# CHEMICAL CONTROL OF GREEN LEAFHOPPERS TO PREVENT VIRUS DISEASES, ESPECIALLY TUNGRO DISEASE, ON SUSCEPTIBLE/INTERMEDIATE RICE CULTIVARS IN THE TROPICS

## Osamu Mochida\*, Salvador L. Valencia\*\* and Ruperto P. Basilio\*\*\*

### ABSTRACT

Sanitation in and around seedbed and field, covering wet seedbed with nylon screen at a height of 60 cm, and simultaneous cropping were recommended. Seedbox treatment (with carbofuran, carbosulfan, or cartap G), soil incorporation of carbofuran G, frequent and alternative foliar sprays (with MIPC, cypermethrin, deltamethrin, and monocrotophos), and dusting of MIPC with a pipe duster showed promising results. Broadcasting of isazophos G also showed good results. Different methods should be integrated for this purpose.

### Introduction

It is well known that it is very difficult to prevent hopper-borne virus diseases on susceptible rice cultivars by applying insecticides when vector populations are at very high levels (Mochida *et al.*, 1978). In farmers' fields accordingly, the best way to prevent virus diseases is to select and plant rice cultivars resistant to both vectors and virus diseases.

Regarding rice tungro virus disease (RTVD), seven genes for resistance to green leafhoppers (GLH), vector of RTVD, have been identified (Angeles *et al.*, 1983) and two genes may convey resistance to RTVD (Khush, 1977). Among the IR rice cultivar series, IR28, 29, 30, 34, 50, 52, 54, 56, 58, 60, 62, 64, and 65 are resistant to *Nephotettix virescens* (GLH-V) (Entomology Department, IRRI, 1985 unpublished; Khush, personal communication). IR64 and 65 may be resistant to RTVD (Khush, personal communication). Thus, IR64 and 65 only may be resistant to both GLH-v and RTVD.

On the other hand, susceptible rice cultivars to RTVD are frequently being grown in experimental farms for germplasm collections, supply of breeding materials, plant physiological studies, etc. In such cases, application of insecticides with combination of different methods is the key for preventing RTVD infection, regardless of the cost.

### Information on vectors and RTVD spread

### 1 Transmission of RTVD

RTVD is transmitted by GLH-v, *Nephotettix malayanus, N. nigropictus, N. parvus,* and the zigzag leafhopper (ZLH), *Recilia dorsalis* (Ling and Tiongco, 1979). However, GLH-v is considered to be the main vector in the field.

### 2 Inoculation feeding period

RTVD is not persistent and is transmitted within 5-minute feeding of GLH-v adults even at low infection levels (Ling, 1974).

<sup>\*</sup>Entomologist, \*\*Senior Research Assistant, and \*\*\*Research Assistant, respectively, IRRI, P.O. Box 933, Manila, Philippines.

### 3 Migration of GLH

Adults of *Nephotettix* spp. were collected on ships farther than 200 nautical miles from any island or land on the East China Sea and their migration distance with movement of air masses or fronts is considered to be less than that of the brown planthopper (BPH), *Nilaparvata lugens*, and the whitebacked planthopper (WBPH), *Sogatella furcifera* (Mochida, 1974, unpublished).

#### 4 Spread of virus diseases in paddy fields

Waika disease, transmitted by *N. cincticeps*, spread within a radius of maximum 11 m by adults of *N. cincticeps*/13 days and within 1 m by nymphs/18 days in Japan (Inoue, 1977). RTVD spread within 0.75 m by 5th-instar nymphs of GLH-v/23 hr in India (Anjaneyulu, 1975) and within a radius of 9 m by adults/month in India (Kordaiah *et al.*, 1976).

### Suppression of RTVD on susceptible rice cultivars

# 1 Possibility to protect susceptible cultivars from RTVD by applying insecticides

Figure 1 shows the fluctuations in hopper-borne virus diseases on susceptible rice cultivars at IRRI farm in 1964—1981. Based on the data shown in Fig. 1, the effectiveness of insecticide application in preventing virus disease occurrence on susceptible cultivars is illustrated in Fig. 2. It is clear that insecticide application was less effective in the wet season than in the dry season, and that it is possible to protect susceptible cultivars from RTVD or hopper-borne virus diseases by applying insecticides. Based on the results obtained in the most effectively controlled plots with insecticide application listed in Fig. 2, the effectiveness of insecticide applications for preventing virus diseases on susceptible rice cultivars is shown in Fig. 3.



Fig. 1 Occurrence of rice plant virus diseases on susceptible cultivars in IRRI. Entomological trial plots from 1964 to 1981 (From IRRI Ann. Repts., 1965—1982).



No. hills showing virus disease symptoms in untreated plots (%)

Lowest values of no. hills showing virus disease symptoms in treated plots (%)

Fig. 2 Effects of insecticide application on protecting virus disease occurrence on rice susceptible cultivars at IRRI, 1965–82 (IRRI Ann. Repts. For 1965–82).



Fig. 3 No. rice hills showing tungro symptoms on susceptible rice cultivars under natural conditions for IRRI entomological trials from 1964 to 1981.

### 2 Relationships between rice cultivars and insecticide application

Figure 4 shows that insecticide application was effective in preventing RTVD on IR36 (intermediate) but not effective on IR22 (susceptible) and IR28 (resistant).

Figure 5 shows the relationships between the frequency of diazinon G application and yield. IR22 and IR28 showed no correlations between them. IR36 only showed a high correlation.



Fig. 4 RTVD infection as affected by levels of GLH-v resistance and frequency of diazinon G application (1.5 kg ai/ha/once) at IRRI, 1983 wet season (Heinrichs *et al.*, unpublished).



Fig. 5 Yields of 3 rice cultivars having different levels of resistance to GLH-v/RTVD as affected by frequency of diazinon G application at IRRI, 1983 wet season (Heinrichs *et al.*, unpublished).

## 3 Insecticide treatments

Table 1 shows insecticides with high GLH mortalities by foliar spray at IRRI. It is known that such insecticides as fenitrothion, vamidathion, malathion, phosalone, pyridaphenthion, etc. frequently are not effective in preventing RTVD occurrence in spite of their high mortality effect on GLH.

Table 2 shows the insecticides which were highly effective in preventing RTVD when field trials were conducted in the Philippines, Indonesia, Malaysia, and India.

Dusting of MIPC with a pipe duster (Table 3), foliar spray (Table 4), and seedbox treatment with foliar spray (Table 5) gave promising results. Table 6 summarizes these results.

|                                 |                                                                                  | -                           |                                           |                                |  |
|---------------------------------|----------------------------------------------------------------------------------|-----------------------------|-------------------------------------------|--------------------------------|--|
| Authors                         | "Insecticide*                                                                    | Rate<br>(kg ai/ha/<br>once) | % R<br>showi<br>syn                       | ice hills<br>ng RTVD<br>nptoms |  |
|                                 |                                                                                  |                             | Treated                                   | Untreated                      |  |
| Pathak et al. (1967)            | Phorate EC                                                                       | 3                           | 1.0                                       | 93.4                           |  |
| Halteren and Sama (1974)        | carbofuran G<br>cartap G<br>mephosfolan G<br>BPMC G                              | 2<br>2<br>2<br>2            | $0.0 \\ 0.0 \\ 0.5 \\ 1.7$                | 37.0<br>37.0<br>37.0<br>37.0   |  |
| Lim et al. (1974)               | BPMC                                                                             |                             | 30.0                                      | ca70.0                         |  |
| Pathak <i>et al.</i> (1974)     | carbofuran G<br>aprocarb                                                         | 2<br>2                      | $\begin{array}{c} 1.1 \\ 6.1 \end{array}$ |                                |  |
| Rao and Anjaneyulu (1979)       | carbofuran G                                                                     | 1                           | 20.0                                      | 100.0                          |  |
| Shukla and Anjaneyulu (1980)    | <u>carbofuran G</u>                                                              | 2                           | 15.0                                      | 100.0                          |  |
| Chang <i>et al.</i> (1982)      | carbofuran G                                                                     | 2                           | 10.1                                      | 99.1                           |  |
| Satapathy (1982)**              | cypermethrin EC<br>carbosulfan EC<br>phosphamidon EC                             |                             |                                           |                                |  |
| Satapathy and Anjaneyulu (1982) | cypermethrin EC                                                                  |                             | 3.0                                       | 100.0                          |  |
| Satapathy and Anjaneyulu (1982) | carbofuran G<br>MIPC G<br>acephate WP<br>bendiocarb WP<br>carbaryl WP<br>MIPC WP | 2<br>2                      |                                           |                                |  |
| Anjaneyulu et al. (1983)        | carbofuran G                                                                     | 2                           | 18.0                                      | 100.0                          |  |
| John and Satyanarayana (1983)   | carbofuran G                                                                     | 0.75-1.0                    | 29.7                                      | 90.0                           |  |
| Satepathy and Anjaneyulu (1983) | bendiocarb WP<br>carbosulfan EC                                                  |                             | 30.3<br>33.7                              | $100.0 \\ 100.0$               |  |
| Rahman et al. (1985)            | carbofuran G                                                                     | 0.68                        | 8.7                                       | 50.8                           |  |

| Table 1 | Insecticides | recommended | to | prevent | RTVD |
|---------|--------------|-------------|----|---------|------|
|---------|--------------|-------------|----|---------|------|

\* Underlined insecticide showed excellent results. \*\*Same results were reported by Satapathy and Anjaneyulu (1984).

| Insecticide                        |           | Rate<br>(kg ai/ha) |
|------------------------------------|-----------|--------------------|
| A-41286                            | 48EC      | 0.75               |
| Acephate                           | 75WP      | 0.75               |
| Bendiocarb                         | 20WP      | 0.75               |
| Benfuracarb                        | 40EC      | 0.75               |
| Carbaryl                           | 85WP      | 0.75               |
| Carbofuran                         | 12F       | 0.75               |
| Cypermethrin                       | 5EC, 10EC | 0.025-0.075        |
| " + diazinon                       |           | 0.75               |
| " + profenofos                     |           | 0.75               |
| Dioxacarb                          | 50WP      | 0.75               |
| Dixathion                          | 81EC      | 0.75               |
| DPX 5188                           | 20EC      | 0.75               |
| Deltamethrin                       | 2.5EC     | 0.0125             |
| FMC 67868                          | 10EC      | 0.05               |
| FMC 4428                           | 5F        | 0.05               |
| Formetanate                        | 50WP      | 0.75               |
| Furathiocarb                       | 40EC      | 0.75               |
| Isazophos                          | 50EC/WP   | 0.75               |
| M 10604200E                        | 200E      | 0.75               |
| Methiocarb                         | 50WP      | 0.75               |
| Methidathion                       | 40EC      | 0.75               |
| Methyl parathion                   | 25/50EC   | 0.75               |
| Monocrotophos                      |           | 0.75               |
| Mexacarbate                        | 24EC      | 0.75               |
| NS 826575EC                        | 75EC      | 0.75               |
| OK-135                             | 30EC      | 0.75               |
| OK-38530EC                         | 30EC      | 0.75               |
| Permethrin                         | 10EC      | 0.050              |
| Perthane                           | 10EC      | 0.75               |
| Primiphos methyl + carbophenothion |           | 0.75               |
| PP 321                             | 2.5EC     | 0.025              |
| PP 563                             | 10EC      | 0.025              |
| PH 0994                            | 48EC      | 0.75               |
| RH 0308                            | 48EC      | 0.75               |
| Thiodicarb                         | 34F       | 0.75               |
| UC 27867                           | 50WP      | 0.75               |
| UC 54229                           | 100SP     | 0.75               |
| UC/MO 19779                        | 40F       | 0.75               |
| WL 85871                           | 5WP       | 0.05               |

Table 2Insecticides showing more than 80% GLH<br/>mortality for 24 hr (IRRI. 1980–1984)

|                |                                                 | No. G                    | LH adults/10 sweeps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|-------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | F                                               | Before dust<br>(March 20 | ingAfter dusting6)(April 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N13/1          | N14                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| V              | /1                                              | 13.7                     | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V              | /2                                              | 13.7                     | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V              | 73                                              | 17.4                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V              | 4                                               | 18.5                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V              | '5                                              | 29.4                     | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V              | 6                                               | 5.3                      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V              | 7                                               | 4.2                      | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V              | 78                                              | 4.3                      | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V              | '9                                              | 20.2                     | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V              | /10                                             | 23.7                     | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| А              | lvg                                             | 15.0                     | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| UB2            |                                                 |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| V              | /1                                              | 23.3                     | 11.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| V              | /2                                              | 24.6                     | 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| V              | 73                                              | 29.6                     | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V              | 74                                              | 29.6                     | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V              | 75                                              | 41.9                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V              | 76                                              | 6.2                      | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V              | 7                                               | 6.3                      | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V              | /8                                              | 9.3                      | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V              | /9                                              | 33.1                     | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V              | /10                                             | 32.7                     | 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| А              | lvg                                             | 23.5                     | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| a Imp          | plementation was                                | as follows               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1)             | Site                                            | :                        | MYT fields (N13/N14 and UB2) $000000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2)<br>3)       | Machino                                         |                          | Knapsack type power applicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3)             | Wachine                                         | •                        | (Maruyama NP 150) with a 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                |                                                 |                          | plastic pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4)             | Rate of insectici                               | de/ha :                  | 22 kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5)             | Weather                                         | :                        | Fine without wind during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |                                                 |                          | dusting but with a rising air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                                                 |                          | current especially after sun-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                                                 |                          | rise. In the evening it rained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (G)            | Callabaurtaur                                   |                          | slightly<br>Mashida M. Asimahi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6)             | Collaborators                                   | :                        | U. Mochida, M. Ariyoshi,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7)             | Actual applicati                                | 079 .                    | $(8 + 14 \text{ kg/b}_2)/(4 + 8 \text{ minutes})/(4 +$ |
| • )            | netuai applicati                                |                          | $2 + 1^*$ persons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |                                                 |                          | *One person assisted the other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                |                                                 |                          | to put the dust into the power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                |                                                 |                          | applicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8)             | Conclusion                                      | :                        | - Very effective for GLH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                |                                                 |                          | population suppression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                |                                                 |                          | - Dusting should be done befor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                |                                                 |                          | sunrise to avoid rising                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6)<br>7)<br>8) | Collaborators<br>Actual applicati<br>Conclusion | :<br>on :<br>:           | slightly<br>O. Mochida, M. Ariyoshi,<br>F. V. Ramos and their staff<br>(8 + 14 kg/ha/(4 + 8 minutes)<br>2 + 1* persons<br>*One person assisted the oth<br>to put the dust into the pow<br>applicator<br>- Very effective for GLH<br>population suppression<br>- Dusting should be done bef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Table 3GLH populations at the Maximum Yield<br/>Trial plots. IRRI before and after dusting<br/>MTPC 2% dust. 1984 dry season<sup>a</sup>

| Incocticido <sup>a</sup> |       | Rate        |                    | Hills showing | RTV symptoms |           |
|--------------------------|-------|-------------|--------------------|---------------|--------------|-----------|
| msecticide               |       | (ng ai/iia) | I                  | R22           | Т            | `N1       |
|                          |       |             | 40 DT <sup>c</sup> | 60 DT         | 40DT         | 60DT      |
| MTI 500                  | 20EC  | 0.100       | 3.99 bc            | 7.75 с        | 11.15 b      | 21.73 bcd |
| Cypermethrin             | 5EC   | 0.050       | 3.34 с             | 7.80 с        | 4.93 cd      | 9.55 d    |
| Alphamethrin             | 10EC  | 0.0125      | 3.63 с             | 11.54 bc      | 8.67 bc      | 21.29 bcd |
| Deltamethrin             | 2.5EC | 0.0125      | 5.41 abc           | 14.38 abc     | 8.98 bc      | 29.65 bc  |
| Control                  |       |             | 9.48 ab            | 30.34 a       | 22.19 a      | 81.86 a   |

| Table 4 | Field evaluation of 4 synthetic pyrethroids to prevent RTV on IR22 and    |
|---------|---------------------------------------------------------------------------|
|         | TN1 by foliar spray after transplanting. IRRI, Transpl.: 26 Oct. 1984. No |
|         | harvest                                                                   |

Applied at 1, 8, 15, 22, 29, 36, 43, and 50 DT in October 1984 to January 1985.
In a column, means followed by a common letter are not significantly different at 5% level by DMRT.
c Days after transplanting.

| lable 5 Fie<br>foli | ar sp | aluatic<br>ray. IR | on of 8 gran<br>2RI, Transpl.:                   | ular insect<br>19 July 198                     | icides t<br>4; Harve | co prevei<br>est: 20 Oc | <b>nt KTV 01</b><br>t. 1984               | n 1K22                        | by seed           | oox trea         | atment f        | ollowed  | by                       |
|---------------------|-------|--------------------|--------------------------------------------------|------------------------------------------------|----------------------|-------------------------|-------------------------------------------|-------------------------------|-------------------|------------------|-----------------|----------|--------------------------|
| Insecticide         |       | Rate 1<br>tre      | for seedbox<br>atment <sup>a</sup>               | Additional<br>foliar spray<br>and<br>frequency | RWM                  | rating                  | GLH ac<br>mortalit<br>48 HA(<br>indicated | dult<br>y (%)<br>C at<br>i DT |                   | No. GLH<br>10 sw | adults/<br>eeps |          | RTV<br>infected<br>hills |
|                     |       | kg ai/ha           | n g For-<br>mulation/<br>seedbos<br>(30×60×3 cm) |                                                | 25 DT                | 35 DT                   | 5 DT                                      | 10 DT                         | 1 WT <sup>c</sup> | 2 WT             | 3 WT            | 4 WT     | 60 DT                    |
| Disulfoton          | 5G    | 278                | 100                                              | + FS, 9                                        | 3.30 с               | 4.43 d                  | 97.5 a                                    | 100.0 a                       | 0.25 a            | 6.25 ab          | 3.75 ab         | 0.50 c   | 1.25 b                   |
| Carbosulfan         | 5G    | 278                | 200                                              | + FS, 9                                        | 3.75 с               | 4.93 cd                 | 80.0 abc                                  | 81.3 ab                       | 0.50 a            | 5.25 ab          | 4.25 ab         | 0.0 c    | 0.47 b                   |
| Carbofuran          | 3G    | 167                | 100                                              | + FS, 9                                        | 3.43 c               | 5.03 cd                 | 95.0 ab                                   | 96.3 a                        | 0.50 a            | 12.25 a          | 3.50 ab         | 1.00 c   | 0.47 b                   |
| Cartap              | 4G    | 222                | 100                                              | + FS, 9                                        | 3.68 с               | 5.80 bc                 | 100.0 a                                   | 72.5 b                        | 0.25 a            | 3.50 ab          | 1.75 b          | 0.50 с   | 0.47 b                   |
| Disulfoton          | 5G    | 278                | 100                                              | I                                              | 6.08 b               | 6.03 abc                | 100.0 a                                   | 97.5 a                        | 0.25 a            | 4.00 ab          | 3.75 ab         | 5.50 b   | 2.34 b                   |
| Carbosulfan         | 5G    | 278                | 100                                              | I                                              | 7.30 ab              | 6.15 abc                | 95.0 a                                    | 66.3 b                        | 0.25 a            | 8.25 ab          | 2.50 ab         | 7.25 b   | 4.38 b                   |
| Carbofuran          | 3G    | 167                | 100                                              | -                                              | 7.01 ab              | 6.38 ab                 | 75.0 bc                                   | 73.8 b                        | 0.50 a            | 7.50 ab          | 3.00 ab         | 9.00 b   | 1.72 b                   |
| Cartap              | 4G    | 222                | 100                                              | -                                              | 6.83 ab              | 6.48 ab                 | 60.0 c                                    | 32.5 с                        | 0.25 a            | 2.25 b           | 2.75 ab         | 11.50 ab | 2.50 b                   |
| Control             |       |                    |                                                  |                                                | 7.65 a               | 7.23 a                  | 15.0 cd                                   | 20.0 с                        | 0.75 a            | 7.25 ab          | 6.50 a          | 36.50 a  | 29.22 а                  |
|                     |       |                    |                                                  |                                                |                      |                         |                                           |                               |                   |                  |                 |          |                          |

ра

Granules were applied on the seedlings grown in seedboxes a day before transplanting. Foliar sprays (FS) of deltamethrin (0.012 kg ai/ha), monocrotophos (0.75 kg ai/ha), and MIPC (0.75 kg ai/ha) were alternately and weekly applied starting 2 WT up to 66 DT (10, 17, 24, 31, 38, 45, 57, 59, and 66 DT). Weeks after transplanting.

J

| Treatment                            | Treated/best<br>chemical                                    | Rate<br>(kg ai/ha/once)      | Frequency<br>of | No. RTV<br>hills (%) | -infected<br>60 DT | Evaluation**  |
|--------------------------------------|-------------------------------------------------------------|------------------------------|-----------------|----------------------|--------------------|---------------|
|                                      |                                                             |                              | application     | Untreated            | Treated            |               |
| Dusting                              | MIPC 2D                                                     | 4.4                          | -               |                      | 1-6                | ++++          |
| Foliar spray                         | cypermethrin                                                | 0.050                        | ×               | 81.9                 | 9.6                | ++ repellent? |
| Broadcast                            | isazophos 3G                                                | 1.0                          | 5               | 49.0                 | 12.0               | +             |
| Soil incorporation +<br>foliar spray | carbofuran 3G +<br>(deltamethrin +<br>humrofezin)           | 2.0 + (0.025 + 0.125)        | 1+4             | 81.7                 | 35.9               | +             |
| Seedling root-soaking<br>+ sprav     | S534*                                                       | 0.236 + 200 ppm              | 1 + 2           | 78.3                 | 44.4               |               |
| Southow treatment +                  | corbofinon 3C +                                             | 87.0 ± 0.01957               | 1 + (0)         | 99 Q                 | 0 12               | ++            |
| foliar spray                         | deltamethrin/<br>monocrotophos/<br>MIPC                     | 0.75/0.75                    | (2) - 1         | 7                    | 0                  |               |
| 2                                    | carbosulfan 5G +<br>deltamethrin/<br>monocrotophos/<br>MIPC | 277.0 + 0.0125/<br>0.75/0.75 | 1 + (9)         | 22.9                 | 0.5                | +             |
| ×                                    | cartap 4G +<br>deltamethrin/<br>MIPC                        | 222.0 + 0.0125/<br>0.75/0.75 | 1 + (9)         | 22.9                 | 0.5                | ++ repellent? |
| и                                    | cartap 4G                                                   | 222.0                        | -               | 97.7                 | 26.7               | ++            |
| "                                    | cartap 4G +                                                 | 222.0 + 0.0125/              | 1 + (2)         | 71.4                 | 5.3                | ++            |
|                                      | deltamethrin/<br>monocrotophos                              | 0.75                         |                 |                      |                    |               |

### 4 Combinations of insecticide application and cultural control methods

Cultural control methods suggested by Chakrabarti and Padmanabhan (1976), Anjaneyulu and Shukla (1980), Shukla and Anjaneyulu (1982), and Mukhopadhyay (1984) are as follows: dry bed, selection of planting time, lower level of nitrogen (30 kg N/ha), closer spacing ( $10 \times$ cm), and mixture of susceptible cultivars with resistant ones.

At IRRI we suggested covering wet seedbed by nylon screen, sanitation in and around seedbed and rice fields from 2 weeks before land preparation, and cropping susceptible cultivars among/between resistant ones. Integration of different methods is necessary for preventing effectively the occurrence of RTVD susceptible cultivars.

### 5 Tentatively recommended methods at IRRI

- 1) Seedbed preparation and seedling protection
  - Remove weeds, grasses, and voluntary rice plants/ratoons within 20 m around the seedbed by applying glyphosate (Roundup) at 1.0—1.5 kg ai/ha 2 weeks before seeding.
  - Apply MIPC (= isoprocarb) 50WP at 0.75 kg ai/ha once in and around seedbed at seeding.
  - Cover wet seedbed with nylon screen at a height of 60 cm just after seeding or preparing insect-free (dry) seedbed in screenhouse.
  - If covering is impossible, broadcast carbofuran (Furandan) 3G at 1.0 kg ai/ha or 15 g of Furadan 3G/M<sup>2</sup> or isazophos (Miral) 3G after seeding, plus 2 sprays of cypermethrin (0.05 kg ai/ha) and deltamethrin (0.0125 kg ai/ha), first after seedlings emerged above water surface around 5 days after seeding, and second, 10 days after the first spray.
- 2) Maximum protection in the field
  - Remove weeds, grasses, and voluntary rice plants/ratoons within 20 m around the field by applying glyphosate 2 weeks before land preparation.
  - Apply MIPC 50WP at 0.75 kg ai/ha to rice plant/weeds in and around the field 1 or 2 days before transplanting.
  - Soil incorporation of carbofuran (Furadan) 3G at 1.5 kg ai/ha during the final harrowing or broadcast isazophos 3G 3 days after transplanting (DT).
  - Spray deltamethrin in/around the field 5 DT.
  - Spray cypermethrin 2 weeks after transplanting (WT).
  - Spray monocrotophos 3 WT.
  - Spray buprofezin (Applaud) 25WP at 0.125 kg ai/ha on the basal parts of rice plants once or twice from 5 to 8 WT, based on monitoring results on BPH and WBPH, when the number of BPH and/or WBPH nymphs exceeds 40/hill on susceptible cultivars like TN1.
  - Spray cypermethrin/acephate/monocrotophos or deltamethrin alternately and weekly from 5 to 9 WT, based on monitoring results when more than 2 GLH adults/10 sweeps and more than 2 eggmasses and/or 2 adults of stem borers/m<sup>2</sup>.
  - Spray diazinon EC at 0.75 kg ai/ha/once for stem borer 9-11 WT.

The cost for pesticides (mainly insecticides) and screen for covering wet seedbeds was US\$420.9 (Table 7) and US\$129.5 (Table 8)/ha.Tungro was completely prevented in a 4 ha rice field with suceptible cultivars/lines at Bangyas, Laguna, Philippines in the 1985 wet season.

| Common name   | Brand name   | Formu- | Rate       | Li/kg formu- | Freq./ | To      | tal      |
|---------------|--------------|--------|------------|--------------|--------|---------|----------|
|               |              | lation | (kg ai/ha) | lation/4 ha  | season | li/kg   | US\$*    |
| Acephate      | Orthene      | 75WP   | 0.75       | 4 kg         | 1 + ?  | 4 +     | 54.05    |
| Buprofezin    | Applaud      | 25WP   | 0.1-0.125  | 1.6-2.0 kg   | 1 - 2  | 3.2-4   | 101.20   |
| Carbofuran    | Furadan      | 3G     | 1.0**-1.5  | 16.5 = 12    | 1      | 12 bags | 311.40   |
| Cypermethrin  | Cymbush      | 5EC    | 0.5        | 4 li         | 2 + ?  | 8 +     | 246.49   |
| Deltamethrin  | Decis        | 2.5EC  | 0.25       | 4 li         | 2 + ?  | 8 +     | 314.38   |
| Diazinon      | Bacudin      | 20EC   | 0.75       | 15 li        | 1 + ?  | 15 +    | 138.65   |
| Glyphosate    | Roundup      | 35.6EC | 1-1.5      | 11 li***     | 1      | 11      | 347.24   |
| Monocrotophos | Azodrin 202R | 30EC   | 0.75       | 10 li        | 1 + ?  | 10 +    | 111.89   |
| MIPC          | Mipcin/Hytox | 50WP   | 0.75       | 6 kg***      | 1      | 6       | 58.38    |
|               |              |        |            |              |        | Total   | 1,683.68 |

Table 7 Cost (US\$/4 ha) of pesticides for preventing tungro on susceptible rice<br/>cultivars/lines, Victoria, Laguna, Philippines, 1985 DS/WS.

\* US\$1.00 = Philip. 18.50, September 1985.

\*\* 1 kg ai/ha for seedbed treatment.

\*\*\* Indicated amount only for field application, excluding levee, seedbed and surrounding area.

| Table 8 Cost for<br>seedbed<br>field, Vic<br>DS/WS. | nylon screen cove<br>s) for transplantin<br>ctoria, Laguna, Ph | aring 20 m <sup>-</sup> (38<br>ng 4 ha rice<br>hilippines, 1985 |
|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|
|                                                     | Р                                                              | US\$                                                            |
| Screen                                              | 9,458.00                                                       | 512.70                                                          |
| Bamboo                                              | 100.00                                                         | 5.40                                                            |
| Total                                               | 9,585.00                                                       | 518.10                                                          |

2 100

- -

US\$1.00 = Philip. P18.50

### Discussion

Many trials on the suppression of RTVD have been carried out in South and Southeast Asia. But most of them have dealt with resistant cultivars to GLH and/or RTVD itself.

At IRRI farm, susceptible/intermediate cultivars have frequently suffered from virus diseases, especially RTVD. We have been conducting many trials in the laboratory and field at IRRI to evaluate chemicals including conventional insecticides, synthetic pyrethroids, and growth regulators for preventing the occurrence of RTVD on susceptible cultivars and to establish integrated methods of control. Susceptible cultivars may be expected to show less than 10% RTVD-infected hills in protected plots and more than 90% in unprotected ones.

Unfortunately, no method superior to the covering with nylon screen was found in wet seedbed. Integrated method(s) with combinations of seedbox treatments (with carbofuran, carbosulfan and cartap) or soil incorporation (of carbofuran G), frequent and alternate foliar applications (with MIPC, cypermethrin, deltamethrin, monocrotophos, etc.), and dusting of MIPC indicated promising results. Sanitation in and around seedbed and field, and simultaneous cropping are also necessary. Though no evident field data showing relationships between GLH populations and RTVD infection on susceptible cultivars are supplied, we recommend to apply

insecticide(s) when GLH adult populations exceed 2/10 sweeps on susceptible cultivars, irrespective of cost for insecticide treatment.

Further studies are needed for improving the current methods tentatively recommended.

### Acknowledgement

We express our sincere thanks to Dr. E. A. Heinrichs for his permission to use his unpublished data shown in Figs. 4 and 5.

### References

- 1) Angeles, E. R., Bacalangco, E. H. and Khush, G. S. (1983): Inheritance of resistance to planthoppers and leafhoppers in rice. IRRI Saturday Seminar, 19 March 1983. 21 pp.
- 2) Anjaneyulu, A. (1975): *Nephotettix virescens* (Distant) nymphs and their role in the spread of rice tungro virus. Current Science, 44, 357-358.
- Anjaneyulu, A. and Shukla, V. D. (1980): Prevention and control of rice tungro virus. Aspects of Plant Sciences, 4/5, 173–183.
- Anjaneyulu, A., Shukla, V. D. and Mohana Rao, G. (1983): Insecticidal control of rice tungro virus disease. p. 1-11. *In*: Pest management in rice. Edited by: Chelliah, S. and Balasubramaniam, M., Coimbatore, India. 379 pp.
- 5) Chakrabarti, P. M., Supaad, M.A., Abdul Latif, A. Z., Ng, K. J. and Zakaria, A. (1982): The effects of some insecticides on the green leafhopper, *Nephotettix virescens* (Homoptera: Cicadellidae), and the transmission of tungro. Bengkel Padi, MARDI, 5-6 January. 11 pp.
- 6) Halteren, P. Van and Shagir Sama (1974): The tungro virus disease of 1972-1973 in South Sulawesi. LPM Bull., 3. 2 pp.
- 7) Heinrichs, E.A., Rapusas, H. R., Aquino, G. B. and Palis, F. (Unpublished): Integration of host plant resistance and insecticides in the control of *Nephotettix virescens* (Distant) (Homoptera: Cicadellidae), a vector of rice tungro virus.
- 8) Inoue, H. (1977): Occurrence of the green leafhopper, *Nephotettix cincticeps* Uhler, in relation to spreading of the rice Waika disease in field. Proc. Assoc. Pl. Prot. Kyushu, 23, 88-91.
- John, V. T. and Satyanarayana, K. (1983): Chemical control of rice virus disease. p. 12-15. *In*: Pest management in rice. Edited by: Chelliah, S. and Balasubramaniam, M., Coimbatore, India. 379 pp.
- 10) Khush, G. S. (1977): Disease and insect resistance in rice. *In*: Advances in Agronomy, 29, 265-341.
- 11) Kordaiah, A., Rao, A. V. and Srinivasan, T. E. (1976): Factors favoring spread of rice "tungro" disease under field conditions. Pl. Dis. Reptr., 60, 803-806.
- Lim, G. S., Ting, W. P. and Heong, K. L. (1974): Epidemiological studies of tungro virus in Malaysia. Lapuran MARDI Rept., 21, 1-12.
- Ling, K. C. (1974): The capacity of *Nephotettix virescens* to infect rice seedlings with tungro. Philip. Pythopath., 10, 42-49.
- 14) Ling, K. D. and Tiongco, E. R. (1979): Rice virus diseases in the Philippines, IRRI. 57 pp.
- 15) Mochida, O., Tatang, Suryana, Hendarsih and Ayuk Wahyu (1978): Identification, biology, occurrence, and appearance of the brown planthopper. p. 1-39. *In*: The brown planthopper (*Nilaparvata lugens* Stal). Indon. Inst. Sci. Jakarta. 133 pp. 1
- 16) Mukhopadhyay, Md. Mohasin and Ghosh, P. K. (1976): Behaviour of rice virus vectors under different cultivational conditions. Proc. Nat. Acad. India, 46(B) I/II:72-76.
- 17) Mukhopadhyay, S. (1984): Ecology of rice tungro virus and its vectors. *In*: Virus ecology. Edited by: Misra, A. and Plasa, H., New Delhi, India. pp. 139-164.
- 18) Pathak, M. D., Vea, E. and John V. T. (1967): Control of insect vectors to prevent virus infection of rice plants. J. Econ. Ent., 60, 218-225.

- 19) Pathak, M. D., Encarnacion, D. and Dupo, H. (1974): Application of insecticides in the root zone of rice plants. India J. Pl. Prot., 1(2), 1-16.
- 20) Rahman, M. M., Nahar, M. A. and Miah, S. A. (1985): Control of tungro by applying chemicals against GLH. 2 pp. (Unpublished).
- 21) Rao, G. M. and Anjaneyulu, A. (1979): Carbofuran prevents rice tungro infection. Current Science, 48, 116-117.
- 22) Shukla, V. D. and Anjaneyulu, A. (1980): Evaluation of systemic insecticides for control of rice tungro. Pl. Disease, 64, 790-792.
- 23) Shukla, V. D. and Anjaneyulu, A. (1982): Spread of tungro virus in mixed populations of susceptible and tolerant rice cultivars. Z. PflKrankh, 89, 200-204.
- 24) Shukla, V. D. and Anjaneyulu, A. (1982): Effects of number of leafhoppers and amount and source of virus inoculum on the spread of rice tungro. Z. PflKrankh, 89, 325-331.
- 25) Satapathy, M. K. (1982): Insecticide control of rice tungro virus disease. IRRN, 7(6), 9-10.
- 26) Satapathy, M. K. and Anjaneyulu, A. (1982): Greenhouse evaluation of granular, wettable powder, and flowable insecticide formulations for tungro prevention. IRRN, 7(6), 11.
- 27) Satapathy, M. K. (1982): Greenhouse evaluation of emulsifiable concentrate insecticides against tungro virus infection. IRRN, 7(6), 11-12.
- 28) Satapathy, M. K. and Anjaneyulu, A. (1983): Evaluation of emulsifiable concentrate and wettable powder insecticides for control of rice tungro virus disease and its vector. Z. PflKrankh., 90, 269-277.

### Discussion

- **Tantera, D.M.** (Indonesia): The cost of insecticides is too high for the ordinary farmer. In Indonesia, carbofuran applied to seedbeds was found to protect the crop during a period of one and a half months. What is the situation of the Philippine farmer?
- **Answer:** For the farmers the optimum method of control is achieved by the use of resistant varieties. In the Philippines, to prevent tungro, one application of 1kg ai carbofuran per hectare or 750g per hectare if the farmer uses a carabao or a machine, respectively would be effective.
- **Anjaneyulu, A.** (India): Tungro is a disease of economic importance. The insect can be controlled from the standpoint of being a pest or the vector of the virus. In the latter case, insecticides with a repellent and knockdown effect such as cypermethrin are effective in protecting varieties, particularly the tolerant ones. It is easier to protect varieties with intermediate resistance using carbofuran sprays or cypermethrin.