ABSTRACT

The world is divided, rich and poor, and that disparity continues to increase. This is especially true for Sub-Sahara Africa. On the other hand, the world is interdependent. Plant or animal diseases originating in one country can easily affect other countries. Avian flu and mad cow disease (BSE) are good examples. Major harvest losses in some countries would affect world food prices and availability (hence food security). The use of food crops for biofuels, driven by a global move toward renewable energy, affects food availability and prices worldwide.

International Agricultural Research Centers (IARCs) and Japan share a common vision for the role of agricultural research in the world. They both believe in the importance of agriculture as an engine of socio-economic development. The world needs to be food-secure. We want a peaceful and prosperous world.

Japan has the second largest economy in the world and its investment in research and development is also the second largest. In fact, the total amount of research money spent by Japan (private and public) is bigger than the total sum spent by 44 countries in Sub-Sahara Africa. Japan is endowed with huge resources of human capital, knowledge and technology that have potential value for developing countries.

There are some good examples of the application of Japanese agricultural research talent and products for developing countries through collaborative research schemes between Japan and IARCs. The use of DREB (dehydration responsive element binding protein) for developing drought-tolerant crops represents an excellent test case of innovative, win-win, collaborative research with direct implications for developing countries. Biological nitrification inhibition (BNI) for increased efficiency of plant nitrogen use and for reduced emissions of nitrous oxide, a powerful greenhouse gas, is another emerging example of collaboration with global impacts.

Many research and educational organizations in Japan have set up offices for research and technology transfer to link their research outcomes to practical applications. Their view, however, is often limited to the Japanese market. By expanding this view to the developing world there are many more opportunities for practical applications. The major function of IARCs’ is to link the needs of the resource poor with technological innovations and practical solutions for improving their livelihoods. Therefore active linkages between Japanese organizations and IARCs would enhance the probability that Japanese knowledge and technology would be properly linked with the needs of the poor. This, in turn, benefits Japan which depends on large food imports and a peaceful and prosperous world for its own food and national security.

IARCs also present excellent opportunities for Japanese students and scientists to get direct hands-on experience in international agriculture. Experience with IARCs would expand the horizons of students and scientists and offer opportunities to identify interesting and meaningful research challenges.
International Agricultural Research Organizations and Japan

Masa Iwanaga 岩永勝
Director General, CIMMYT-Mexico

The world is interconnected!

Global Problems

Flat fact: Interdependence

- Sustainable use of natural resource base
- Food production and trade
- Agricultural research for global change

Japan in the world

World is divided: rich and poor

Life Expectancy at Birth (age)

Market Size by Gross Domestic Product, 1995

Relative size of country indicates relative size of Gross Domestic Product

<table>
<thead>
<tr>
<th>Global Priority</th>
<th>US $ billion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military spending--World</td>
<td>780</td>
</tr>
<tr>
<td>Alcoholic drinks in the EU</td>
<td>100</td>
</tr>
<tr>
<td>Total Overseas Dev. Assistance</td>
<td>78</td>
</tr>
<tr>
<td>Tobacco in the USA</td>
<td>50</td>
</tr>
<tr>
<td>Business entertainment in Japan</td>
<td>35</td>
</tr>
<tr>
<td>Cosmetics in the USA</td>
<td>18</td>
</tr>
<tr>
<td>Clean drinking water for all ($ required)</td>
<td>10</td>
</tr>
<tr>
<td>CGIAR</td>
<td>0.425</td>
</tr>
</tbody>
</table>

Bridge: International collaboration

Contributing to the world (and Japan) through collaboration with IARCs

- Remarkably similar objectives (mutual benefit)
- Value of working with IARCs
- Examples of valuable collaboration

Remarkably similar objectives (mutual interest/benefit)

- Stable food production (food security and stable price)
- Agriculture development driven socio-economic development
- Peaceful, prosperous world (production and access)

Value of working with IARCs

- Global network on the ground
- Impact orientation: Integrating products and key elements
- Interfacing partnership
- Sources of information
- Logistics support for research activities
- Research for development (overview)
- On-the-ground education

Some examples

- DREB
- Biological Nitrification Inhibition (BNI)
- Sweet Wheat
- Conservation agriculture
Agriculture and Climate Change

Variability in moisture availability for rainfed cultivated land, 1960-90

Source: Adapted from Wood, Sebastian and Scherr (2000).

Engineering of drought tolerance

Drought responsive element transcripational factor and stress inducible promoter (partnership with JIRCAS, Japan)

Photosynthetic performance of GM-Bobwhite with DREB gene (with extreme water stress)

Substantially Lower Canopy Temperature Under Contained Field Trials

Unpredictable mid-season drought

Control

DREB1A

% Difference 29% 35% 90% -8% -4%

Conductance rate

Assimilation rate

CO₂ (ppm)

Chlorophyll

Source: Nakashima and Yamaguchi-Shinozaki 2005

Collaboration for development of stress tolerant crops
Agriculture and GHG emissions

- **CH₄ Methane**: 7.5 Gt CO₂ eq/yr
- **N₂O Nitrous Oxide**: 4.5 Gt CO₂ eq/yr

Source: IPCC, 2007

Genetic resources research that addresses climate change

- 1/3 of world nitrogen fertilizer applied to wheat crops and only 1/3 is effectively use by the crop
- The rest is wasted or damaging environment (water, greenhouse gases)
- Biological nitrification inhibition (BNI) to reduce N₂O emissions and increase nitrogen use efficiency (annual US$ 19 billion loss).
- Chromosomal location of genes for nitrification inhibitory activity in root exudates of Leymus racemosus using wheat x L. racemosus chromosome substitution and addition lines
- L. racemosus chromosomes in wheat detected by FISH (arrows) (Subbarao et al. in preparation)

What is needed?

- Identify needs of the international community, particularly developing countries
- Identify Japanese research outcomes and product developments that are relevant for international agriculture
- Develop a platform for collaborative arrangements

Thank you