## INTERNATIONAL COLLABORATIVE RESEARCH NETWORKS FOR RICE BLAST

## Yoshimichi Fukuta

Senior Researcher, Tropical Agricultural Research Front, Japan International research

Center for Agricultural Sciences (JIRCAS), Japan

**Yoshimichi Fukuta** is a senior researcher at JIRCAS and an invited professor at the Graduate School of Agricultural Sciences, Tottori University. He started his career in rice breeding at Hokuriku National Agricultural Experiment Station in 1986 and received his doctoral degree in 1993. From 1999 to 2004, he was dispatched to the International Rice Research Institute (IRRI) from the Ministry of Agriculture, Forestry and Fisheries (MAFF) as a seconded scientist. After returning to JIRCAS, he worked as project leader of the "Blast Research Network for Stable Rice production" and "Rice Innovation for Environmentally Sustainable Production Systems"



## ABSTRACT

Blast is one of the most serious diseases of rice plants in temperate regions, and it has been found to occur frequently in the rainfed lowlands and uplands in the tropics. Japan International Research Center for Agricultural Sciences (JIRCAS) has been conducting the research project, titled "Blast Research Network for Stable Rice Production," to solve this problem since 2006. Under the research network, an international differential variety set (DVs: monogenic lines) for 23 blast resistance genes; Pish, Pib, Pit, Pia, Pii, Pi3, Pi5(t), Pik-s, Pik-m, Pi1, Pik-h, Pik, Pik-p, Pi7(t), Pi9(t), Piz, Piz-5, Piz-t, Pita-2, Pita, Pi12(t), Pi19(t), and Pi20(t), and the methods of evaluation for reaction patterns of DVs against blast isolates and designation of blast races, are commonly used among participating nations (Korea, China, Vietnam, Philippines, Indonesia, Lao PDR, Cambodia, Bangladesh, Kenya, and Japan), international agricultural institutes (IRRI and AfricaRice), and university (Yunnan Agricultural U., China). The genetic variations of blast races and of resistance in rice cultivars have been clarified in each country and at the global level. These genetic variations of blast races and of resistance in rice cultivars differ dramatically among the countries, with Japan showing the lowest diversities and south Asia showing the highest. Additionally, highly virulent blast races were found to be distributed at high frequencies in West Africa and northeast China. Additionally, the differential system consisting of DVs and standard differential blast isolates was also developed in each institute, becoming one of many achievements from pathological studies. The differential system is a basic tool for the characterization of resistance genes in rice cultivars and the pathogenicity of blast isolates. Using the differential system developed in each institute, genetic improvement of leading rice cultivars is being conducted through introduction of partial resistance genes, such as pi21, PB1, Pi34, Pi35, and Pi38. Multiline varieties with genetic backgrounds of Indica Group rice cultivars, IR 64 and IR 49830-7-1-2-2, are also being developed. These differential systems, leading rice cultivars introduced with partial resistance genes, and multiline varieties, will be the key materials toward development of a durable protection system, which will be implemented in harmony with environmental conditions and contributing to sustainability in rice cultivation.



## Session 2



| US-2 NILs fo | or partial | resistance | genes |
|--------------|------------|------------|-------|
|--------------|------------|------------|-------|

| Target<br>resistance<br>gene | Chr. | Donor          | Generation in 2018 |
|------------------------------|------|----------------|--------------------|
| PiPHL9(t)                    | 11   | Hokkai PL9     | BC6F8              |
| pi21                         | 4    | Owarihatamochi | BC6F8              |
| Pi35                         | 1    | Hokkai188      | BC6F9              |
| Pi34                         | 11   | Chube 32       | BC6F8              |
|                              |      | Chugoku 40     | BC6F10             |
| Pi38(t)                      | 4    | WIL23          | BC6F8              |
| Pb1                          | 11   | Asano-hikari   | BC6F9              |

Partial gene(s) have been expected that these were resistant against all blast races with intermediate effects.

Near isogenic lines(NILs) for partial resistance genes were developed to confirm the effects.

















| Contraction of the second second | Concerned and an other second                                                          | The second second second second | Conception in a second second second                               |
|----------------------------------|----------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------|
| and area                         | (Character)                                                                            | area                            | (Character)                                                        |
| Asia and Africa                  | IR 64<br>YTH183 (High yield)<br>IR64NILDRO1                                            | Africa and South<br>Asia        | Basmati 217 (Aroma)<br>Basmati 370 (Aroma)<br>Pusa Basmati (Aroma) |
|                                  | IR64NILSPIKE                                                                           | Thailand                        | KDLM105 (Aroma)                                                    |
|                                  | IR64NILgRL6.1-Kasalath<br>IR64NILEMS3                                                  |                                 | BRRI dhan 28<br>BRRI dhan 29                                       |
|                                  | NERICA-L-19 (High yield)                                                               | Renderiesh                      | BRRI dhan 34 (Aroma)                                               |
| Indonesia                        | Ciherang (High yield)<br>Situ Banerdit<br>Situ Patenggang (Aroma)                      | ungunun                         | BRRI dhan 63<br>BRRI dhan 64<br>BR 11                              |
| Philippines                      | NSIC Rc 152<br>NSIC Rc 160 (Eating quality)<br>NSIC Rc 240 (High yield)<br>NSIC Rc 402 | Vietnam                         | Thien Un<br>BT7<br>BC15<br>OM576                                   |
| Laos                             | TDK8 (High yield)                                                                      | Malaysia                        | Mashuri                                                            |
|                                  | Xebang Fai (High yield)                                                                | Ethiopia                        | X-Jagna                                                            |

Genetic improvement of rice cultivars using

Key materials and tools for new direction of durable protection system

- International standard differential blast isolates
- 2. Partial resistance gene(s)
- 3. Multiline variety
- 4. Differential system
- 5. Collaboration among pathologist, breeder, agronomist and so on
- 6. International collaboration

