-##-##-##</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba 312-A20(b)-f-##-##</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba 312-A23-f-##-##</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba 312-306-f-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba 312-A219-f</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba 312-02</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba 342-2-2-f-##-##</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba 342-##-#-281-f-##-##</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba 342-##-A262-##-##</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba 342-2-2-f-##-##-##-##</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba 362-26-f</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru 330-A4-##-##</td>
<td>Peru</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru 330-#-#-327B-f-##</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru 330-#-#-329C-1-f-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru 330-A8-##-#-3-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru 330-A8-##-#-4-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru 330-A4-##-##-##-##</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru 330-A36-3-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baj VS5-#</td>
<td>Mexico</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bax-2-#-##</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bol Am-B4-1-##-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bol Am-B4-1-##-4-3</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bol Am-B4-1-##-4-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1452-25(S)-##-1-1-f-##-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MexJ-##-B1-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venz 1-1-2-3-f-##-##-##-#</td>
<td>Venezuela</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venz 1-B6-##-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venz 1-B6-##-2-1-1</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venz 1-B6-2-1-1</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedigree</td>
<td>Parental Source</td>
<td>Zones in which the lines performed well</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Eto-2103-##-##-##-1-#</td>
<td>Colombia</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Eto-B1-202-f-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Eto-B1-216-##-##(1)</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Eto-B1-245-f-##-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Eto-B1-282-f-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Eto-B1-2903-f-##-2</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Eto-B1-2953-f-##-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Eto-B1-2109-f</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Eto-B1-2109-f-##-2</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Eto-B1-2148-f-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Eto Bl-2173-##-##-##</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Eto Bl-Pl-##-##-#-®bulk-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Eto-Pl-9-1-#-5-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Eto-Pl-13-1-#-1-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Mayb-395-1-f-##-##-2</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Mayb-395-1-f-##-##-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>MatSLP-1-5-2-f-1</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>MatSLP-1-5-2-f-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Nar 330-#-23B-1-f-f-##</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Nar 330-#-23B-1-f-##-##-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Nar 330-#-23B-1-f-##-##-®bulk-#-#-1</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Nar 330-#-23B-1-f-##-##-®bulk-#-3-2</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Nar 330-#-23B-1-f-##-®bulk-#-#-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Nar 330-#-238-f-##-##-##-®bulk-#-#-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Nar 330-#-72B-2-f-##-##-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Nar 330-#-87C-3-f-##-##-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Nar 330-#-a-3114A-f-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Nar 330-#-a-3218B-#-a-#-##-##-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Precoz 115-4-f-f-##-##-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>(PTR-1-605-3)-1-2-1-f-f-##-##-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>(RVI(LlXVenz 1-1-2-3)-204-f-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>(303 Tex x Ll)-2-f-f-##-##-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>A26-4-f-1</td>
<td>Caribbean</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A1-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A1-2-#-#-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A1-2-#-#-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A1-2-#-4-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A1-##-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A19-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A19-#-1</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A20-1</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A20-1-2</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A20-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A26-#-#-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A26-#-#-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A29-#-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A33-4</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A33-4-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A33-4-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A35-2-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A35-2-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A35-2-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A35-2-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A35-2-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A58-1-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>AdeC-A58-1-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Pedigree</td>
<td>Parental Source</td>
<td>Zones in which the lines performed well</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A59-2-1</td>
<td>Caribbean-USA</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A59-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AdeC-A116-4-##-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Venz 1-30-1-1-f-#</td>
<td>Venezuela</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Venz 1-42-f-f-#-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venz 1-42-f-#-#-#-#-#-1</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venz 1-42-f-#-#-#-#-#-#-2-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venz 1-267-f-#-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venz 1-1162A-f-#-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venz 1-1175A-f-#-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venz 1-1219B-1-f</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venz 1-1387-f-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>(Venz 1xVenz400)#-13-1-#-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Venz 1x1-2-3 x Col 2-76)#-1-#-#-#-#-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Venz 25xVenz15)-4-1-x (yt.Early Mat)</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>etc-5-2-4-#-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kenya wh-2(B)-y-#</td>
<td>Kenya</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kenya yl</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>187-2</td>
<td>USA</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI13A</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI21</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI21E</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI27</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coker 811-C25</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coker 811-C30</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Coker 811 x Jull)-Bl-1-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Coker 811 x Jull)-Bl-#-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYD-2-1</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYD-2-2</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dix18-A1-1-3-f</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A1-1-#-#-#-#-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A1-2-2-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A2-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A2-2-1-1-1-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A2-2-1-1-4-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A2-1-#-1</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A22-1-#-2-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A31-1-1-4-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A35-#-#-#-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A35-2</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A36-#-#-#-#-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A36-2-1</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A49-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A59-#-#</td>
<td>"</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A65-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A66-#-2</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A207-1</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A243-1-1-1</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A259-#-#-3</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A261-#-#-#</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G715-A407-1</td>
<td>"</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX V (Cont'd)

<table>
<thead>
<tr>
<th>Pedigree</th>
<th>Parental source</th>
<th>Zones in which the lines performed well</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>G733-A28-#</td>
<td>USA</td>
<td></td>
</tr>
<tr>
<td>G733-A54-1</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>G733-A95-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G733-A96-##</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G733-A96-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G733-A96-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G733-A96-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G733-A96-##</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G733-A98-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G733-A98-#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G733-A263-#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G733-A263-##</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G733-A263-#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT112-A6-1-##</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT112-A9-3-#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT112-A9-4-##-##</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H72(A)-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Jar x Eto)-B2</td>
<td>USA-Colombia</td>
<td></td>
</tr>
<tr>
<td>(Jar x Eto)-B3</td>
<td>"-Colombia</td>
<td></td>
</tr>
<tr>
<td>(Jar x HMI)-B5-2</td>
<td>"-India</td>
<td></td>
</tr>
<tr>
<td>K150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oh43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OK15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 111-##-Bl-##-2-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 111-##-Bl-##-3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 111-##-Bl-##-##-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenn29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tx61M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tx203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wf9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ab-6A-1-2-##-##</td>
<td>Unknown</td>
<td></td>
</tr>
</tbody>
</table>

Note:

- x Selfing
- # Sibbing
- f #--#-##-##
APPENDIX VI

Performance of Experimental Double Cross Hybrids in different zones**

<table>
<thead>
<tr>
<th>Exptl. Hybrid No.</th>
<th>Zone 1 Yield</th>
<th>Zone 1 % of Local Yield</th>
<th>Zone 2 Yield</th>
<th>Zone 2 % of Local Yield</th>
<th>Zone 3 Yield</th>
<th>Zone 3 % of Local Yield</th>
<th>Zone 4 Yield</th>
<th>Zone 4 % of Local Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>238</td>
<td>6735</td>
<td>150*</td>
<td>4175</td>
<td>120</td>
<td>3620</td>
<td>110</td>
<td>5574</td>
<td>150*</td>
</tr>
<tr>
<td>239</td>
<td>6975</td>
<td>156*</td>
<td>3511</td>
<td>101</td>
<td>3781</td>
<td>115</td>
<td>5640</td>
<td>151*</td>
</tr>
<tr>
<td>240</td>
<td>7377</td>
<td>165*</td>
<td>4000</td>
<td>115</td>
<td>4405</td>
<td>134</td>
<td>5705</td>
<td>153*</td>
</tr>
<tr>
<td>247</td>
<td>6954</td>
<td>155*</td>
<td>4397</td>
<td>127</td>
<td>4016</td>
<td>123</td>
<td>6104</td>
<td>164*</td>
</tr>
<tr>
<td>254</td>
<td>7172</td>
<td>160*</td>
<td>3763</td>
<td>123</td>
<td>3837</td>
<td>117</td>
<td>5072</td>
<td>127</td>
</tr>
<tr>
<td>265</td>
<td>-</td>
<td>-</td>
<td>3472</td>
<td>100</td>
<td>4641</td>
<td>141*</td>
<td>4711</td>
<td>127</td>
</tr>
<tr>
<td>266</td>
<td>-</td>
<td>-</td>
<td>4850</td>
<td>140*</td>
<td>3533</td>
<td>108</td>
<td>5196</td>
<td>140</td>
</tr>
<tr>
<td>268</td>
<td>-</td>
<td>-</td>
<td>3459</td>
<td>100</td>
<td>4873</td>
<td>149*</td>
<td>4784</td>
<td>128</td>
</tr>
<tr>
<td>277</td>
<td>-</td>
<td>-</td>
<td>4932</td>
<td>142*</td>
<td>3665</td>
<td>112</td>
<td>5849</td>
<td>157*</td>
</tr>
<tr>
<td>2014</td>
<td>-</td>
<td>-</td>
<td>3526</td>
<td>101</td>
<td>4326</td>
<td>132</td>
<td>4344</td>
<td>117</td>
</tr>
<tr>
<td>2024</td>
<td>-</td>
<td>-</td>
<td>2934</td>
<td>86</td>
<td>4708</td>
<td>144*</td>
<td>4277</td>
<td>116</td>
</tr>
<tr>
<td>2044</td>
<td>-</td>
<td>-</td>
<td>3751</td>
<td>108</td>
<td>3764</td>
<td>115</td>
<td>4869</td>
<td>131</td>
</tr>
<tr>
<td>2064</td>
<td>-</td>
<td>-</td>
<td>3096</td>
<td>89</td>
<td>4237</td>
<td>129</td>
<td>3946</td>
<td>106</td>
</tr>
<tr>
<td>2084</td>
<td>-</td>
<td>-</td>
<td>3178</td>
<td>91</td>
<td>4089</td>
<td>125</td>
<td>3965</td>
<td>107</td>
</tr>
<tr>
<td>2264</td>
<td>-</td>
<td>-</td>
<td>4871</td>
<td>140*</td>
<td>2923</td>
<td>89</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2394</td>
<td>-</td>
<td>-</td>
<td>5209</td>
<td>150*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2394</td>
<td>-</td>
<td>-</td>
<td>5134</td>
<td>148*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2015</td>
<td>-</td>
<td>-</td>
<td>4365</td>
<td>126</td>
<td>5309</td>
<td>162*</td>
<td>5021</td>
<td>135</td>
</tr>
<tr>
<td>2025</td>
<td>-</td>
<td>-</td>
<td>4173</td>
<td>120</td>
<td>4577</td>
<td>140*</td>
<td>5173</td>
<td>139</td>
</tr>
<tr>
<td>2075</td>
<td>-</td>
<td>-</td>
<td>4661</td>
<td>134</td>
<td>5287</td>
<td>151*</td>
<td>5419</td>
<td>146</td>
</tr>
<tr>
<td>2085</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2115</td>
<td>-</td>
<td>-</td>
<td>4109</td>
<td>118</td>
<td>4707</td>
<td>144*</td>
<td>4852</td>
<td>131</td>
</tr>
<tr>
<td>2135</td>
<td>-</td>
<td>-</td>
<td>2135</td>
<td>128</td>
<td>5121</td>
<td>156*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2145</td>
<td>-</td>
<td>-</td>
<td>4877</td>
<td>140*</td>
<td>4451</td>
<td>136</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2155</td>
<td>-</td>
<td>-</td>
<td>4391</td>
<td>127</td>
<td>4606</td>
<td>141*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2165</td>
<td>-</td>
<td>-</td>
<td>4746</td>
<td>137</td>
<td>4894</td>
<td>149*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2175</td>
<td>-</td>
<td>-</td>
<td>4230</td>
<td>122</td>
<td>4889</td>
<td>149*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2185</td>
<td>-</td>
<td>-</td>
<td>4626</td>
<td>133</td>
<td>5155</td>
<td>157*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2195</td>
<td>-</td>
<td>-</td>
<td>4487</td>
<td>129</td>
<td>4956</td>
<td>151*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2205</td>
<td>-</td>
<td>-</td>
<td>3846</td>
<td>111</td>
<td>4828</td>
<td>148*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2215</td>
<td>-</td>
<td>-</td>
<td>4408</td>
<td>127</td>
<td>5100</td>
<td>156*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2225</td>
<td>-</td>
<td>-</td>
<td>4700</td>
<td>135</td>
<td>4940</td>
<td>151*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2265</td>
<td>-</td>
<td>-</td>
<td>4694</td>
<td>135</td>
<td>4771</td>
<td>146*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2275</td>
<td>-</td>
<td>-</td>
<td>4460</td>
<td>128</td>
<td>4660</td>
<td>142*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2305</td>
<td>-</td>
<td>-</td>
<td>4600</td>
<td>132</td>
<td>4217</td>
<td>129*</td>
<td>5052</td>
<td>136</td>
</tr>
<tr>
<td>2315</td>
<td>-</td>
<td>-</td>
<td>3934</td>
<td>113</td>
<td>4727</td>
<td>144*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2335</td>
<td>-</td>
<td>-</td>
<td>4230</td>
<td>122</td>
<td>4159</td>
<td>127</td>
<td>5427</td>
<td>146</td>
</tr>
<tr>
<td>2345</td>
<td>-</td>
<td>-</td>
<td>4544</td>
<td>131</td>
<td>4775</td>
<td>146*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2355</td>
<td>-</td>
<td>-</td>
<td>4521</td>
<td>130</td>
<td>3958</td>
<td>121</td>
<td>5461</td>
<td>147</td>
</tr>
<tr>
<td>2365</td>
<td>-</td>
<td>-</td>
<td>4386</td>
<td>126</td>
<td>4856</td>
<td>148*</td>
<td>5182</td>
<td>139</td>
</tr>
<tr>
<td>2385</td>
<td>-</td>
<td>-</td>
<td>4416</td>
<td>127</td>
<td>4476</td>
<td>137</td>
<td>4959</td>
<td>133</td>
</tr>
<tr>
<td>2395</td>
<td>-</td>
<td>-</td>
<td>4534</td>
<td>130</td>
<td>4400</td>
<td>134</td>
<td>5007</td>
<td>135</td>
</tr>
<tr>
<td>2425</td>
<td>-</td>
<td>-</td>
<td>4296</td>
<td>124</td>
<td>4627</td>
<td>141*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2435</td>
<td>-</td>
<td>-</td>
<td>4830</td>
<td>139*</td>
<td>4749</td>
<td>145*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2445</td>
<td>-</td>
<td>-</td>
<td>4055</td>
<td>117</td>
<td>4336</td>
<td>132</td>
<td>5799</td>
<td>156*</td>
</tr>
<tr>
<td>2455</td>
<td>-</td>
<td>-</td>
<td>4304</td>
<td>124</td>
<td>4802</td>
<td>147*</td>
<td>5894</td>
<td>158*</td>
</tr>
<tr>
<td>2465</td>
<td>-</td>
<td>-</td>
<td>5421</td>
<td>130</td>
<td>4668</td>
<td>143*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2475</td>
<td>-</td>
<td>-</td>
<td>4142</td>
<td>119</td>
<td>4724</td>
<td>144*</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

--- Contd. ---
APPENDIX VI (Cont'd)

<table>
<thead>
<tr>
<th>Hybrid No.</th>
<th>Yield Zone 1 %</th>
<th>Local %</th>
<th>Yield Zone 2 %</th>
<th>Local %</th>
<th>Yield Zone 3 %</th>
<th>Local %</th>
<th>Yield Zone 4 %</th>
<th>Local %</th>
</tr>
</thead>
<tbody>
<tr>
<td>445</td>
<td>6918 154</td>
<td></td>
<td>4526 150*</td>
<td></td>
<td>3978 121</td>
<td></td>
<td>5333 143</td>
<td></td>
</tr>
<tr>
<td>446</td>
<td>7443 166*</td>
<td></td>
<td>4734 136*</td>
<td></td>
<td>3709 113</td>
<td></td>
<td>5702 153*</td>
<td></td>
</tr>
<tr>
<td>448, 454</td>
<td>6780 151</td>
<td></td>
<td>4601 152*</td>
<td></td>
<td>3675 112</td>
<td></td>
<td>5553 149*</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>7246 162*</td>
<td></td>
<td>4070 117</td>
<td></td>
<td>3541 108</td>
<td></td>
<td>5615 151</td>
<td></td>
</tr>
<tr>
<td>451</td>
<td>6911 154</td>
<td></td>
<td>5232 122</td>
<td></td>
<td>3505 107</td>
<td></td>
<td>5638 152*</td>
<td></td>
</tr>
<tr>
<td>453</td>
<td>7538 168*</td>
<td></td>
<td>3392 98</td>
<td></td>
<td>4201 128</td>
<td></td>
<td>5436 146</td>
<td></td>
</tr>
<tr>
<td>458</td>
<td>7350 164*</td>
<td></td>
<td>3806 110</td>
<td></td>
<td>4038 123</td>
<td></td>
<td>5402 145</td>
<td></td>
</tr>
<tr>
<td>460</td>
<td>7338 164*</td>
<td></td>
<td>3924 113</td>
<td></td>
<td>4442 136</td>
<td></td>
<td>5552 149</td>
<td></td>
</tr>
<tr>
<td>461</td>
<td>6958 155</td>
<td></td>
<td>4531 130*</td>
<td></td>
<td>3715 113</td>
<td></td>
<td>5659 152*</td>
<td></td>
</tr>
<tr>
<td>462</td>
<td>7277 162*</td>
<td></td>
<td>4427 127</td>
<td></td>
<td>3441 105</td>
<td></td>
<td>5690 153*</td>
<td></td>
</tr>
<tr>
<td>464</td>
<td>7460 167*</td>
<td></td>
<td>4557 131*</td>
<td></td>
<td>3777 115</td>
<td></td>
<td>5546 150*</td>
<td></td>
</tr>
<tr>
<td>467</td>
<td>7130 159</td>
<td></td>
<td>4448 128</td>
<td></td>
<td>4287 131</td>
<td></td>
<td>5984 161*</td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>7441 166*</td>
<td></td>
<td>3873 111</td>
<td></td>
<td>4087 125</td>
<td></td>
<td>5471 147</td>
<td></td>
</tr>
<tr>
<td>479</td>
<td>7011 156</td>
<td></td>
<td>4607 134*</td>
<td></td>
<td>3530 108</td>
<td></td>
<td>4843 130</td>
<td></td>
</tr>
<tr>
<td>487</td>
<td>- -</td>
<td></td>
<td>4250 151*</td>
<td></td>
<td>3846 117</td>
<td></td>
<td>6036 162*</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>- -</td>
<td></td>
<td>4639 134*</td>
<td></td>
<td>4020 123</td>
<td></td>
<td>5264 141</td>
<td></td>
</tr>
<tr>
<td>491</td>
<td>- -</td>
<td></td>
<td>3690 107</td>
<td></td>
<td>4064 124</td>
<td></td>
<td>5845 152*</td>
<td></td>
</tr>
<tr>
<td>492</td>
<td>- -</td>
<td></td>
<td>5015 144*</td>
<td></td>
<td>4029 123</td>
<td></td>
<td>5525 149*</td>
<td></td>
</tr>
<tr>
<td>4034</td>
<td>- -</td>
<td></td>
<td>4802 139*</td>
<td></td>
<td>4265 130</td>
<td></td>
<td>5545 149*</td>
<td></td>
</tr>
<tr>
<td>4044</td>
<td>- -</td>
<td></td>
<td>4727 136*</td>
<td></td>
<td>4456 136</td>
<td></td>
<td>5521 148</td>
<td></td>
</tr>
<tr>
<td>4054</td>
<td>- -</td>
<td></td>
<td>4879 140*</td>
<td></td>
<td>3917 120</td>
<td></td>
<td>5828 157*</td>
<td></td>
</tr>
<tr>
<td>4015</td>
<td>- -</td>
<td></td>
<td>- -</td>
<td></td>
<td>- -</td>
<td></td>
<td>6237 168*</td>
<td></td>
</tr>
<tr>
<td>4025</td>
<td>- -</td>
<td></td>
<td>- -</td>
<td></td>
<td>- -</td>
<td></td>
<td>6039 162*</td>
<td></td>
</tr>
<tr>
<td>4045</td>
<td>- -</td>
<td></td>
<td>5241 151*</td>
<td></td>
<td>3859 118</td>
<td></td>
<td>5616 151*</td>
<td></td>
</tr>
<tr>
<td>4055</td>
<td>- -</td>
<td></td>
<td>- -</td>
<td></td>
<td>- -</td>
<td></td>
<td>5586 150*</td>
<td></td>
</tr>
</tbody>
</table>

Checks

<table>
<thead>
<tr>
<th>Hybrid</th>
<th>Yield Local %</th>
<th>Local %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>4478 100</td>
<td></td>
<td>3471 100</td>
<td></td>
<td>3273 100</td>
<td></td>
<td>3718 100</td>
<td></td>
</tr>
<tr>
<td>Ganga 3</td>
<td>6328 141</td>
<td></td>
<td>4082 118</td>
<td></td>
<td>3741 114</td>
<td></td>
<td>4836 130</td>
<td></td>
</tr>
<tr>
<td>Ganga 101</td>
<td>5783 129</td>
<td></td>
<td>3596 104</td>
<td></td>
<td>4103 125</td>
<td></td>
<td>4607 124</td>
<td></td>
</tr>
<tr>
<td>Deccan</td>
<td>6851 153</td>
<td></td>
<td>3631 105</td>
<td></td>
<td>4275 131</td>
<td></td>
<td>5510 148</td>
<td></td>
</tr>
<tr>
<td>Ranjit</td>
<td>6842 153</td>
<td></td>
<td>3537 102</td>
<td></td>
<td>4250 130</td>
<td></td>
<td>5316 143</td>
<td></td>
</tr>
<tr>
<td>Him.123</td>
<td>7353 164</td>
<td></td>
<td>3494 101</td>
<td></td>
<td>3730 114</td>
<td></td>
<td>4758 128</td>
<td></td>
</tr>
<tr>
<td>Ganga Safed 2</td>
<td>5821 130</td>
<td></td>
<td>3897 112</td>
<td></td>
<td>4625 141</td>
<td></td>
<td>4525 122</td>
<td></td>
</tr>
<tr>
<td>Hi Starch</td>
<td>6582 147</td>
<td></td>
<td>4251 122</td>
<td></td>
<td>3514 107</td>
<td></td>
<td>4627 124</td>
<td></td>
</tr>
</tbody>
</table>

* The outstanding hybrids in the zone
APPENDIX VII

Code numbers and pedigrees of Experimental Double Cross Hybrids.

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Pedigree</th>
</tr>
</thead>
<tbody>
<tr>
<td>238</td>
<td>(CM 201 x CM 202) x (CM 103 x Eto-25(A)-1-f-@bulk-##)</td>
</tr>
<tr>
<td>239</td>
<td>(CM 104 x CM 105) x (Eto-25(A)-1-f-@bulk-## x CM 202)</td>
</tr>
<tr>
<td>240</td>
<td>(CM 104 x CM 103) x (CM 105 x CM 202)</td>
</tr>
<tr>
<td>247</td>
<td>(AdeC-A257-## x CM 111) x (CM 109 x CM 202)</td>
</tr>
<tr>
<td>254</td>
<td>(CM 111 x CM 109) x (Eto-81(B)-1-f-@bulk-## x CM 202)</td>
</tr>
<tr>
<td>265</td>
<td>(Cuba 24-###-1-###-1-f x 715-A407-1)x(77(B)xKenya yl.)</td>
</tr>
<tr>
<td>266</td>
<td>(Cuba 24-###-1-###-1-f x 715-A407-1)x(Eto-81-2-1-2-f x Kenya yl)</td>
</tr>
<tr>
<td>268</td>
<td>(Cuba 24-###-1-###-1-f x Kenya yl)x(Eto-81-2-1-2-f x G 715-A407-1)</td>
</tr>
<tr>
<td>277</td>
<td>(Cuba 24-###-1-###-1-f x Kenya yl)x(Eto-81-2-1-2-f x G 715-A407-1)</td>
</tr>
</tbody>
</table>

APPENDIX VII (Cont'd)

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Pedigree</th>
</tr>
</thead>
<tbody>
<tr>
<td>445</td>
<td>(CM 205 x CM 202) x (Peru 330-A4-##-1 x Peru 330-A4-##-327B-f-##-##)</td>
</tr>
<tr>
<td>446</td>
<td>(CM 202 x G715-Al-##-##-##) x (Peru 330A4-##-1 x Venz.1xVenz.400-##)</td>
</tr>
<tr>
<td>448,454</td>
<td>(CM 202 x G715-Al-##-##-##) x (Venz.1xVenz.400-##) - 13-1-##-##-##-##</td>
</tr>
<tr>
<td>450</td>
<td>(CM 202 x CM 112) x (Peru 330-A4-##-##-1-# x Venz.400-###) - 13-1-f</td>
</tr>
<tr>
<td>451</td>
<td>(CM 202 x G715-Al-##-##-##) x (CM 104 x Venz.1xVenz.400-##) - 13-1-f</td>
</tr>
<tr>
<td>453</td>
<td>CM 202 x G715-Al-##-##-## x (PTR-1-605-3-1-2-#-1-f-##-##-## x Venz.1 x Venz 400-###) - 13-1-f</td>
</tr>
<tr>
<td>458</td>
<td>(PTR-1-605-3-1-2-#-1-f-##-##-## x CM 103) x (CM 104 x CM 202)</td>
</tr>
<tr>
<td>460</td>
<td>(CM 105 x CM 103) x (CM 104 x CM 202)</td>
</tr>
<tr>
<td>461</td>
<td>(CM 201 x CM 202) x (Eto-25(A)-##-1-f-##-@bulk-##-##-## x CM 104)</td>
</tr>
<tr>
<td>462</td>
<td>(CM 201 x CM 202) x (Eto-25(A)-##-1-f-##-@bulk-##-##-## x CM 106)</td>
</tr>
<tr>
<td>464</td>
<td>(CM 105 x CM 202) x (Eto-25(A)-##-1-f-##-@bulk-##-##-## x CM 104)</td>
</tr>
<tr>
<td>467</td>
<td>(CM 105 x Eto-25(A)-##-1-f-##-@bulk-##-##-## x (CM 201 x CM 202))</td>
</tr>
<tr>
<td>470</td>
<td>(CM 105 x CM 106) x (CM 201 x CM 202)</td>
</tr>
<tr>
<td>479</td>
<td>(CM 103 x Eto-25(A)-##-1-f-##-@bulk-##-##-## x (CM 202 x CM 205))</td>
</tr>
<tr>
<td>487</td>
<td>(CM 202 x G715-Al-##-##-##) x (CM 104 x CM 112)</td>
</tr>
<tr>
<td>490</td>
<td>(CM 104 x Eto-182-1-2-f-##-##-##-@bulk) x (G715-A31-1-##-3-2-## x CM 202)</td>
</tr>
<tr>
<td>491</td>
<td>(CM 104 x Nar330-##-23B-1-##-##-##-@bulk-##-2-2-## x CM 202)</td>
</tr>
<tr>
<td>492</td>
<td>(CM 104 x (JarvisxEto)-##-B3-##-##) x (G715-A31-1-##-3-2-## x CM 202)</td>
</tr>
<tr>
<td>4034</td>
<td>(Nar330-##-23B-1-##-##-##-@bulk-##-2-2-## x (JarvisxEto)-##-B3-##-##) x (G715-A31-1-##-3-2-## x CM 202)</td>
</tr>
<tr>
<td>4044</td>
<td>(CM 104 x (JarvisxEto)-##-B3-##-##) x (G715-A59-2-##-@bulk x CM 202)</td>
</tr>
<tr>
<td>4054</td>
<td>(Eto-182-1-2-f-##-##-##-@bulk x Nar330-##-23B-1-##-##-##-@bulk-##-2-2-## x (G715-A31-1-##-3-2-##-@bulk x CM 202))</td>
</tr>
<tr>
<td>4015</td>
<td>(Eto-3-1-f-##-##-@bulk x (Jarvis x Eto)-##-B3-##-##) x (G715-59-2-2-##-@bulk-##-2-## x CM 202)</td>
</tr>
<tr>
<td>4025</td>
<td>(Eto-182-1-2-f-##-##-##-@bulk x (JarvisxEto)-##-B3-##-##) x (G715-59-2-2-##-@bulk-##-2-## x CM 202)</td>
</tr>
<tr>
<td>4045</td>
<td>(Eto-297-f-##-##-##-@bulk x (JarvisxEto)-##-B3-##-##) x (G715-59-2-2-##-@bulk-##-2-## x CM 202)</td>
</tr>
<tr>
<td>4055</td>
<td>(Eto-182-1-2-f-##-##-##-@bulk x (Eto-297-f-##-##-##-@bulk) x (G715-59-2-2-##-@bulk x CM 202)</td>
</tr>
</tbody>
</table>

Note:
© Selfing
Sibbing
f ###-##-##
APPENDIX VIII

Code Numbers of the Parental Inbred Lines and Varieties of the Released Hybrids*

<table>
<thead>
<tr>
<th>Code Number</th>
<th>Variety or Cross Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM 100</td>
<td>P4'C-1(B)-3-#-#-#-#</td>
</tr>
<tr>
<td>CM 101</td>
<td>P4A(y)-1-3y-#-#</td>
</tr>
<tr>
<td>CM 102</td>
<td>P5PB5-3-f</td>
</tr>
<tr>
<td>CM 103</td>
<td>Col 1 x (38-11(lot no. etc)3a7mez)-f-f-#</td>
</tr>
<tr>
<td>CM 104</td>
<td>A Theo-21(B)-f-#-3-f-#-#</td>
</tr>
<tr>
<td>CM 105</td>
<td>Peru 330-#-329C-1-f-#</td>
</tr>
<tr>
<td>CM 106</td>
<td>Nar 330-#-23B-1-f-f</td>
</tr>
<tr>
<td>CM 107</td>
<td>GCL 31</td>
</tr>
<tr>
<td>CM 108</td>
<td>GCL 33</td>
</tr>
<tr>
<td>CM 109</td>
<td>Dix18-AL-1-3-f-#</td>
</tr>
<tr>
<td>CM 110</td>
<td>PH3-A6-"-1-#-#</td>
</tr>
<tr>
<td>CM 111</td>
<td>Cuba 342-2-2-f-#-#</td>
</tr>
<tr>
<td>CM 112</td>
<td>Desc 2-229-1-1-f-f-#-#</td>
</tr>
<tr>
<td>CM 113</td>
<td>Eto-190C-4-2-f-f-#</td>
</tr>
<tr>
<td>CM 200</td>
<td>G715-A36-#-#-#-#</td>
</tr>
<tr>
<td>CM 201</td>
<td>G715-AL-2-2-#</td>
</tr>
<tr>
<td>CM 202</td>
<td>CI21E(Derivative of US released inbred line)</td>
</tr>
<tr>
<td>CM 203</td>
<td>NC7(Derivative of US released inbred line)</td>
</tr>
<tr>
<td>CM 204</td>
<td>NC13(Derivative of US released inbred line)</td>
</tr>
<tr>
<td>CM 205</td>
<td>Kys(Derivative of US released inbred line)</td>
</tr>
<tr>
<td>CM 300</td>
<td>Eto PL-13-1-#-#-1-#</td>
</tr>
<tr>
<td>CM 400</td>
<td>Tenn29</td>
</tr>
<tr>
<td>CM 500</td>
<td>Antigua Gr.1</td>
</tr>
<tr>
<td>CM 600</td>
<td>Rudrapur Local</td>
</tr>
<tr>
<td>CM 601</td>
<td>Jellicorse</td>
</tr>
</tbody>
</table>

Note: CM Indicates Coordinates Maize, meaning that the particular line was evolved under the All-India Co-ordinated Maize Improvement Scheme.

* According to the Progress Report of the Coordinated Maize Breeding Scheme 1962, 64, 68. ICAR, India.
APPENDIX IX

Pedigrees of the Released Hybrids

Released February 1961, Hyderabad Meeting

1. Ganga Hybrid Makka 1
 - (CM 101 x CM 102) x (CM 100 x CM 200)
2. Ganga Hybrid Makka 101
 - (CM 103 x CM 104) x (CM 201 x CM 105)
3. Ranjit Hybrid Makka
 - (CM 103 x CM 104) x (CM 202 x CM 106)
4. Deccan Hybrid Makka
 - (CM 104 x CM 105) x (CM 202 x CM 201)

Released February 1962, New Delhi meeting

5. VL 54
 - (CM 107 x CM 108) x (CM 203 x CM 204)

Released April, 1962, New Delhi meeting

6. Ganga Safed Hybrid Makka 2-
 - (CM 400 x CM 300) x CM 600
7. Hi-Starch Hybrid Makka
 - (CM 400 x CM 300) x CM 601

Released March 1964, New Delhi meeting

8. Ganga Hybrid Makka 3
 - (CM 109 x CM 110) x (CM 202 x CM 111)
9. Himalayan Hybrid Makka 123-
 - (CM 202 x CM 205) x (CM 113 x CM 112)

Released May, 1967, Ludhiana meeting

10. Ganga Hybrid Makka 5
 - (CM 202 x CM 111) x CM 500

* According to the Progress Report of the Coordinated Maize Breeding Scheme 1962, 64, 68, ICAR, India.
APPENDIX X

Direction of crossing of released hybrids *

<table>
<thead>
<tr>
<th>No. of C.M.</th>
<th>Ganga 101</th>
<th>Deccan</th>
<th>Ranjit</th>
<th>Him.123</th>
<th>Ganga 3</th>
<th>Ganga 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VL 54

<table>
<thead>
<tr>
<th>No. of C.M.</th>
<th>Ganga 101</th>
<th>Deccan</th>
<th>Ranjit</th>
<th>Him.123</th>
<th>Ganga 3</th>
<th>Ganga 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ganga 1 | Ganga Safed 2 | Hi Starch

<table>
<thead>
<tr>
<th>No. of C.M.</th>
<th>Ganga 101</th>
<th>Deccan</th>
<th>Ranjit</th>
<th>Him.123</th>
<th>Ganga 3</th>
<th>Ganga 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>601</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: C.M. Coordinated Maize

* Compiled from the Progress Report of the Coordinated Maize Breeding Scheme, 1962, 64, 68. ICAR, India.
APPENDIX XI

State-wise list of Indian Maize Complexes

<table>
<thead>
<tr>
<th>State</th>
<th>Complex</th>
<th>Characters</th>
<th>Year composed</th>
<th>No. of collection composed</th>
<th>Days to silk</th>
<th>Present generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andhra Pradesh Complex 112</td>
<td>L.Y.F</td>
<td>1964</td>
<td>3</td>
<td>59</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>L.R.F</td>
<td>1964</td>
<td>3</td>
<td>55</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
<td>1964</td>
<td>21</td>
<td>53</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>Assam Complex 37</td>
<td>E.W.F</td>
<td>1962</td>
<td>4</td>
<td>45</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>L.W.F</td>
<td>1962</td>
<td>11</td>
<td>57</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>E.Y.F</td>
<td>1962</td>
<td>16</td>
<td>54</td>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>L.Y.F</td>
<td>1962</td>
<td>7</td>
<td>49</td>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>L.Y.F</td>
<td>1964</td>
<td>8</td>
<td>52</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>Bihar Complex 20</td>
<td>E.W.F</td>
<td>1962</td>
<td>13</td>
<td>57</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>L.W.F</td>
<td>1962</td>
<td>33</td>
<td>61</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>E.Y.F</td>
<td>1962</td>
<td>16</td>
<td>54</td>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>L.Y.F</td>
<td>1962</td>
<td>41</td>
<td>63</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>E.W.F</td>
<td>1963</td>
<td>14</td>
<td>47</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>L.W.F</td>
<td>1963</td>
<td>11</td>
<td>55</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>E.Y.F</td>
<td>1963</td>
<td>14</td>
<td>47</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>E.O.F</td>
<td>1963</td>
<td>7</td>
<td>-</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>L.O.F</td>
<td>1963</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>E.F.F</td>
<td>1963</td>
<td>2</td>
<td>55</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>Bombay Complex 125</td>
<td>E.W.F</td>
<td>1964</td>
<td>2</td>
<td>50</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>L.W.F</td>
<td>1964</td>
<td>2</td>
<td>52</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>L.O.F</td>
<td>1964</td>
<td>2</td>
<td>59</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>L.Y.F</td>
<td>1964</td>
<td>10</td>
<td>52</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>Gujarat Complex 115</td>
<td>L.W.F</td>
<td>1964</td>
<td>8</td>
<td>55</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>L.W.D</td>
<td>1964</td>
<td>3</td>
<td>61</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>E.O.F</td>
<td>1964</td>
<td>2</td>
<td>50</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>L.O.F</td>
<td>1964</td>
<td>3</td>
<td>52</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>L.Y.F</td>
<td>1964</td>
<td>5</td>
<td>55</td>
<td>C1</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>E.O.F</td>
<td>1965</td>
<td>2</td>
<td>41</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Himachal Pradesh "</td>
<td>E.W.F</td>
<td>1961</td>
<td>3</td>
<td>57</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>L.W.F</td>
<td>1961</td>
<td>5</td>
<td>60</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>L.W.D</td>
<td>1961</td>
<td>3</td>
<td>53</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>E.O.F</td>
<td>1961</td>
<td>16</td>
<td>47</td>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>L.O.F</td>
<td>1961</td>
<td>6</td>
<td>4</td>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>L.O.D</td>
<td>1961</td>
<td>3</td>
<td>53</td>
<td>C3</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>L.W.F</td>
<td>1963</td>
<td>2</td>
<td>53</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>E.Y.F</td>
<td>1963</td>
<td>2</td>
<td>55</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>E.O.F</td>
<td>1963</td>
<td>14</td>
<td>47</td>
<td>C2</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>L.O.F</td>
<td>1963</td>
<td>2</td>
<td>51</td>
<td>C2</td>
<td></td>
</tr>
</tbody>
</table>

---Contd.

<table>
<thead>
<tr>
<th>State</th>
<th>Characters</th>
<th>Year collected</th>
<th>No. of collection compos-</th>
<th>Days to silk</th>
<th>Present generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>J&K Complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E.W.F</td>
<td>1961</td>
<td>31</td>
<td>55</td>
<td>C2</td>
</tr>
<tr>
<td>2</td>
<td>L.W.F</td>
<td>1961</td>
<td>6</td>
<td>57</td>
<td>C2</td>
</tr>
<tr>
<td>3</td>
<td>E.W.D</td>
<td>1961</td>
<td>20</td>
<td>51</td>
<td>C2</td>
</tr>
<tr>
<td>4</td>
<td>L.W.D</td>
<td>1961</td>
<td>7</td>
<td>53</td>
<td>C2</td>
</tr>
<tr>
<td>5</td>
<td>E.O.F</td>
<td>1961</td>
<td>30</td>
<td>57</td>
<td>C2</td>
</tr>
<tr>
<td>6</td>
<td>L.O.F</td>
<td>1961</td>
<td>16</td>
<td>55</td>
<td>C3</td>
</tr>
<tr>
<td>7</td>
<td>E.W.F</td>
<td>1963</td>
<td>4</td>
<td>49</td>
<td>C2</td>
</tr>
<tr>
<td>71</td>
<td>L.W.F</td>
<td>1963</td>
<td>5</td>
<td>57</td>
<td>C2</td>
</tr>
<tr>
<td>72</td>
<td>E.Y.F</td>
<td>1963</td>
<td>4</td>
<td>47</td>
<td>C2</td>
</tr>
<tr>
<td>73</td>
<td>L.Y.F</td>
<td>1963</td>
<td>2</td>
<td>57</td>
<td>C2</td>
</tr>
<tr>
<td>74</td>
<td>E.O.F</td>
<td>1963</td>
<td>6</td>
<td>55</td>
<td>C2</td>
</tr>
<tr>
<td>77</td>
<td>L.R.F</td>
<td>1963</td>
<td>3</td>
<td>55</td>
<td>C2</td>
</tr>
<tr>
<td>Kerala complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>L.W.F</td>
<td>1964</td>
<td>3</td>
<td>59</td>
<td>C1</td>
</tr>
<tr>
<td>108</td>
<td>L.R.F</td>
<td>1964</td>
<td>2</td>
<td>81</td>
<td>C1</td>
</tr>
<tr>
<td>Madhya Pradesh complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>E.W.F</td>
<td>1962</td>
<td>17</td>
<td>48</td>
<td>C2</td>
</tr>
<tr>
<td>25</td>
<td>L.W.F</td>
<td>1962</td>
<td>35</td>
<td>63</td>
<td>C2</td>
</tr>
<tr>
<td>26</td>
<td>E.Y.F</td>
<td>1962</td>
<td>16</td>
<td>59</td>
<td>C2</td>
</tr>
<tr>
<td>27</td>
<td>L.Y.F</td>
<td>1962</td>
<td>22</td>
<td>61</td>
<td>C2</td>
</tr>
<tr>
<td>52</td>
<td>L.W.F</td>
<td>1963</td>
<td>7</td>
<td>49</td>
<td>C2</td>
</tr>
<tr>
<td>53</td>
<td>E.Y.F</td>
<td>1963</td>
<td>2</td>
<td>-</td>
<td>C2</td>
</tr>
<tr>
<td>54</td>
<td>L.Y.F</td>
<td>1963</td>
<td>6</td>
<td>55</td>
<td>C2</td>
</tr>
<tr>
<td>93</td>
<td>L.W.F</td>
<td>1964</td>
<td>13</td>
<td>55</td>
<td>C1</td>
</tr>
<tr>
<td>95</td>
<td>E.Y.F</td>
<td>1964</td>
<td>2</td>
<td>46</td>
<td>C1</td>
</tr>
<tr>
<td>96</td>
<td>L.Y.F</td>
<td>1964</td>
<td>12</td>
<td>57</td>
<td>C1</td>
</tr>
<tr>
<td>130</td>
<td>E.W.F</td>
<td>1965</td>
<td>3</td>
<td>41</td>
<td>P</td>
</tr>
<tr>
<td>131</td>
<td>L.W.F</td>
<td>1965</td>
<td>12</td>
<td>46-60</td>
<td>P</td>
</tr>
<tr>
<td>132</td>
<td>E.Y.F</td>
<td>1965</td>
<td>4</td>
<td>40-45</td>
<td>P</td>
</tr>
<tr>
<td>133</td>
<td>L.Y.F</td>
<td>1965</td>
<td>6</td>
<td>47-56</td>
<td>P</td>
</tr>
<tr>
<td>134</td>
<td>L.O.F</td>
<td>1965</td>
<td>3</td>
<td>49-51</td>
<td>P</td>
</tr>
<tr>
<td>Madras Complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>L.Y.F</td>
<td>1964</td>
<td>4</td>
<td>53</td>
<td>C1</td>
</tr>
<tr>
<td>Manipur "</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>L.W.F</td>
<td>1962</td>
<td>5</td>
<td>62</td>
<td>C2</td>
</tr>
<tr>
<td>44</td>
<td>L.Y.F</td>
<td>1962</td>
<td>13</td>
<td>62</td>
<td>C2</td>
</tr>
<tr>
<td>102</td>
<td>L.Y.F</td>
<td>1964</td>
<td>2</td>
<td>62</td>
<td>C1</td>
</tr>
<tr>
<td>103</td>
<td>L.R.F</td>
<td>1964</td>
<td>3</td>
<td>51</td>
<td>C1</td>
</tr>
<tr>
<td>Mysore "</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>L.W.F</td>
<td>1964</td>
<td>3</td>
<td>51</td>
<td>C1</td>
</tr>
<tr>
<td>111</td>
<td>L.Y.F</td>
<td>1964</td>
<td>4</td>
<td>50</td>
<td>C1</td>
</tr>
<tr>
<td>Orissa "</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>L.W.F</td>
<td>1964</td>
<td>4</td>
<td>55</td>
<td>C1</td>
</tr>
<tr>
<td>122</td>
<td>L.O.F</td>
<td>1964</td>
<td>6</td>
<td>55</td>
<td>C1</td>
</tr>
<tr>
<td>124</td>
<td>L.Y.F</td>
<td>1964</td>
<td>21</td>
<td>52</td>
<td>C1</td>
</tr>
<tr>
<td>State</td>
<td>No. of collection</td>
<td>Days to silk</td>
<td>Present generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rajasthan complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135 L.W.F 1965</td>
<td>3</td>
<td>56-60</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136 L.O.F 1965</td>
<td>2</td>
<td>55-58</td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tripura Complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 L.W.F 1962</td>
<td>2</td>
<td>61</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uttar Pradesh complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 E.O.F 1962</td>
<td>29</td>
<td>53</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 E.Y.F 1962</td>
<td>19</td>
<td>57</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 E.W.F 1962</td>
<td>4</td>
<td>52</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 L.W.F 1962</td>
<td>12</td>
<td>55</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 L.O.F 1962</td>
<td>9</td>
<td>49</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 E.Y.F 1962</td>
<td>7</td>
<td>52</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37 L.Y.F 1962</td>
<td>3</td>
<td>53</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38 E.0.F 1963</td>
<td>17</td>
<td>49</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39 L.O.F 1963</td>
<td>7</td>
<td>51</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W.Bengal complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 E.W.F 1962</td>
<td>3</td>
<td>49</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34 L.W.F 1962</td>
<td>17</td>
<td>55</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 E.Y.F 1962</td>
<td>5</td>
<td>53</td>
<td>C3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 L.Y.F 1962</td>
<td>7</td>
<td>53</td>
<td>C3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37 E.0.F 1963</td>
<td>2</td>
<td>55</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38 L.O.F 1963</td>
<td>7</td>
<td>-</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39 L.Y.F 1963</td>
<td>5</td>
<td>53</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 E.O.F 1963</td>
<td>3</td>
<td>53</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 L.O.F 1963</td>
<td>2</td>
<td>53</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punjab complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 E.W.F 1962</td>
<td>20</td>
<td>56</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 L.W.F 1962</td>
<td>12</td>
<td>63</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 E.Y.F 1962</td>
<td>24</td>
<td>55</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 L.Y.F 1962</td>
<td>31</td>
<td>61</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 E.O.F 1962</td>
<td>2</td>
<td>49</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 L.O.F 1962</td>
<td>17</td>
<td>63</td>
<td>C2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86 M.W.F 1964</td>
<td>4</td>
<td>51</td>
<td>Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87 L.W.F 1964</td>
<td>3</td>
<td>51</td>
<td>Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88 E.Y.F 1964</td>
<td>4</td>
<td>47</td>
<td>Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89 L.Y.F 1964</td>
<td>11</td>
<td>55</td>
<td>Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 E.O.F 1964</td>
<td>23</td>
<td>44</td>
<td>Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91 L.O.F 1964</td>
<td>42</td>
<td>55</td>
<td>Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144 L.Y.F 1965</td>
<td>2</td>
<td>56</td>
<td>P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E-Early M-Medium L-Late W-White O-Orange Y-Yellow R-Red F-Flint D-Dent
APPENDIX XII

Master Sheet of Yield Trial

<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Pedigree</th>
<th>Origin of seed</th>
<th>Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>5393, 5467, 5525, 5578</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>5394, 5459, 5522, 5552</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>5395, 5485, 5523, 5562</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>5396, 5481, 5520, 5554</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>5397, 5471, 5521, 5584</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>5398, 5442, 5524, 5570</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>5399, 5455, 5519, 5546</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>5400, 5463, 5507, 5579</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>5401, 5460, 5508, 5547</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>5402, 5490, 5509, 5561</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>5403, 5482, 5506, 5558</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>5404, 5472, 5510, 5588</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>5405, 5448, 5505, 5568</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>5406, 5449, 5511, 5543</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>5407, 5468, 5501, 5580</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>5408, 5457, 5499, 5553</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>5409, 5489, 5504, 5565</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>5410, 5483, 5502, 5559</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>5411, 5476, 5498, 5583</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>5412, 5446, 5503, 5574</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>5413, 5452, 5500, 5540</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>5414, 5469, 5530, 5581</td>
</tr>
</tbody>
</table>

* According to information given by Dr. N.L. Dhawan. They used in the scheme.
<table>
<thead>
<tr>
<th>Entry No.</th>
<th>Pedigree</th>
<th>Origin of seed</th>
<th>Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I II III IV</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>5415 5462 5532 5548</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>5416 5484 5529 5566</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>5417 5478 5531 5557</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>5418 5473 5528 5587</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>5419 5443 5536 5571</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>5420 5454 5527 5541</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>5421 5465 5516 5575</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>5422 5461 5512 5550</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>5423 5486 5513 5567</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>5424 5480 5518 5556</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>5425 5474 5515 5582</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>5426 5444 5517 5569</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>5427 5453 5514 5545</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>5428 5466 5533 5545</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>5429 5458 5537 5549</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>5430 5487 5534 5563</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>5431 5477 5539 5560</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>5432 5470 5538 5586</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>5433 5445 5536 5573</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>5434 5450 5535 5544</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>5435 5464 5491 5576</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>5436 5456 5495 5551</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>5437 5488 5494 5564</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>5438 5479 5498 5555</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>5439 5475 5497 5585</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>5440 5447 5493 5572</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>5441 5451 5492 5542</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX XIII

Field data recording sheet

<table>
<thead>
<tr>
<th></th>
<th>1 Days to 75% silk</th>
<th>2 Vigour aspect</th>
<th>3 Plant aspect notes</th>
<th>4 Insect notes</th>
<th>5 Disease notes</th>
<th>6 Lodging root/stem</th>
<th>7 Husk cover aspect</th>
<th>8 Ear aspect</th>
<th>9 Fresh Weight</th>
<th>10 Moisture %</th>
<th>11 Effective Stand</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 2 3 4</td>
<td>5</td>
<td>6 7 8</td>
<td>10</td>
<td>11</td>
<td>12 13</td>
<td>Plot No.</td>
<td>8137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 2 3 4</td>
<td>5</td>
<td>6 7 8</td>
<td>9 10</td>
<td>11 12</td>
<td>13</td>
<td>7 Entry No.</td>
<td>8138</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 2 3 4</td>
<td>5</td>
<td>6 7 8</td>
<td>9 10</td>
<td>11 12</td>
<td>13</td>
<td>8139</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 2 3 4</td>
<td>5</td>
<td>6 7 8</td>
<td>9 10</td>
<td>11 12</td>
<td>13</td>
<td>8140</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* According to the Form given by Dr. N.L. Dhawan.
APPENDIX XNI

Field Lay Out Yield Trials*

[Diagram of field layout with dimensions and notes]

* Used on the Yield Trials of the Coordinated Maize Breeding Scheme, in IARI, New Delhi.
APPENDIX XV

List of addresses of NSC units*

1. National Seeds Corporation Ltd., 1-7-143 Golconds, Cross Road, Musheerabad, Hyderabad 20, ANDHRA PRADESH.

2. National Seeds Corporation Ltd., Hempur (Gausala) Via Kashipur, District Nainital, UTTAR PRADESH.

3. National Seeds Corporation Ltd., Foundation Seed Unit, Nandikotkur, District Kurnool, ANDHRA PRADESH.

4. National Seeds Corporation Ltd., 67, Malviya Nagar, Bhopal, MADHYA PRADESH.

5. National Seeds Corporation Ltd., Narrivari Street, Gandhi Nagar, Vijayavada, ANDHRA PRADESH.

6. National Seeds Corporation Ltd., 217, Dr. Nanjappa Road (Sarojini Street), Coimbatore 18.

7. National Seeds Corporation Ltd., Mama Road, Dharmapeth, Nagpur.

9. National Seeds Corporation Ltd., Malmaddi, Manjunathpur, Near Rayar Math, Dharwar, MYSORE.

11. National Seeds Corporation Ltd., Durlab Niwas, Prithvi Raaji Marg, 'C' Scheme, Jaipur, RAJASTHAN.

12. National Seed Corporation Ltd., 12-C/1/35, Rampur Garden, Civil Lines, Bareilly, UTTAR PRADESH.

13. National Seeds Corporation Ltd., Nageshwar Colony, Boring Road, Patna 1, BIHAR.

16. National Seeds Corporation Ltd., Seed Processing Plant, Borawaki Godown, Near Rly Station, Shrirampur District Ahmednagar, MAHARASHTRA.