ADVANCES IN RICE BREEDING FOR AFRICA

Takashi Kumashiro

Africa Rice Center 01 B.P. 2031, Cotonou, Benin

ABSTRACT

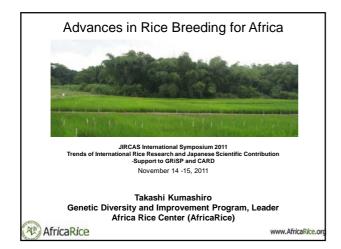
AfricaRice is well known for its NERICA varieties, which has become a household name in Africa. About 700,000 ha of rice land is currently grown under NERICA varieties in both upland and lowland conditions (NERICA-L varieties). AfricaRice and partners from national and international research organizations are continuously striving to develop new materials that will be worthy successors of these NERICA varieties and other improved varieties developed by AfricaRice and partners over the last decades, such as the WAB and Sahel series.

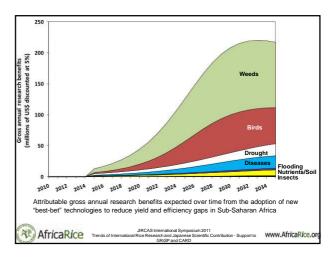
The NERICAs were developed from a very narrow genetic resource base. The genetic resources unit in AfricaRice carries more than 20,000 collections of *Oryza* accessions, including African domestic accessions of *O. sativa, O. glaberrima* and *O. barthii*. Characterization of core collections of these accessions is ongoing for different key traits (drought, salinity, tolerance to P-deficiency, flood tolerance, disease resistance) with a number of advanced research institutions across the globe.

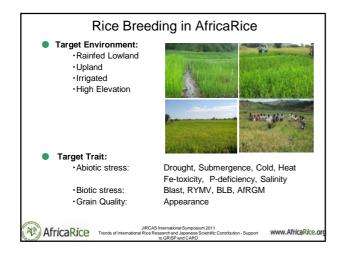
Recent evaluation of landraces of *O. sativa* as well as *O. glaberrima* revealed several important traits. For rice yellow mottle virus (RYMV), one of the most devastating diseases in Africa, several accessions of *O.glaberrima* showed resistance to strains of the virus, and markers associated for each type of resistance have been identified. Salt tolerance is one of the essential traits for rice growing in coastal and even inland areas in many African countries. Landraces collected in salt-affected fields, *O. glaberrima* and lowland NERICA varieties were evaluated for salt tolerance under both field and controlled conditions, resulting in the identification of a number of tolerant entries, among which 8 landraces, 4 *O. glaberrima* and 4 lowland NERICAs. Preliminary molecular characterization indicates that for the majority of these materials tolerance is governed by a locus different from *saltol*, which has been widely used in marker-assisted selection.

AfricaRice uses MAS in a number of breeding programs where appropriate markers have been validated and are routinely available. In the breeding of RYMV resistant varieties, markers associated with *rymv 1-2*, which has been identified in collaboration with IRD, France were used. Resistant BC₃F₅ lines are under evaluation for agronomic traits at multiple locations in Africa. Moreover, to make the resistance more durable in Africa, markers for *rymv2* are being introduced to breeding lines carrying *rymv1-2*. For rice blast, the most destructive fungal disease in Africa, field resistant genes, *Pb1* and *pi21*, both of which were kindly provided by NIAS, Japan, are being introduced for mega-varieties in upland and irrigated environments. Furthermore, a locus resistant to salt, *saltol*, and a resistant gene to submergence, *sub1*, are under introgression into lowland varieties in Africa. MAS will also be used for introducing cold and Fe toxicity tolerance, upon identification of appropriate markers.

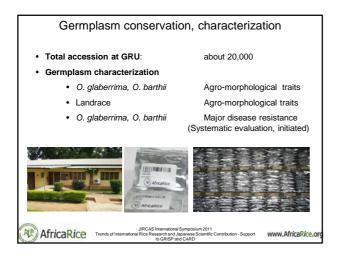
Breeding programs at AfricaRice, IRRI, CIAT and NARS continuously produce promising breeding lines. In 2010, the Africa Rice Breeding Task Force was launched to facilitate a more systematic evaluation of many promising breeding lines from various institutions, under multiple environmental conditions, and with the same protocol for evaluation. The Task Force involves breeders from 28 African countries and covers four mega-environments: the rainfed lowland, rainfed upland, irrigated and high elevation environments and consists of three phases of evaluation trials; regional, national and multi-locational trials including participatory varietal selection (PVS). Task Force activities are facilitated by breeders from AfricaRice and IRRI based in Africa, which have been assigned responsibilities for the various mega-environments. During the 2011 wet season, about 500 lines were under evaluation at more than 20 sites across Africa. The breeding

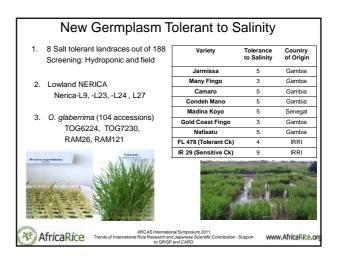

lines selected at the last phase of this evaluation process will be recommended to target countries or regions. AfricaRice processes all data centrally using IRIS, allowing for a systematic G x E approach to varietal evaluation across Africa.

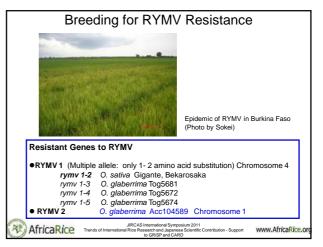

AfricaRice established a hybrid-rice program in late 2009 at its research station in Senegal through the recruitment of an experienced Egyptian hybrid rice breeder, who works in close collaboration with breeders from IRRI and China. Restorer lines have been identified among African varieties and male sterility has been introduced into a number of varieties.

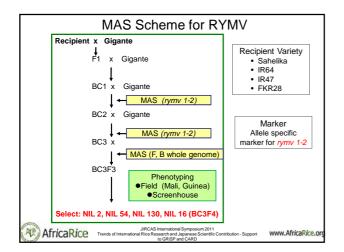

The Global Rice Science Partnership (GRiSP) led globally by IRRI and in Africa by AfricaRice will accelerate varietal development in Africa by mobilizing global expertise for well-defined pre-breeding and breeding products of relevance to Africa's growth environments and consumer preferences. GRiSP has also launched a global phenotyping network with unified protocols for important traits (such as drought), which is expected to be of great benefit to rice breeding activities in Africa.

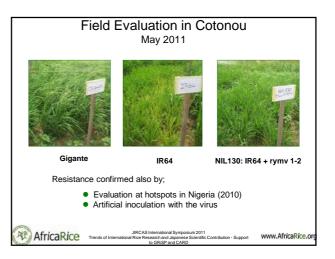
KEYWORDS

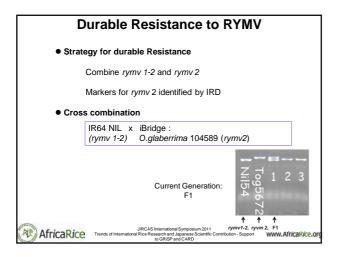

Rice Breeding, Abiotic Stress Tolerance, Disease Resistance, Multi-sites multi-year evaluation trials, Africa

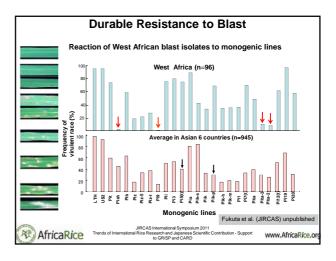


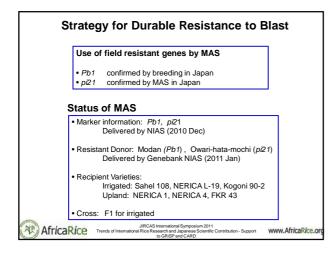


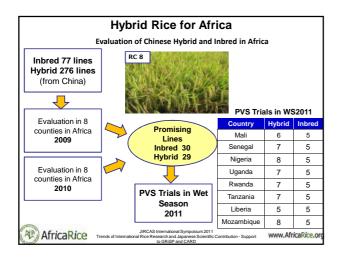


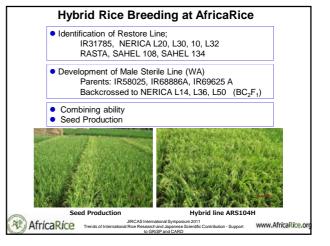


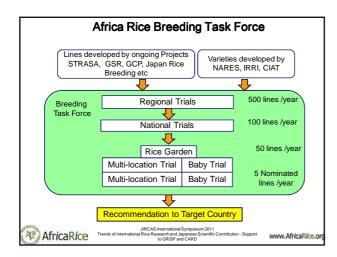


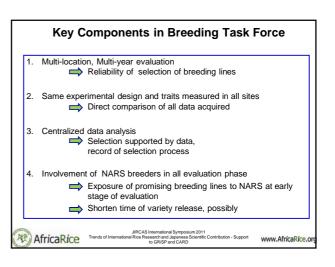




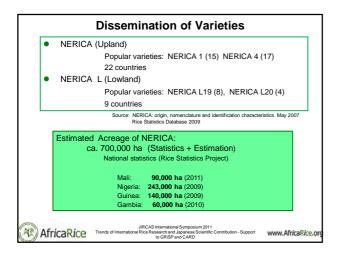


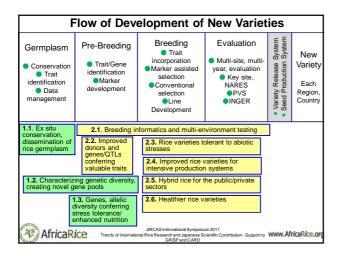


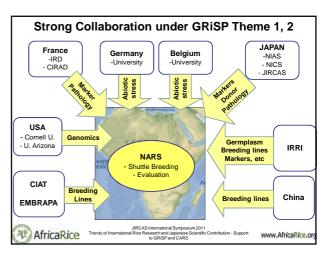




Status of MAS										
Trait	QTL	Donor	Recipient	Generation						
RYMV1	rymv 1-2	Gigante	IR 64	BC_3F_6						
RYMV2 + RYMV1	rymv 2	TOG 104589	IR 64 + rymv1-2	F ₁						
Blast Field R	Pb1	MODAN	Sahel 108	BC_2F_1						
Blast Field R	pi21	Owari H M	Sahel 108	F ₁						
Salt tolerance	saltol	FL478	Rassi	BC_4F_2						
Submergence tolerance	sub1	Swarna sub1	WITA 4	BC_2F_1						
AfricaRice	Trends of International	JIRCAS International Sympos Rice Research and Japanese to GRISP and CARD	Scientific Contribution - Support	www.AfricaRice.						






Tria		Ecology	Sites	5	Lines	
Regional Lowland		owland	4		278	
	1	rrigated	6		278	
	ι	Jpland	3		216	
National Lowla		owland	13		100	
	ι	Jpland	3		216	
Trials	Tr	raits	Number		Organization	
Regional	Salt tole	erance	1	AfricaRice		
Fe tox tolerance AfRGM resistance Blast resistance		7	AfricaRice, SLARI			
		3	3 AfricaRice, NCRI			
		3	3 AfricaRice, CIAT			
Grain Quality		16	AfricaRice, Tanzania			
National Fe tox tolerance		olerance	6	AfricaRice, IER		
	AfGM re	esistance	9	Afr	icaRice, NCRI	
RYMV		8	AfricaRice, IRRI, IER			
	Blast		8		icaRice	
	Grain Q	uality	16	Afr	icaRice, IER	

	Country	Number	Year	Varieties
Upland	Senegal	2	2009	WAB56-50, ITA
	Tanzania	1	2009	WAB 56-104
	Sudan	4	2010	WAB450 Interspecific
	Kenya	5	2009	NERICA 1, 4, 10, 11
	Uganda	2	2007	NERICA 1, 10
	Ethiopia	4	2009-10	NERICA 6, 14, 15 FOFIFA3737
Lowland	Benin	1	2009	FKR19
	Liberia	1	2009	FKR19
	Togo	2	2009	Orylux 1, 5
	Gabon	1	2010	WAB638, derivative aromatic
	Niger	2	2007	NERICA L39, L49
Irrigated	Senegal	16	2007-9	Sahel 159, 134, 208, 209, 177, 217, 328
	Niger	2	2007	Sahel 208, WAS4
	Mali	3	2011	Sahel 177, WAS64, WAS49
	Ghana	3	2009	TOX3737, 3233, Jasmin85
	Rwanda	11	2010	IR lines, WAB, WITA4

