Manual for fish culture in rice paddy & earthen pond using Lao fishes

Japan International Research Center for Agricultural Sciences (JIRCAS)

Why fish culture is important? ----(1)

Protein deficiency may lead to:

Increase in protein intake necessary

leading to:

Improvements in various health indicators such as <u>lifespan</u> and <u>stunting rate</u>

Why aquaculture of Lao fishes is necessary?

Big impact to fish diversity in Lao & other countries

Decrease of fish amount

Decrease of fish diversity

Risks for Economy/environment

Lao fish

No/less impact to fish diversity in Lao

Aquaculture of Lao fishes are necessary

How to operate fish culture (1) Rice paddy fish culture

Design of paddy for fish culture

How to operate fish culture (1) Rice paddy fish culture

Expected schedule

Design of pond for fish culture

Feeds for fishes

Fish density – examples of our trials

Year (trial)	Fish species	Number of stocked fish	Stocking density (n/m ²)	Feeding	
2017 (T17)	Pa kheng Pa pak Pa sooai	2,000 4,000 100	4.1 (<mark>high</mark>)	Intensive (pellet)	Intensive method
2018 (T18)	Pa kheng Pa pak Pa sooai	1,200 2,300 200	2.5 (low)	Occasional (rice bran etc.)	Semi-intensive method
2019 (T19)	Pa kheng Pa pak Pa sooai	1,500 3,500 100	3.4 (medium)	Occasional (rice bran etc.)	Semi-intensive method

Intensive method High risk (many fish, many feeding) & high return (cash gain)

Semi-intensive method

Semi-intensive method

Low risk (limited fish and feeding) & low return (less cash gain)

Expected cash gain (based on our case study)

Trial	Total input cost	Work	Labor cost	Harvest	Sales income	Net income
	(LAK)	nours	(LAK)	COST (LAK)	(LAK)	(LAK)
T17	17,500,000	124.5	1,245,000	300,000	27,258,000	8,213,000
T18	2,604,500	117.5	622,500	300,000	4,611,000	1,084,000
T19	3,996,500	94.5	507,500	300,000	4,521,000	-283,500

T17: Intensive method: large income (8,213,000 LAK) with high cost

T18: Semi-intensive method (low fish density): limited income (1,084,000 LAK) with limited cost

_ _ _ _ _ _ _ _ _ _ _

Practical way of pond culture for positive income

T19: Semi-intensive method (medium fish density): **negative income (-283,000** LAK) with limited cost

Insufficient feed amount to number of stocked fish