Development of the Rice Econometric Model with Endogenous Water in Vietnam (REMEW-VIET)

5-1. Introduction

The international price of rice surged from \$385/metric ton (MT) in January 2008 to \$962/MT in May 2008. The drought in Australia and the sharp rise in demand for biofuels lead a higher price for wheat and maize. The price spikes of these crops contributed to the increase in rice prices; however, cold weather damage of rice in Vietnam was thought to be the primary factor in the price spike of rice.

Vietnam's share in world rice trade increased from 15.5% in 2007 to 20.2% in 2008. As Vietnams trade share has increased, the domestic price of rice in Vietnam in increasingly linked to the world price of rice. Modeling supply and demand for rice in this country is then critical for the evaluation of impacts of environmental changes on the world rice market.

5-2. Agricultural policies related to rice production

In the winter season from 2007 to 2008, most nursery rice was stunned decayed due to cold weather in the region. Concerned about domestic supplies, the Government of Vietnam banned the export of rice. Vietnamese rice exports are controlled by the Rice Export Management Committee which is headed by the Prime Minister.

IFPRI (1996) examined impacts of elimination of rice the export quota on the rice price and farm income using a spatial equilibrium model. They also examined the impacts of elimination of internal trade restrictions on the rice market. David (1994) summarized the price policies of agricultural products in 1990's.

5-3. Model

The model in Vietnam is regional model for eight regions and the basic structure of the model is same as those of other countries. There are three types of cultivation, i.e., spring, summer, and winter season rice. Transplanting of spring season rice occurs in December and the harvest occur from April to May. Transplanting period for summer season rice is from May to June and harvest runs from September to October. Transplanting occurs from September to October for winter season rice and the harvesting occurs during December in the Mekong Delta region. These cultivation periods are based on the cropping calendars in USDA(1994). The spring and summer season rice are cultivated in irrigated fields as a two season crop while the winter season rice is cultivated in rain-fed fields as single season crop. The generalized forms of the supply and demand model of rice are as follows:

Yield function of spring season: $YS' = f_{YS}(T, ET_{DEC, i-1}, \dots, ET_{JLY, i})$ (5-1) Planted Area function of spring season:

$$AS'_{i} = f_{AS} (FP_{i-1}, EYS'_{i}, ET_{JAN'_{i}})$$
(5-2)

Planted Area function of spring season in the Mekong Delta region:

$$AS^{MDR}t = f_{ASM} (T, AS^{MDR}_{i-1}, FP_{i-1}, EYS^{MDR}_{i}, ET_{JAN}^{i}, ET_{FEB}^{i})$$
(5-3)
Production of spring season:

$$QS^{i} = YS^{i}AS^{i}, QS = \sum_{i}QS^{i}$$
(5-4)
Yield function of summer season:

$$YM = f_{i} (T, FT_{i}^{i}, FT_{i}^{i})$$
(5-6)

$$YM_{i} = f_{YM}(T, ET_{MAR,i}, \dots, ET_{OCT,i})$$
 (5-6)

Planted Area function of summer season:

 $AM_{I}^{i} = f_{AM} (FP_{I-1}, EYM_{I}^{i}, ET_{JAN_{I}}^{i}, \dots, ET_{AUG_{I}}^{i})$ (5-7) Planted Area function of summer season in the Mekong Delta region:

$$AM^{MDR}_{i} = f_{AMM} (T, FP_{i-1}, EYM^{MDR}_{i}, ET^{i}_{MAYi})$$
(5-8)
Production of summer season:

 $QM^{i} = YM^{i}AM^{i}, QM = \sum_{i}QM^{i}$ (5-9)

Yield function of winter season:

$$YW' = f_{YW}(T, ET_{JUN, J-1}, \dots, ET_{NOV, J})$$
 (5-10)
Planted Area function of winter season:

 $AW_{i}^{i} = f_{AW}(T, FP_{i-1}, EYW_{i}^{i}, ET_{JUN,i}^{i}, \dots, ET_{OCT_{i}}^{i})$ (5-11)

Planted Area function of winter season in the Mekong Delta region:

$$AW^{MDR}_{t} = f_{AWM} (T, FP_{t-1}, EYW^{MDR}_{t}, ET_{JUNt}^{i}, ET_{JLYt}^{i})$$
(5-12)

Production of winter season:

$$OW^{i} = YW^{i}AW^{i}, OW = \sum OW^{i}$$
(5-13)

Total production:

$$Q = 0.667(QS + QM + QW)$$
 (5-14)

EXP = f(WP*EXR, Q) (5-15) Stock change function:

$$STC = f(FP_{i,i}, Q_{i,i})$$
(5-16)
Total supply:

QD = Q + IMP - EXP - STC(5-17)

Demand function: QD/POP = f(RP, GDP/POP) (5-18) Price linkage function: $FP = f(RP), \tag{5-19}$

where *i* is the region, *t* denotes that the data are measured at time *t*, *T* is a time trend, ET_{JAW}^{i} through ET_{DEC}^{i} are monthly evapotranspiration values for January through December, *YS*, *AS*, *EYS*, and *QS* are yield, planted area, expected yield, and production of spring season rice, *YM*, *AM*, *EYM*, and *QM* are yield, planted area, expected yield, and production of summer season rice, *YW*, *AW*, *EYW*, and *QW* are yield, planted area, expected yield, and production of summer season rice, *YW*, *AW*, *EYW*, and *QW* are yield, planted area, expected yield, and production of summer season rice, *YW*, *AW*, *EYW*, and *QW* are yield, planted area, expected yield, and production of winter season rice, *Q* is total rice production, *IMP* is imports, *EXP* is exports, *STC* is the annual change of stocks,

i.e., ending stock minus beginning stock, QD is total supply, POP is population, GDP is gross domestic products, EXR is exchange rate, WP is the world price of rice (Thailand, 35% broken, FOB), FP is the producer price, RP is the retail price. All functions are specified as linear functions.

The planted area function is based on the naïve expectation model because Mekong Delta region, where is the main production region, located in lower Mekong River. Water harvesting and forecasting of water supply changes in the lower elevation regions are easier than those in upper regions, therefore the

Fig. 5-1. Flowchart of the rice production sector of Vietnam rice model

Fig. 5-2. Flowchart of supply and demand sector of Vietnam rice model

planted area functions of the Vietnamese model take a simpler form than those of the Laotian and Cambodian models.

5-4. Data

The time series data for each region for production and planted area for the three types of rice cultivation is provided by the General Statistics Office of the Statistical Publishing House of Vietnam. The rice farm price is obtained from FAO-STAT and the retail rice price is obtained from the USDA. These prices are national average prices for Vietnam. CPI, GDP, GDP deflator and population are from the ADB and the exchange rate and the world price of rice are numbers from the IMF. The estimation period for the yield and planted area functions in the Mekong Delta region, imports, stock change, and demand functions for the country as a whole are from 1985 to 2000 which starts in the earliest available year for CPI and ends in the last year of available ET values. Functions for yield and planted area in regions except the Mekong Delta region are estimated using pooled data from 1985 to 2000 for the seven regions.

5-5. Estimation results of all functions

The yield functions of spring, summer, and winter season rice are not estimated for each region due to the lack of time series data. Parameters are obtained by estimating one function which includes provincial dummies using pooled data. The data set of spring and winter season rice consists of eight regions for sixteen years, and those for summer rice consists of five regions for sixteen years.

The estimation periods of these yield functions are from 1985 to 2000 which starts in the earliest available year for statistics of production of the three seasons and ends in the last year of available ET values.

The planted area functions of the three types of rice are also estimated using pooled data; however, the planted area functions in the Mekong Delta region are estimated using only time series data because the trend of the planted area is quite different from other regions.

Finally, estimated results of export, stock change, demand, and price linkage function are shown. The estimation method of all functions is OLS.

5-5-1. Yield functions

5-5-1-1. Yield function of spring season rice

YS= 27.27637 (0.98)

+ 1.05535*TREND

(10.27)	
+ 1.43780*TREND*DR81	
(5.35)	
- 0.41899*TREND*DR88	
(-1.67)	
- 4.58713*ln(ETDECt-1)	
(-2.15)	
+ .00279*ln(ETDECt-1)*DR88	
(5.14)	
+ 7.63748*ln(ETJAN)	
(4.58)	
- 10.7256*ln(ETJAN)*DR81	
(-3.11)	
+ 6.80434*ln(ETFEB)*DR81	
(-2.73)	
- 22.97368*ln(ETMAR)*DR86	
(1.88)	
+ 24.38146*ln(ETAPR)*DR86	
(-2.52)	
+ 11.35640*ln(ETMAY)	
(2.73)	
- 16.18149*ln(ETJUL)	
(4.87)	

Adj R² = 0.8321 DW=1.725

YS Yield of spring rice

TREND	Linear time trend 1976=1
DR81	Treatment variable for Region 81, Red River Delta
DR86	Treatment variable for Region 86, Central
	Highlands
DR88	Treatment variable for Region 88, Mekong River
	Delta
ETDECt-1	Evapotranspiration value for December (previous
	calendar year)
ETJAN	Evapotranspiration value for January
ETFEB	Evapotranspiration value for February
ETMAR	Evapotranspiration value for March
ETAPR	Evapotranspiration value for April
ETMAY	Evapotranspiration value for May
ETJUL	Evapotranspiration value for April

5-5-1-1-2. Yield function of spring season rice in Red River Delta region

+ 27.2673
+ 2.49315 * TREND
- 4.58713 * ln(ETRRD_DECt-1)
- 3.08812 * ln(ETRRD_JAN)
+ 6.80434 * ln(ETRRD_FEB)
+ 11.35640 * ln(ETRRD_MAY)
- 16.18149 * In(ETRRD_JLY)
Yield of spring season rice in Red River Delta
region
Linear time trend 1976=1
Ct-1 Evapotranspiration for December

(previous calendar year) in Red River Delta region TRRD_JAN Evapotranspiration for January in Red

ETRRD_JAN Evapotranspiration for January in Red River Delta region

ETRRD_FEB Evapotranspiration for February in

Red River Delta region ETRRD_MAY Evapotranspiration for May in Red River Delta region

ETRRD_JLY Evapotranspiration for July in Red River Delta region

5-5-1-1-3. Yield function of spring season rice in North East region

region

- YS_NE = +27.27637 + 1.05535 * TREND - 4.58713 * ln(ETNE_DECt-1) + 7.63748*ln(ETNE_JAN) + 11.35640*ln(ETNE_MAY) - 16. 18149*ln(ETNE_JLY) YS_NE Yield of spring rice in North East region TREND Linear time trend 1976=1 ETNE_DECt-1 Evapotranspiration for December (previous calendar year) in North East region ETNE_JAN Evapotranspiration for January in North East region
- ETNE_MAYEvapotranspiration for May in North East region ETNE_JLY Evapotranspiration for July in North East region

5-5-1-1-4. Yield function of spring season rice in North West region

YS_NW = + 27.27637 + 1.05535 * TREND - 4.58713 * ln(ETNW_DECt-1) + 7.63748*ln(ETNW_JAN) + 11.35640*ln(ETNW_MAY) - 16. 18149*ln(ETNW_JLY) YS_NW Yield of spring rice in North West region

- TREND Linear time trend 1976=1
- ETNW_DECt-I Evapotranspiration for December (previous calendar year) in North West region
- ETNW_JANEvapotranspiration for January in North West region
- ETNW_MAY Evapotranspiration for May in North West region

ETNW JLY Evapotranspiration for July in North West region

5-5-1-1-5. Yield function of spring season rice in North Central region

YS_NC = +27.27637 + 1.05535 * TREND - 4.58713 * ln(ETNC_DECt-1) + 7.63748*ln(ETNC_JAN) + 11.35640*ln(ETNC_JAN) - 16. 18149*ln(ETNC_JLY) YS_NC Yield of spring rice in North Central region TREND Linear time trend 1976=1 ETNC_DECt-1 Evapotranspiration for December (previous calendar year) in North Central region ETNC_JAN Evapotranspiration for January in North Central region

- ETNC_MAY Evapotranspiration for May in North Central region
- ETNC_JLY Evapotranspiration for July in North Central region

5-5-1-1-6. Yield function of spring season rice in South Central region

YS SC = +27.27637

- + 1.05535 * TREND - 4.58713 * In(ETSC_DECt-1)
 - + 7.63748*ln(ETSC_JAN)
 - + 11.35640*In(ETSC_MAY)
- 16. 18149*ln(ETSC_JLY) YS SC Yield of spring rice in South Central region
- TREND Linear time trend 1976=1
- ETSC_DECt-1 Evapotranspiration for December (previous calendar year) in South Central region
- ETSC_JAN Evapotranspiration for January in South Central region
- ETSC_MAY Evapotranspiration for May in South Central region ETSC JLY Evapotranspiration for July in South Central region

5-5-1-1-7. Yield function of spring season rice in Central Highlands region

- YS_CH = +27.27637 + 1.05535 * TREND - 4.58713 * ln(ETCH_DECt-1) + 7.63748*ln(ETCH_JAN) - 22.97368*ln(ETCH_MAR) + 24.38146*ln(ETCH_APR) + 11.35640*ln(ETCH_APR) - 16. 18149*ln(ETCH_JLY)
- YS_CH Yield of spring rice in Central Highlands region
- TREND Linear time trend 1976=1
- ETCH_DECt-1 Evapotranspiration for December (previous calendar year) in Central Highlands region
- ETCH_JAN Evapotranspiration for January in Central Highlands region
- ETCH_MAR Evapotranspiration for March in Central Highlands region
- ETCH_APR Evapotranspiration for April in Central Highlands region
- ETCH_MAY Evapotranspiration for May in Central Highlands region
- ETCH_JLY Evapotranspiration for July in Central Highlands region

5-5-1-1-8. Yield function of spring season rice in South East region

- $YS_SE = +27.27637$
 - + 1.05535 * TREND
 - 4.58713 * In(ETSE_DECt-1)
 - + 7.63748*ln(ETSE_JAN)
 - + 11.35640*ln(ETSE_MAY)
 - 16. 18149*ln(ETSE_JLY)
- YS SE Yield of spring rice in South East region
- TREND Linear time trend 1976=1
- ETSE_DECt-1 Evapotranspiration for December (previous calendar year) in South East region
- ETSE_JAN Evapotranspiration for January in South East region
- ETSE_MAY Evapotranspiration for May in South East region
- ETSE_JLY Evapotranspiration for July in South East region

5-5-1-1-9. Yield function of spring season rice in Mekong		
River Delta	region	
YS_MRD =	+ 27.27637	
	+ 0.63636 * TREND	
	+ 0.41566 * In(ETMRD_DECt-1)	
	+ 7.63748*ln(ETMRD_JAN)	
	+ 11.35640*ln(ETMRD_MAY)	
	- 16. 18149*ln(ETMRD_JLY)	
YS_MRD	Yield of spring rice in Mekong River Delta region	
TREND	Linear time trend 1976=1	
ETMRD_D	ECt-1 Evapotranspiration for December	
	(previous calendar year) in Mekong River Delta	
	region	
ETMRD_JA	N Evapotranspiration for January in	
	Mekong River Delta region	
ETMRD_M	AY Evapotranspiration for May in Mekong	
	River Delta region	
ETMRD_JL	Y Evapotranspiration for July in Mekong	
	River Delta region	
5-5-1-2.	Yield function of summer season rice	
5-5-1-2-1. Y	ïeld function of summer season rice pooled	
YM=	57.36595	
	(4.03)	
	+ 178.23544*DR84	
	(2.52)	
	+ 0.13312*TREND	
	(2.02)	
	+ 5.11125*TREND*DR84	
	(5.37)	
	- 68.15874*1n(TREND)*DR84	
	(-4.26)	
	+ 0 38684*TREND*DR85	
	(7.32)	
	+ 0 11001*TREND*DR8	
	(2.35)	
	(2.33) + 2.65121*1 μ (ETMAP)	
	$+ 2.05151 \cdot 11(ETWAR)$	
	(2.10) + 24 22024*1p(ETMAY)*DP86	
	(2.90)	
	(2.00)	
	(2 22)	
	(-3.23)	
	(4.05)	
	(-+.05) + 42 10624*1*(ETSED)*DD94	
	(3.42)	
	(J.+J) 25 55956*1m(ETSED)*D096	
	- 23.33630"III(E13EF)"DK80	
	(-3.03)	
	- 0.034090*III(ETOCT)	
Adj $R^2 = 0.9$	(-2.30) DW = 2.403	
-		
YM	Yield of summer rice	
TREND	Linear time trend 1976=1	

TREND	Linear time trend 1976=1
DR84	Treatment variable for Region 84, North Central
	Coast
DR85	Treatment variable for Region 85, South Central

	Coast
DR86	Treatment variable for Region 86, Central
	Highlands
DR88	Treatment variable for Region 88, Mekong River
	Delta
ETMAR	Evapotranspiration value for March
ETMAY	Evapotranspiration value for May
ETJUL	Evapotranspiration value for July
ETAUG	Evapotranspiration value for August
ETSEP	Evapotranspiration value for September
ETOCT	Evapotranspiration value for October

5-5-1-2-2. Yield function of summer season rice in North Central region

YM_NC =	+235.60139
	+ 5.24437*TREND
	- 68.15874*ln(TREND)
	+2.65131*ln(ETNC MAR)
	- 32.78468*1n(ETNC JLY)
	- 27.27386*ln(ETNC_AUG)
	+ 43.10634*ln(ETNC_SEP)
	- 8.05409*In(ETNC OCT)
YM NC	Yield of summer season rice in North Central region
TREND	Linear time trend 1976=1
ETNC MAI	R Evapotranspiration for March in North
	Central region
ETNC JLY	Evapotranspiration for July in North Central region
ETNC AUC	Evapotranspiration for August in North Central
	region
ETNC SEP	Evapotranspiration for September North Central
-	region
ETNC_OCT	Evapotranspiration for October in North Central
	region
5-5-1-2-3.	field function of summer season rice in South
Central reg	ion
YM_SC=	+57.36595
	+ 0.51996*TREND
	+ 0.65131*ln(ETSC_MAR)
	- 8.05409*ln(ETSC_OCT)
YM_SC	Yield of summer season rice in South Central region
TREND	Linear time trend 1976=1
ETSC_MAR	Evapotranspiration for March in South Central
	region
ETSC_OCT	Evapotranspiration for October in South Central
	region
5-5-1-2-4. 1	field function of summer season rice in Central
Highlands r	region
YM_CH=	+57.36595
	+ 0.13312*TREND
	+ 2.65131*ln(ETCH_MAR)
	+ 24.22034*In(ETCH_MAY)
	- 25.55856*ln(ETCH_SEP)
	- 8.05409*ln(ETSC_OCT)
YM_CH	Yield of summer season rice in Central Highlands
-	region
TREND	Linear time trend 1976=1

YW

ETCH_MA	R Evapotranspiration for March in
	Central Highlands region
ETCH_MA	Y Evapotranspiration for May in Central
	Highlands region
ETCH_SEP	Evapotranspiration for September in Central
	Highlands region
ETCH_OCT	ΓEvapotranspiration for October in Central
	Highlands region
5-5-1-2-5. 1	ield function of summer season rice in South East
region	
YM_SE=	+57.36595
	+ 0.13312*TREND
	+ 2.65131*In(ETSE_MAR)
	- 8.05409*In(ETSE_OCT)
YM_SE	Yield of summer season rice in South East region
TREND	Linear time trend 1976=1
ETSE_MA	R Evapotranspiration for March in South East region
ETSE_OCI	Evapotranspiration for October in South East region
5-5-1-2-6	Vield function of summer season rice in Mekong
River Delta	region
YM MRD=	= +57 36595
1.11_11100	+ 0.24403*TRFND
	+ 2.65131*ln(ETMRD MAR)
	- 8.05409*In(ETMRD_OCT)
YM MRD	Yield of summer season rice in Mekong River Delta
	region
TREND	Linear time trend 1976=1
ETMRD M	IAR Evapotranspiration for March in
_	Mekong River Delta region
etmrd o	CT Evapotranspiration for October in
_	Mekong River Delta region
5-5-1-3.	
	Yield function of winter season rice
5-5-1-3-1. \	Yield function of winter season rice field function of winter season rice pooled
5-5-1-3-1. Y YW=	Yield function of winter season rice Yield function of winter season rice pooled -21.19495
5-5-1-3-1. Y YW=	Yield function of winter season rice Yield function of winter season rice pooled -21.19495 (-1.31)

- 305.42596*DR81 (-4.64) -45.80576*DR84 (-1.25)+ 146.09079*DR85 (2.56) + 0.50778*TREND (8.59) + 0.81935*TREND*DR81 (5.92) + 0.39529*TREND*DR82 (3.16) + 0.17788*TREND*DR84 (1.36)-0.39177*TREND*DR87 (-3.00) -18.78781*ln(ETJUN)*DR85 (-2.78) -1.49071*In(ETJUN)*DR86 (-9.14)

+ 39.4286*In(ETJUL)*DR81 (3.57)+ 6.65991*In(ETJUL)*DR83 (1.53) -9.93575*ln(ETAUG)*DR81 (-1.59) -8.72378*In(ETAUG)*DR83 (-1.99) -21.24006*ln(ETAUG)*DR85 (-2.38) +16.49354*In(ETAUG)*DR87 (1.86)+8.89444*In(ETSEP) (2.51)+ 41.95199*In(ETSEP)*DR81 (3.33) -15.86032*ln(ETSEP)*DR87 (-1.78) +12.77038*In(ETOCT)*DR84 (1.75) +8.23481*In(ETOCT)*DR85 (1.41)-9.36005*ln(ETNOV)*DR81 (-2.31) -2.24949*ln(ETNOV)*DR82 (-3.94) -5.37945*ln(ETNOV)*DR84 (-1.33) Adj $R^2 = 0.9060$ DW = 1.98 Yield of winter rice

Trend	Linear time trend 1976=1
DR81	Treatment variable for Region 81, Red River Delta
DR82	Treatment variable for Region 82, North East
DR83	Treatment variable for Region 83, North West
DR84	Treatment variable for Region 84, North Central
Coast	
DR85	Treatment variable for Region 85, South Central
	Coast
DR86	Treatment variable for Region 86, Central
	Highlands
DR87	Treatment variable for Region 87, South East
DR88	Treatment variable for Region 88, Mekong River
	Delta
ETJUN	Evapotranspiration value for June
ETJUL	Evapotranspiration value for July
ETAUG	Evapotranspiration value for August
ETSEP	Evapotranspiration value for September
ETOCT	Evapotranspiration value for October
ETNOV	Evapotranspiration value for November

5-5-1-3-2. Yield function of winter season rice in Red River Delta region

YW_RRD = - 326.62091 + 1.32713 * TREND + 39.42860 * In(ETRRD_JLY) - 9.93575 * ln(ETRRD_AUG) + 50.84643 * ln(ETRRD_SEP)

- 9.36005 * ln(ETRRD NOV)

- YW RRD Yield of winter season rice in Red River Delta region
- TREND Linear time trend 1976=1
- ETRRD JLY Evapotranspiration for July in Red River Delta region
- ETRRD AUG Evapotranspiration for August in Red River Delta region
- ETRRD SEP Evapotranspiration for September in Red River Delta region
- ETRRD NOV Evapotranspiration for November in Red River Delta region

5-5-1-3-3. Yield function of winter season rice in North East region

YW NE = -21.19495

- + 0.90307 * TREND
 - + 8.89444 * ln(ETNE_SEP)
- 2.24949 * In(ETNE NOV)
- YW NE Yield of winter season rice in North East region
- TREND Linear time trend 1976=1
- ETNE SEP Evapotranspiration for September in North East region
- ETNE NOVEvapotranspiration for November in North East region
- 5-5-1-3-4. Yield function of winter season rice in North West regiou

 $YW_NW = -21.19495$

- + 0.50778 * TREND
- + 6.65991*ln(ETNW_JLY)
- 8.72378*ln(ETNW AUG)
- + 8.89444 * ln(ETNW SEP)

YW NW Yield of winter season rice in North West region

- TREND Linear time trend 1976=1
- ETNW JLY Evapotranspiration for July in North West region
- Evapotranspiration for August in North ETNW AUG West region
- ETNW_SEP Evapotranspiration for September in North West region

5-5-1-3-5. Yield function of winter season rice in North **Central region**

 $YW_NC = -67.00071$

+ 0.68566 * TREND

- + 8.89444 * In(ETNC_SEP)
- + 12.77038 * In(ETNC OCT)
- 5.37945 * In(ETNC_NOV)
- YW NC Yield of winter season rice in North Central region
- TREND Linear time trend 1976=1
- ETNC_SEP Evapotranspiration for September in North Central region
- ETNC_OCT Evapotranspiration for October in North Central region
- ETNC_NOVEvapotranspiration for November in North Central region
- 5-5-1-3-6. Yield function of winter season rice in South

Central region

YW_SC =	- 124.89584
	+ 0.50778 * TREND
	- 18.78781 * In(ETSC_JUN)
	- 21.24006 * In(ETSC_AUG)
	+ 8.89444*ln(ETSC_SEP)
	+8.23481*ln(ETSC_OCT)
YW_SC	Yield of winter season rice in South Central region
TREND	Linear time trend 1976=1
ETSC_JUN	Evapotranspiration for June in South Central region
ETSC_AUG	Evapotranspiration for August in South Central
	region
ETSC_SEP	Evapotranspiration for September in South Central
	region
ETSC_OCT	Evapotranspiration for October in South Central
	region
5-5-1-3-7. 1	field function of winter season rice in Central

Highlands region

- YW_CH = -21.19495
 - + 0.50778 * TREND -1.49071 * ln(ETCH JUN)
 - + 8.89444*ln(ETCH SEP)
- YW CH Yield of winter season rice in Central Highlands region
- TREND Linear time trend 1976=1
- ETCH JUN Evapotranspiration for June in Central Highlands region
- ETCH_SEP Evapotranspiration for September in Central Highlands region

5-5-1-3-8. Yield function of winter season rice in South East region

- 21.19495 YW_SE = + 0.11601 * TREND + 16.49354 * In(ETSE_AUG) - 6.96588*ln(ETSE_SEP) YW_SE Yield of winter season rice in South East region TREND Linear time trend 1976=1

- ETSE AUG Evapotranspiration for August in South East region
- ETSE SEP Evapotranspiration for September in South East region

5-5-1-3-9. Yield function of winter season rice in Mekong **River Delta region**

YW_MRD =- 21.19495

+ 0.50778 * TREND

+ 8.89444*ln(ETMRD_SEP)

YW_MRD Yield of winter season rice in Mekong River Delta region

TREND Linear time trend 1976=1

Evapotranspiration for September in ETMRD SEP Mekong River Delta region

5-5-2. Planted area functions

5-5-2-1. Planted area function of spring season rice

5-5-2-1-1. Planted area function of spring season rice pooled

(Less Meko	ng River Delta Region)	EYS_RRD	Ex
APS	= 25.07395		Ri
	(11.36)	SHIFT89	In
	+ 531.39551*DR81		ze
	(123.03)		
	+ 113.38698*DR82	5-5-2-1-3.	Pla
	(5.31)	North East	t reg
	+ 287.99908*DR84	APS_NE	=
	(108.88)		+
	+ 135.37101*DR85		*]
	(51.15)		+8
	-295.38267*DR87	APS_NE	Pl
	(3.65)		re
	+ 0.00055282 * ((RPPDt-1/NGDPD) * EYS)	RPPDt-1	Re
	* SHIFT89	NGDPD	G
	(3.12)	EYS_NE	E
	+ 0.00132 * ((RPPDt-1/NGDPD) * EYS)		N
	* SHIFT89 * DR81	SHIFT89	In
	(3.85)		ze
	+ 0.00085279 * ((RPPDt-1/NGDPD) * EYS)	ETNE_JAN	۹ Ev
	* SHIFT89 * DR82		
	(1.77)	5-5-2-1-4.	Pla
	- 0.00033167 * ((RPPDt-1/NGDPD) * EYS)	North Wes	t re
	* SHIFT89 * DR83	APS_NW	=
	(-1.25)		+
	+ 0.00232 * ((RPPDt-1/NGDPD) * EYS) * DR87		*]
	(3.40)	APS_NW	Pl
	+ 8.89679 * ln(ETJAN) * DR82		re
	(1.33)	RPPDt-1	Re
	+ 73.82035 * ln(ETJAN) * DR87	NGDPD	G
	(3.86)	EYS_NW	E
$\operatorname{Adj} R^2 = 0.9$	DW = 1.336		N
		SHIFT89	In
APS	Planted are of spring season rice		ze
DR81	Treatment variable for Region 81, Red River Delta		
DR82	Treatment variable for Region 82, North East	5-5-2-1-5.	Pla
DR83	Treatment variable for Region 83, North West	North Cen	tral
DR84	Treatment variable for Region 84, North Central	APS_NC	=
	Coast		+
DR85	Treatment variable for Region 85, South Central		*.
	Coast	APS_NC	PI
DR87	Treatment variable for Region 87, South East		re
ETJAN	Evapotranspiration value for January	RPPDt-1	Re
SHIFT89	Intercept Shift, SHIF189=1 in 1989 and beyond,	NGDPD	G
	zero before	EYS_NC	E
RPPDt-1	Retail paddy price lagged (000dong/MT)		N
NGDPD	GDP Deflator	SHIFT89	In
EYS	Expected (trend) yield of spring season rice		ze
5-5-2-1-2. 1	Planted area function of spring season rice in Red	5-5-2-1-6.	Pla
River Delta	region	South Cen	tral
APS RRD	= + 556.46946	APS SC	=
	+ 0.0018728 * RPPDt-1/(NGDPD/100)		+
	*EYS RRD * SHIFT89		*
APS RRD	Planted area of spring season rice in Red River	APS SC	PI
	Delta region		re

Retail paddy price lagged (000dong/MT)

GDP Deflator

RPPDt-1 NGDPD

EYS_RRD	Expected (trend) yield of spring season rice in Red	
SHIFT80	Intercent Shift SHIFT 89=1 in 1989 and beyond	
51111 1 0 9	zero before	
5-5-2-1-3.	Planted area function of spring season rice in	
North East	region	
APS NE	= + 138.46093	
	+ 0.00140561 * RPPDt-1/(NGDPD/100)	
	* EYS NE * SHIFT89	
	$+8.89679 * \ln(ETNE JAN)$	
APS NE	Planted area of spring season rice in North East	
	region	
R PPDt-1	Retail naddy price lagged (000dong/MT)	
	GDP Deflator	
EVS NE	Expected (trend) yield of spring season rice in	
E10_11E	North Fast region	
SHIFT89	Intercent Shift SHIFT 89=1 in 1989 and beyond	
0	zero before	
ETNE JAN	Evapotranspiration for January in North East region	
-	, , ,	
5-5-2-1-4.	Planted area function of spring season rice in	
North West	region	
APS_NW	=+25.07395	
	+ 0.00022115 * RPPDt-1/(NGDPD/100)	
	* EYS_NW * SHIFT89	
APS_NW	Planted area of spring season rice in North West	
	region	
RPPDt-1	Retail paddy price lagged (000dong/MT)	
NGDPD	GDP Deflator	
EYS_NW	Expected (trend) yield of spring season rice in	
01115700	North West region	
SHIF189	Intercept Shift, SHIF 189=1 in 1989 and beyond,	
5-5-2-1-5.	Planted area function of spring season rice in	
North Cent	ral region	
APS NC	= + 313.07303	
· _	+ 0.00055282 * RPPDt-1/(NGDPD/100)	
	* EYS NC * SHIFT89	
APS NC	Planted area of spring season rice in North Central	
-	region	
RPPDt-1	Retail paddy price lagged (000dong/MT)	
NGDPD	GDP Deflator	
EYS_NC	Expected (trend) yield of spring season rice in	
	North Central region	
SHIFT89	Intercept Shift, SHIFT89=1 in 1989 and beyond,	
	zero before	
5-5-2-1-6. Planted area function of spring season rice in		
South Cent	rai region	
APS_SC	= + 100.44490	
	+ 0.0005282 * KPPDt-1/(NGDPD/100)	
ADS SC	Dianted area of spring assess rise in North West	
Ars_sC	region	

RPPDt-1 Retail paddy price lagged (000dong/MT)

```
NGDPD GDP Deflator
```

99

Development of the Rice Econometric Model with Endogenous Water in Vietnam (REMEW-VIET)

EYS_SC	Expected (trend) yield of spring season rice in South Central region
SHIFT89	Intercept Shift, SHIFT89=1 in 1989 and beyond, zero before
5-5-2-1-7. I	Planted area function of spring season rice in
Central Hig	hlands region
APS_CH	= + 25.07395
	+ 0.00055282 * RPPDt-1/(NGDPD/100)
	* EYS_CH * SHIFT89
APS_CH	Planted area of spring season rice in Central
	Highlands region
RPPDt-1	Retail paddy price lagged (000dong/MT)
NGDPD	GDP Deflator
EYS_CH	Expected (trend) yield of spring rice in Central
	Highlands region
SHIFT89	Intercept Shift, SHIFT89=1 in 1989 and beyond, zero before
5-5-2-1-8. I	Planted area function of spring season rice in
South East	region
APS_SE	= - 270.30872
	+ 0.00055282 * RPPDt-1/(NGDPD/100)
	* EYS_SE * SHIFT89
	+ 0.00232 * RPPDt-1/(NGDPD/100)
	* EYS_SE
	+ 73.82035 * ln(ETSE_JAN)
APS_SE	Planted area of spring season rice in South East
	region
RPPDt-1	Retail paddy price lagged (000dong/MT)
NGDPD	GDP Deflator
EYS_SE	Expected (trend) yield of spring rice in South East
	region
SHIFT 89	recept Shift, SHIF 189=1 in 1989 and beyond,
ETSE_JAN	Evapotranspiration for January in South East region
5-5-2-1-9.	Planted area function of spring season rice in
Mekong Riv	ver Delta region
APS MRD	= - 618.98587
_	(-2.00)
	+ 0.75036 * APS MRDt-1
	(4.96)
	+ 16.35357 * TREND
	(1.50)
	+ 0.00310 * RPPDt-1/(NGDPD/100)
	* EYS_MRD * SHIFT89
	(2.96)
	- 40.88202 * D94
	(-2.43)
	+ 85.58497 * ln(ETMRD_JAN)
	(3.72)
	+ 54.99330 * ln(ETMRD_FEB)
Adj $R^2 = 0.9$	(1.00) 976 DW = 2.334

APS_MRD Planted area of spring season rice in Mekong River Delta region

APS_MRDt	-1 Planted area lagged of spring season
TDEND	Linear time trend 1076-1
	Datail and the miss lagged (000 dang(MT))
NCDPD	CDB Defleter
NGUPU EVS MDD	GDP Denator
EYS_MRD	River Delta region
SHIFT89	Intercept Shift, SHIFT89=1 in 1989 and beyond, zero before
ETMRD_JA	N Evapotranspiration for January in
	Mekong River Delta region
ETMRD_FE	EB Evapotranspiration for February in
	Mekong River Delta region
5-5-2-2.	Planted area function of summer
season ri	ce
5-5-2-2-1.	Planted area function of summer season rice
pooled	
(Less Meko	ng River Delta Region)
АРМ	= 338.21281
	(2.36)
	+ 262.30685*DR85
	(-1.40)
	- 126.79262*DR86
	(-23.23)
	- 1540.97457*DR87
	(-0.32)
	* CHIET 80
	(5 59)
	+ 0.00232 * ((RPPDt-1/NGDPD)*FYM)
	* SHIFT89 * DR85
	(-3.70)
	+ 0.0019 * ((RPPDt-1/NGDPD)*EYM)
	* SHIFT89 * DR87
	(2.11)
	- 0.00378 * ((RPPDt-1/NGDPD)*EYM)
	* DR87
	(-3.06)
	- 50.50563 * In(ETJUL)
	(-1.66)
	+ 57.92589 * In(ETJUL)*DR85
	(1.45) + 35.9262 * ln(ETMAY) * DR87
	(1.45)
	+ 295.61269 * In(ETAUG) * DR87
2	(5.12)
$Adj R^2 = 0.9$	D320 DW = 1.478
APM	Planted area of summer season rice
DR85	Treatment variable for Region 85, South Central
	Coast
DR86	Treatment variable for Region 86, Central
	Highlands
DR87	Treatment variable for Region 87, South East
ETJAN	Evapotranspiration value for January
SHIFT89	Intercept Shift, SHIFT89=1 in 1989 and beyond,
	zero before

VNRPPt-1	Retail paddy price (000dong/MT)
VNGDPD	GDP Deflator
EYM	Expected (trend) yield of summer season rice
5-5-2-2-2 1	Planted area function of summer season rice in
North Cent	ral region
APM NC	= -33821281
ATM_NC	$+ 0.00282 * R PPDt_1/(NGDPD/100)$
	* FYM NC * SHIFT89
	- 50 50563 * In(ETNC_ILY)
APM NC	Planted area of summer season rice in North Central
/ III _ IIC	region
RPPDt-1	Retail naddy price lagged (000dong/MT)
NGDPD	GDP Deflator
FVM NC	Expected (trend) yield of summer season rice in
L'im_ite	North Central region
SHIFT89	Intercent Shift SHIFT89=1 in 1989 and beyond
5111107	zero before
ETNC JLY	Evapotranspiration for July in North Central region
5-5-2-2-3. I	Planted area function of summer season rice in
South Cent	ral region
APM_SC	= + 75.90596
	+ 0.00050 * RPPDt-1/(NGDPD/100)
	* EYM_SC * SHIFT89
	+ 7.42026 * ln(ETSC_JLY)
APM_SC	Planted area of summer season rice in South Central
	region
RPPDt-1	Retail paddy price lagged (000dong/MT)
NGDPD	GDP Deflator
EYM_SC	Expected (trend) yield of summer season rice in
	South Central region
SHIFT89	Intercept Shift, SHIFT89=1 in 1989 and beyond,
	zero before
ETSC_JLY	Evapotranspiration for July in South Central region
5-5-2-2-4. 1	Planted area function of summer season rice in
Central Hig	hlands region
APM_CH	= +211.42019
	+ 0.00282 * RPPDt-1/(NGDPD/100)
	* EYM_CH * SHIF189
	- 50.50563 * In(ETCH_JLY)
APM_CH	Planted area of summer season rice in Central Highlands region
RPPDt-1	Retail paddy price lagged (000dong/MT)
NGDPD	GDP Deflator
EYM CH	Expected (trend) yield of summer season rice in
	Central Highlands region
SHIFT89	Intercept Shift, SHIFT89=1 in 1989 and beyond.
	zero before
ETCH JLY	Evapotranspiration for July in Central Highlands
	region

5-5-2-2-5. Planted area function of summer season rice in South East region

APM_SE = - 1202.76176 + 0.00472 * RPPDt-1/(NGDPD/100) * EYM_SE * SHIFT89

	- 0.00378 * RPPDt-1/(NGDPD/100)
	* EYM_SE
	+ 35.92620 * In(ETSE_MAY)
	- 50.50563 * In(ETSE_JLY)
	+ 295.61269 * In(ETSE_AUG)
APM_SE	Planted area of summer season rice in South East
	region
RPPDt-1	Retail paddy price lagged (000dong/MT)
NGDPD	GDP Deflator
EYM_SE	Expected (trend) yield of summer season rice in
	South East region
SHIFT89	Intercept Shift, SHIFT89=1 in 1989 and beyond,
	zero before
ETSE_MAY	Evapotranspiration for May in South East region
ETSE_JLY	Evapotranspiration for July in South East region
ETSE AUG	Evapotranspiration for August in South East region

5-5-2-2-6. Planted area function of summer season rice in Mekong River Delta region

APM_MRD = - 2259.04485 (-3.86) + 89.48408 * TREND (26.56) + 0.00845 * RPPDt-1/(NGDPD/100) * EYM_MRD * SHIFT89 (1.72) + 402.13189 * In(ETMRD_MAY) (3.08) + 189.50938 * D99 (3.27) Adj R² = 0.9877 DW = 1.521

- APM_MRD Planted area of summer season rice in Mekong River Delta region
- TREND Linear time trend 1976=1
- RPPDt-1 Retail paddy price lagged (000dong/MT)
- NGDPD GDP Deflator
- EYM_MRD Expected (trend) yield of summer season rice in Mekong River Delta region
- SHIFT89 Intercept Shift, SHIFT89=1 in 1989 and beyond, zero before
- ETMRD_MAY Evapotranspiration for May in Mekong River Delta region

```
D99 Dummy variable, D99=1 in 1999, otherwise 0
```

5-5-2-3. Planted area function of winter season rice

5-5-2-3-1. Planted area function of winter season rice pooled (Less Mekong River Delta Region) APW = 390.12531 (6.37) - 4.73004*TREND*DR84

- (-8.26)
- -0.51195*TREND*DR86
- (-3.82)
- + 1.76444*TREND*DR87
- (4.33)
- + 0.00034398*((RPPDt-1/NGDPD)*EYW)

SHIFT89 (1.56) + .00116((RPPDt-1/NGDPD)*EYW) *DR81 (2.13)+ .00179*((RPPDt-1/NGDPD)*EYW) *DR81 (1.51)- 17.54514*ln(ETJUN) (-1.72)+ 93.45954*ln(ETJUL)*DR81 (72.99)+ 74.1484*ln(ETJUL)*DR82 (3.71)+ 36.67058*In(ETJUL)*DR84 (23.06) - 35.9352*ln(ETAUG) (-4.03)+ 33.97683*In(ETAUG)*DR83 (2.43)- 33.14568*ln(ETOCT)*DR83 (-1.57)- 42.0415*ln(ETOCT)*DR83 (-2.92)+ 18.80624*ln(ETOCT)*DR87 (11.39) $Adj R^2 = 0.9980$ DW = 1.187 TREND Linear time trend 1976=1 **DR81** Treatment variable for Region 81, Red River Delta DR82 Treatment variable for Region 82, North East **DR83** Treatment variable for Region 83, North West DR84 Treatment variable for Region 84, North Central Coast DR86 Treatment variable for Region 86, Central Highlands **DR87** Treatment variable for Region 87, South East Intercept Shift, SHIFT89=1 in 1989 and beyond, SHIFT89 zero before RPPDt-1 Retail paddy price (000dong/MT) NGDPD GDP Deflator EYW Expected (trend) yield of winter season rice ETJUN Evapotranspiration value for June ETJUL Evapotranspiration value for July ETAUG Evapotranspiration value for August ETOCT Evapotranspiration value for October

5-5-2-3-2. Planted area function of winter season rice in Red River Delta region

```
APW_RRD = + 390.12531
+ 0.00034398 * RPPDt-1/(NGDPD/100)
*EYW_RRD * SHIFT89
+ 0.00116 * RPPDt-1/(NGDPD/100)
*EYW_RRD
- 17.54514 * In(ETRRD_JUN)
+ 93.45954 * In(ETRRD_JLY)
- 35.93520 * In(ETRRD_AUG)
APW_RRD Planted area of winter season rice in Red River
```

Delta region RPPDt-1 Retail paddy price lagged (000dong/MT) NGDPD GDP Deflator EYW_RRD Expected (trend) yield of winter season rice in Red River Delta region SHIFT89 Intercept Shift, SHIFT89=1 in 1989 and beyond, zero before ETRRD JUN Evapotranspiration for June in Red River Delta region ETRRD JLY Evapotranspiration for July in Red River Delta region ETRRD_AUG Evapotranspiration for August in Red River Delta region 5-5-2-3-3. Planted area function of winter season rice in North East region APW_NE = + 390.12531 + 0.00034398 * RPPDt-1/(NGDPD/100) *EYW NE * SHIFT89 - 17.54514 * In(ETNE JUN) + 74.14840 * ln(ETNE JLY) - 35.93520 * In(ETNE AUG) - 33.14568 * ln(ETNE OCT) APW NE Planted area of winter season rice in North East region RPPDt-1 Retail paddy price lagged (000dong/MT) NGDPD GDP Deflator EYW_NE Expected (trend) yield of winter season rice in North East region SHIFT89 Intercept Shift, SHIFT89=1 in 1989 and beyond, zero before ETNE_JUN Evapotranspiration for June in North East region ETNE_JLY Evapotranspiration for July in North East region ETNE AUGEvapotranspiration for August in North East region ETNE OCT Evapotranspiration for October in North East region 5-5-2-3-4. Planted area function of winter season rice in North West region APW NW = + 390.12531 + 0.00034398 * RPPDt-1/(NGDPD/100) *EYW NW * SHIFT89 - 17.54514 * ln(ETNW JUN) - 1.95837 * ln(ETNW_AUG) - 42.04150 * In(ETNW_OCT) APW_NW Planted area of winter season rice in North West region RPPDt-1 Retail paddy price lagged (000dong/MT) NGDPD GDP Deflator EYW NW Expected (trend) yield of winter season rice in North West region SHIFT89 Intercept Shift, SHIFT89=1 in 1989 and beyond, zero before

- ${\tt ETNW_JUNE} vapotranspiration \ for \ June \ in \ North \ West \ region$
- ETNW_JLY Evapotranspiration for July in North West region
- ETNW_AUG Evapotranspiration for August in North West region
- ETNW_OCT Evapotranspiration for October in North West region

5-5-2-3-5.	Planted	area	function	of	winter	season	rice	in
North Cer	tral regio	n						
ADW NC	- + 200 1	2521						

APW_NC =	+ 390.12531
	- 4.73004 * TREND
	+ 0.00034398 * RPPDt-1/(NGDPD/100)
	*EYW_NC * SHIFT89
	+ 0.00179 * RPPDt-1/(NGDPD/100)
	*EYW_NC
	- 17.54514 * ln(ETNC_JUN)
	+ 36.67058 * ln(ETNC_JLY)
	- 35.93520 * In(ETNC_AUG)
APW_NC	Planted area of winter season rice in North Central
	region
RPPDt-1	Retail paddy price lagged (000dong/MT)
NGDPD	GDP Deflator
EYW_NC	Expected (trend) yield of winter season rice in
	North Central region
SHIFT89	Intercept Shift, SHIFT89=1 in 1989 and beyond,

- S zero before
- ETNC_JUN Evapotranspiration for June in North Central region
- ETNC_JLY Evapotranspiration for July in North Central region
- ETNC AUG Evapotranspiration for August in North Central region

5-5-2-3-6. Planted area function of winter season rice in South East region

APW SC = + 390.12531

_	
	+ 0.00034398 * RPPDt-1/(NGDPD/100)
	*EYW_SC * SHIFT89
	- 17.54514 * ln(ETSC_JUN)
	- 35.93520 * In(ETSC_AUG)
APW_SC	Planted area of winter season rice in South Central
	region
RPPDt-1	Retail paddy price lagged (000dong/MT)
NGDPD	GDP Deflator
EYW_SC	Expected (trend) yield of winter season rice in
	South Central region
SHIFT89	Intercept Shift, SHIFT89=1 in 1989 and beyond,

- zero before
- ETSC JUN Evapotranspiration for June in South Central region
- ETSC_AUG Evapotranspiration for August in South Central region

5-5-2-3-7. Planted area function of winter season rice in Central Highlands region

```
APW CH = + 390.12531
          -0.51195 * TREND
          + 0.00034398 * RPPDt-1/(NGDPD/100)
          *EYW CH * SHIFT89
          - 17.54514 * In(ETCH_JUN)
          - 35.93520 * In(ETCH_AUG)
APW CH Planted area of winter season rice in Central
          Highlands region
          Linear time trend 1976=1
TREND
RPPDt-1
          Retail paddy price lagged (000dong/MT)
NGDPD
          GDP Deflator
```

```
EYW_CH Expected (trend) yield of winter season rice in
```

```
Central Highlands region
```

SHIFT89	Intercept Shift, SHIFT89=1 in 1989 and beyond,
	zero before
ETCH_JUN	Evapotranspiration for June in Central Highlands
	region
ETCH_AUG	Evapotranspiration for August in
	Central Highlands region

5-5-2-3-8. Planted area function of winter season rice in South East region

APW SE = + 390.12531 + 1.76444 * TREND + 0.00034398 * RPPDt-1/(NGDPD/100) *EYW SE * SHIFT89 - 17.54514 * ln(ETSE JUN) - 35.93520 * In(ETSE_AUG) + 18.80624 * ln(ETSE_OCT) APW_SE Planted area of winter season rice in South East region TREND Linear time trend 1976=1 RPPDt-1 Retail paddy price lagged (000dong/MT) NGDPD GDP Deflator EYW SE Expected (trend) yield of winter season rice in South East region SHIFT89 Intercept Shift, SHIFT89=1 in 1989 and beyond, zero before ETSE JUN Evapotranspiration for June in South East region ETSE_AUG Evapotranspiration for August in South East region ETSE_OCT Evapotranspiration for October in South East region

5-5-2-3-9. Planted area function of winter season rice in Mekong River Delta region

APW_MRD = +1606.51866 (2.21)- 40.25703*TREND (-14.62) - 0.00526 * RPPDt-1/(NGDPD/100)) *EYW_MRD*SHIFT89 (-1.45) + 0.00714 * RPPDt-1/(NGDPD/100)) *EYW MRD (1.81)+ 199.47094 * In(ETMRD_JUN) (1.67)- 214.79842 * ln(ETMRD_JUL) (-1.46) -72.42217 * D89 (-2.11)- 47.92462 * D96 (-1.92) Adj $R^2 = 0.9865$ DW = 1.574

- APW_MRD Planted area of winter season rice in Mekong River Delta region
- TREND Linear time trend 1976=1
- RPPDt-1 Retail paddy price lagged (000dong/MT)
- NGDPD GDP Deflator
- EYW_MRD Expected (trend) yield of winter season rice in

Mekong River Delta region

- SHIFT89 Intercept Shift, SHIFT89=1 in 1989 and beyond, zero before
- ETMRD_JUN Evapotranspiration for June in Mekong River Delta region
- ETMRD_AUG Evapotranspiration for August in Mekong River Delta region
- ETMRD_OCT Evapotranspiration for October in Mekong River Delta region

5-5-3. Production identities

5-5-3-1. Production identities of spring season rice

- 5-5-3-1-1. Production identity of spring season rice in Red River Delta region
- QS_RRD = (YS_RRD/10)*APS_RRD
- QS_RRD Spring season rice production, Red River Delta (1000 metric tons)
- YS_RRD Spring season rice yield, Red River Delta (100kg/hectare)
- APS_RRD Spring season rice planted area, Red River Delta (1000 hectares)

5-5-3-1-2. Production identity of spring season rice in North East region

QS_NE = (YS_NE/10)*APS_NE

- QS_NE Spring season rice production, North East (1000 metric tons)
- YS_NE Spring season rice yield, North East (100kg/hectare)
- APS_NE Spring season rice planted area, North East (1000 hectares)

5-5-3-1-3. Production identity of spring season rice in North West region

 $QS_NW = (YS_NW/10)*APS_NW$

- QS_NW Spring season rice production, North West (1000 metric tons) YS_NW Spring season rice yield, North West
- (100kg/hectare) APS_NW Spring season rice planted area, North West (1000 hectares)

5-5-3-1-4. Production identity of spring season rice in North Central region

 $QS_NC = (YS_NC/10)*APS_NC$

- QS_NC Spring season rice production, North Central Coast (1000 metric tons)
- YS_NC Spring season rice yield, North Central Coast (100kg/hectare)
- APS_NC Spring season rice planted area, North Central Coast (1000 hectares)

5-5-3-1-5. Production identity of spring season rice in South Central region

 $QS_SC = (YS_SC/10)*APS_SC$

- QS_SC Spring season rice production, South Central Coast (1000 metric tons)
- YS_SC Spring season rice yield, South Central Coast

```
(100kg/hectare)
```

APS_SC Spring season rice planted area, South Central Coast (1000 hectares)

5-5-3-1-6. Production identity of spring season rice in Central Highlands region

 $QS_CH = (YS_CH/10)*APS_CH$

- QS_CH Spring season rice production, Central Highlands (1000 metric tons)
- YS_CH Spring season rice yield, Central Highlands (100kg/hectare)
- APS_CH Spring season rice planted area, Central Highlands (1000 hectares)

5-5-3-1-7. Production identity of spring season rice in South East region

- QS_SE Spring season rice production, South East (1000 metric tons)
- $QS_SE = (YS_SE/10)*APS_SE$
- YS_SE Spring season rice yield, South East (100kg/hectare) APS_SE Spring season rice planted area, South East
 - (1000 hectares)

5-5-3-1-8. Production identity of spring season rice in Mekong River Delta region

- QS_MRD = (YS_MRD/10)*APS_MRD
- YS_MRD Spring season rice yield, Mekong Delta (100kg/hectare)
- QS_MRD Spring season rice production, Mekong Delta (1000 metric tons)
- APS_MRD Spring season rice planted area, Mekong Delta (1000 hectares)

5-5-3-2. Production identities of summer season rice

5-5-3-2-1. Production identity of summer season rice in North Central region

- $QM_NC = (YM_NC/10)*APM_NC$
- QM_NC Summer season rice production, North Central Coast (1000 metric tons)
- YM_NC Summer season rice yield, North Central Coast (100kg/hectare)
- APM_NC Summer season rice planted area, North Central Coast (1000 hectares)

5-5-3-2-2. Production identity of summer season rice in South Central region

 $QM_SC = (YM_SC/10)*APM_SC$

- QM_SC Summer season rice production, South Central Coast (1000 metric tons)
- YM_SC Summer season rice yield, South Central Coast (100kg/hectare)
- APM_SC Summer season rice planted area, South Central Coast (1000 hectares)

5-5-3-2-3. Production identity of summer season rice in Central Highlands region

 $QM_CH = (YM_CH/10)*APM_CH$

QM_CH	Summer season rice production, Central Highlands
	(1000 metric tons)
YM_CH	Summer season rice yield, Central Highlands (100kg/hectare)

APM_CH Summer season rice planted area, Central Highlands (1000 hectares)

5-5-3-2-4. Production identity of summer season rice in South East region

QM SE = (YM SE/10)*APM SE

QM_SE	Summer season rice production, South East
	(1000 metric tons)
YM_SE	Summer season rice yield, South East
	(100kg/hectare)
APM_SE	Summer season rice planted area, South East
	(1000 hectares)

5-5-3-2-5. Production identity of summer season rice in Mekong River Delta region

			-		
OM	MRD =	(YM	MRD/10	APM	MRD

- QM_MRD Summer season rice production, Mekong Delta (1000 metric tons)
- YM_MRD Summer season rice yield, Mekong Delta (100kg/hectare)
- APM_MRD Summer season rice planted area, Mekong Delta (1000 hectares)

5-5-3-3. Production identities of winter season rice

5-5-3-3-1. Production identity of winter season rice in Red River Delta region

 $QW_RRD = (YW_RRD/10)*APW_RRD$

- YW_RRD Winter season rice yield, Red River Delta (100kg/hectare)
- QW_RRD Winter season rice production, Red River Delta (1000 metric tons)
- APW_RRD Winter season rice planted area, Red River Delta (1000 hectares)

5-5-3-3-2. Production identity of winter season rice in North East region

 $QW_NE = (YW_NE/10)*APW_NE$

- QW_NE
 Winter season rice production, North East (1000 metric tons)

 YW_NE
 Winter season rice yield, North East (100kg/hectare)

 ADW NE
 Winter season rice last dama block for the formation of the formation
- APW_NE Winter season rice planted area, North East (1000 hectares)

5-5-3-3. Production identity of winter season rice in North West region

QW_NW = (YW_NW/10)*APW_NW

QW_NW	Winter season rice production, North West
	(1000 metric tons)
YW_NW	Winter season rice yield, North West
	(100kg/hectare)
ADW NW	Winter season rice planted area. North Wo

APW_NW Winter season rice planted area, North West (1000 hectares)

5-5-3-3-4.	Production identity of winter season rice in North
Central re	gion
QW_NC =	(YW_NC/10)*APW_NC
QW_NC	Winter season rice production, North Central Coast
	(1000 metric tons)
YW_NC	Winter season rice yield, North Central Coast
	(100kg/hectare)
APW_NC	Winter season rice planted area, North Central
	Coast (1000 hectares)
5-5-3-3-5.	Production identity of winter season rice in South
Central reg	gion
QW_SC =	(YW_SC/10)*APW_SC
QW_SC	Winter season rice production, South Central Coast
	(1000 metric tons)
VW SC	Winter season rise wield South Control Coast

- YW_SC Winter season rice yield, South Central Coast (100kg/hectare)
- APW_SC Winter season rice planted area, South Central Coast (1000 hectares)

5-5-3-3-6. Production identity of winter season rice in Central Highlands region

 $QW_CH = (YW_CH/10)*APW_CH$

- QW_CH Winter season rice production, Central Highlands (1000 metric tons)
- YW_CH Winter season rice yield, Central Highlands (100kg/hectare)
- APW_CH Winter season rice planted area, Central Highlands (1000 hectares)

5-5-3-3-7. Production identity of winter season rice in South East region

- QW_SE = (YW_SE/10)*APW_SE
- QW_SE Winter season rice production. South East (1000 metric tons)
- YW_SE Winter season rice yield, South East (100kg/hectare)
- APW_SE Winter season rice planted area, South East (1000 hectares)

5-5-3-3-8. Production identity of winter season rice in Mekong River Delta region

- QW_MRD = (YW_MRD/10)*APW_MRD
- QW_MRD Winter season rice production, Mekong Delta (1000 metric tons)
- YW_MRD Winter season rice yield, Mekong Delta (100kg/hectare)
- APW_MRD Winter season rice planted area. Mekong Delta (1000 hectares)

5-5-3-4. Production identities for regions

5-5-3-4-1. Production identity in Red River Delta region

 $QT_RRD = QS_RRD + QW_RRD$

- QS_RRD Spring Season Rice Production, Red River Delta (1000 metric tons)
- QW_RRD Winter Season Rice Production, Red River Delta (1000 metric tons)

5-5-3-4-2. Production identity in North East region

 $QT_NE = QS_NE + QW_NE$

- QS_NE Spring Season Rice Production, North East (1000 metric tons)
- QW_NE Winter Season Rice Production, North East (1000 metric tons)

5-5-3-4-3. Production identity in North West region

 $QT_NW = QS_NW + QW_NW$

- QS_NW Spring Season Rice Production, North West (1000 metric tons)
- QW_NW Winter Season Rice Production, North West (1000 metric tons)

5-5-3-4-4. Production identity in North Central region

 $QT_NC = QS_NC + QM_NC + QW_NC$

- QS_NC Spring Season Rice Production, North Central Coast (1000 metric tons)
- QM_NC Summer Season Rice Production, North Central Coast (1000 metric tons)
- QW_NC Winter Season Rice Production, North Central Coast (1000 metric tons)

5-5-3-4-5. Production identity in South Central region

 $QT_SC = QS_SC + QM_SC + QW_SC$

- QS_SC Spring Season Rice Production, South Central Coast (1000 metric tons)
- QM_SC Summer Season Rice Production, South Central Coast (1000 metric tons)
- QW_SC Winter Season Rice Production, South Central Coast (1000 metric tons)

5-5-3-4-6. Production identity in Central Highlands region

- QT CH = QS CH + QM CH + QW CH
- QS_CH Spring Season Rice Production, Central Highlands (1000 metric tons)
- QM_CH Summer Season Rice Production, Central Highlands (1000 metric tons)
- QW_CH Winter Season Rice Production, Central Highlands (1000 metric tons)

5-5-3-4-7. Production identity in South East region

 $QT_SE = QS_SE + QM_SE + QW_SE$

- QS_SE Spring Season Rice Production, South East (1000 metric tons)
- QM_SE Summer Season Rice Production, South East (1000 metric tons)
- QW_SE Winter Season Rice Production, South East (1000 metric tons)

5-5-3-4-8. Production identity in Mekong River Delta region

- $QT_MRD = QS_MRD + QM_MRD + QW_MRD$
- QS_MRD Spring Season Rice Production, Mekong Delta (1000 metric tons)
- QM_MRD Summer Season Rice Production, Mekong Delta (1000 metric tons)
- QW_MRD Winter Season Rice Production, Mekong Delta

(1000 metric tons)

5-5-3-5. I	5-5-3-5. Production identities for rice types							
5-5-3-5-1. P	roduction identity of spring season rice							
$QS = QS_RI$	RD + QS_NE + QS_NW + QS_NC + QS_SC							
+ QS_CH	+ QS_CH + QS_SE + QS_MRD							
QS_RRD	Spring Season Rice Production, Red River Delta							
	(1000 metric tons)							
QS_NE	Spring Season Rice Production, North East (1000							
	metric tons)							
QS_NW	Spring Season Rice Production, North West (1000							
	metric tons)							
QS_NC	Spring Season Rice Production, North Central							
	Coast (1000 metric tons)							
QS_SC	Spring Season Rice Production, South Central							
	Coast (1000 metric tons)							
QS_CH	Spring Season Rice Production, Central Highlands							
	(1000 metric tons)							
QS_SE	Spring Season Rice Production, South East (1000							
	metric tons)							
QS_MRD	Spring Season Rice Production, Mekong Delta							
	(1000 metric tons)							

5-5-3-5-2. Production identity of summer season rice

- QM = QM_NC + QM_SC + QM_CH + QM_SE + QM_MRD QM_NC Summer Season Rice Production, North Central Coast (1000 metric tons)
- QM_SC Summer Season Rice Production, South Central Coast (1000 metric tons)
- QMCH Summer Season Rice Production, Central Highlands (1000 metric tons)
- QM_SE Summer Season Rice Production, South East (1000 metric tons)
- QM_MRD Summer Season Rice Production, Mekong Delta (1000 metric tons)

5-5-3-5-3. Production identity of winter season rice

QW = QW_RRD + QW_NE + QW_NW + QW_NC + QW_SC + QW_CH + QW_SE + QW_MRD

- QW_RRD Winter Season Rice Production, Red River Delta (1000 metric tons)
- QW_NE Winter Season Rice Production, North East (1000 metric tons)
- QW_NW Winter Season Rice Production, North West (1000 metric tons)
- QW_NC Winter Season Rice Production, North Central Coast (1000 metric tons)
- QW_SC Winter Season Rice Production, South Central Coast (1000 metric tons)
- QW_CH Winter Season Rice Production, Central Highlands (1000 metric tons)
- QW_SE Winter Season Rice Production, South East (1000 metric tons)
- QW_MRD Winter Season Rice Production, Mekong Delta (1000 metric tons)

5-5-3-6. Production identity for whole country Q = QS + QM + QW

QS	Spring	Season	Rice	Produc	tion,	Vietnam	(1000
	metric	tons)					
~	~	~		. .			

- Summer Season Rice Production, Vietnam (1000 QM metric tons)
- QW Winter Season Rice Production, Vietnam (1000 metric tons)

5-5-3-7. Production identity for milled rice

QME = (1000*Q*0.6667)

- QME Total rice production, milled equivalent (metric tons) Total (All Seasons) Rice Production, Vietnam (1000 Q
- metric tons)

5-5-4. Rice export function

FEX= - 1626586

(-3.40)

- (4.26) + 605.98133*(WP*NEXGI) / (NGDPD/100)
 - (2.76)
- +327.07807*(WP*NEXGI)/RRPD * SHIFT90 (1.51)
- +1325.5420*(WP*NEXGI) / RRPD * SHIFT96 (4.32) + 1086048*D99

DW = 2.52

(3.44)

Adj $R^2 = 0.9539$

QME	Rice production (milled equivalent)
WP	Thai 35% broken price in \$US as reported by
	USDA
NEXGI	Exchange rate
NGDPD	Gross Domestic Product Deflator
RRPD	Retail rice price(units)
SHIFT90	Intercept Shift, SHIFT90=1 in 1990 and beyond,
	zero before
SHIFT96	Intercept Shift, SHIFT96=1 in 1996 and beyond,
	zero before
D99	Dummy variable, D99=1 in 1999, otherwise 0

5-5-5. Rice stock change function

```
STC =
           - 263803
             (-1.42)
            + 0.55952*(QME-QMEt-1)
             (2.89)
            -10644*((RRPD/(NGDPD/100))-lag(NRRP/
            (NGDPD/100)))*SHIFT96
            (-2.43)
           +2587487*SHIFT01
             (6.61)
Adj R<sup>2</sup> = 0.7103
                                   DW = 2.294
```

QME	Rice production (milled equivalent)
RRPD	Retail rice price (1000dong/metric tons)
NGDPD	Gross Domestic Product Deflator
SHIFT01	Intercept Shift, SHIFT01=1 in 2001 and beyond
	zero before

....

5-5-6. Supply identity

lotal supply	
QD = QME ·	+ IMPME – EXPME – STCME
QD	Total supply
QME	Total rice production, milled equivalent (metric
	tons)
IMPME	Rice imports, milled equivalent (metric tons)
EXPME	Rice exports, milled equivalent (metric tons)
STCME	Stock change, milled equivalent (metric tons)

5-5-7. Consumption identity

Consumption per capita

- QC = QD / POP / 1000
- OC Rice consumption per capita (kilo gram/person)
- OD Rice supply (metric tons)
- POP Population (million people)

5-5-8. Rice demand function

QC*1000	= 182382	
	(21.79)	
	+ 25789*D86	
	(5.95)	
	- 18.15899*(I	RRPD/(NGDPD/100)
	(-50.73)	
	+ 103217*(N	GDPRGI/POP)
	(2.32)	
	+ 6609.72483	*SHIFT96
	(2.26)	
	- 6252.26201	*(Y89+Y90)
	(-2.92)	
Adj $R^2 = 0$.9684	DW = 1.877
RRPD	Retail rice pri	ce (1000dong/metric ton)

- R Gross Domestic Product Deflator NGDPD
- NGDPRGI Gross Domestic Product (real)
- POP Population (million person)
- D86 Dummy variable, D86=1 in 1986, otherwise 0

5-5-9. Price linkage function

RPME = - 533.20297 (-2.47)+ 1.47755*RPPD (30.02)+ 249.9007*log(TREND) (2.61) DW = 1.271 Adj R² = 0.9968 RRPD Retail paddy rice price (1000dong/metric ton) Retail milled rice price (1000dong/metric ton) RPME Linear time trend 1975=1 TREND

Development of the Rice Econometric Model with Endogenous Water in Vietnam (REMEW-VIET)

	Table 5-1. Elasticities of yield of spring season rice for evapotranspiration and trend								
Region	Trend	Dec.	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.
Red River Delta	1.007	-0.106	-0.071	0.157			0.262		-0.374
North East	0.619	-0.154	0.256				0.380		-0.542
North West	0.585	-0.145	0.242				0.360		-0.513
North Central	0.551	-0.137	0.228				0.339		-0.483
South Central	0.524	-0.130	0.217				0.322		-0.459
Central Highlands	0.443	-0.110	0.183		-0.551	0.585	0.272		-0.388
South East	0.539	-0.134	0.223				0.331		-0.472
Mekong River Delta	0.230	0.009	0.158				0.234		-0.334

Table 5_{-1} Electricities of yield of spring season rice for evanotranspiration and trend

 Table 5-2.
 Elasticities of yield of summer season rice for evapotranspiration and trend

Region	Trend	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.
North Central	0.852	0.096				-1.184	-0.985	1.556	-0.291
South Central	0.225	0.066							-0.199
Central Highlands	0.384	0.473		3.991				-4.212	-1.327
South East	0.073	0.083							-0.252
Mekong River Delta	0.121	0.075							-0.229

-

_

Table 5-3. Elasticities of yield of winter season rice for evapotranspiration and trend

Region	Trend	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.
Red River Delta	0.613		1.041	-0.262	1.342		-0.247
North East	0.579				0.326		-0.082
North West	0.453		0.339	-0.445	0.453		
North Central	0.553				0.410	0.558	-0.248
South Central	0.338	-0.716		-0.809	0.339	0.314	
Central Highlands	0.416	-0.070			0.416		
South East	0.080			0.653	-0.276		
Mekong River Delta	0.315				0.316		

Table 5-4. Elasticities of planted area of spring season rice

Desien	Tuand	Price	ET		
Region	Trend	(t-1)	Jan.	Feb.	
Red River Delta		0.035			
North East		0.060	0.050		
North West		0.065			
North Central		0.015			
South Central		0.030			
Central Highlands		0.193			
South East		0.445	1.045		
Mekong River Delta	0.305	0.040	0.091	0.059	

Destau	Turnd	Price	ET				
Region	Trend	(t-1)	May	Jun.	Jly.	Aug.	
North Central		0.164			-0.419		
South Central		0.044			0.064		
Central Highlands		3.689			-31.94		
South East		-0.027	0.375		-0.527	3.087	
Mekong River Delta	1.316	0.063	0.338				

Table 5-5. Elasticities of planted area of summer season rice

Table 5-6. Elasticities of planted area of winter season rice							
Region	Trend	Price	ET				
		(t-1)	Jun.	Jly.	Aug.	Sep.	Oct.
Red River Delta		0.030	-0.029	0.157	-0.060		
North East		0.007	-0.051	0.216	-0.105		-0.096
North West		0.015	-0.158		-0.018		-0.379
North Central	-0.339	0.062	-0.072	0.150	-0.147		
South Central		0.016	-0.122		-0.250		
Central Highlands	-0.066	0.014	-0.130		-0.265		
South East	0.118	0.008	-0.067		-0.138		0.072
Mekong River Delta	-0.828	0.036	0.234	-0.252			

5-6. Simulation results

5-6-1. Results of estimation of yield functions

Table 5-1 through Table 5-3 show elasticities of yield for ET of spring, summer, and winter season rice respectively.

The planting of spring season rice occurs from December to February and harvesting occurs from June to July. The planting and harvest time of summer season rice is May to June and September to October. The summer season rice is cultivated only in southern regions because typhoons hit the northern regions during the harvesting period. Winter season rice follows spring season rice in the northern regions, and planting occurs during June to July and harvest time is September to October.

The estimation results for spring season rice show that higher ET in January and May leads higher yield. These results suggest that water supply during the planting and flowering period is important for the growth of spring season rice, and if water supply decreases 1% in May in Mekong River Delta region, yield will decrease 0.234%. The results of summer rice show that higher ET in March leads higher yield. The water supply during the flowering season is not as critical due to high precipitation in July and August. The results for winter season rice show that higher ET in September, which is the flowering time, is important for the growth of the rice, and if ET decreases 1% in September in Red River Delta region, yield will decrease 1.342%.

5-6-2. Results of estimation of planted area functions

Planted area function of spring, summer, and winter season rice are specified as linear functions based on a naïve expectation model. The explanatory variables are time trend, one-year lagged price, and current ET for each month. The elasticities evaluated at the average are shown in Table 5-4 through Table 5-6.

The elasticities of planted area of spring season rice for ET are null in most regions; however, in the South East region it is quite sensitive, i.e., if ET increases 1% in January in the region, the planted area will increase 1.045%. The elasticities of planted area of summer rice for ET in May in Southern regions are high. These results suggest that if the water supply increases during the planted area will increase in southern regions. Results for winter season rice differ from other two season rices. The elasticities of planted area of winter season rice for ET are negative in June and August. These results suggest that the excess supply of water during the rainy season will decrease the planted area of winter season rice.

5-6-3. Simulation results of supply and demand model

The simulation term is from 2003 to 2015. The assumptions of the simulation are as follows; (1) the growth value of GDP deflator for the simulation period is the average annual growth between 1999 and 2004, (2) the growth value of real GDP is the average

annual growth between 1996 and 2003, (3) the growth value of the exchange rate is the average annual growth between 1998 and 2004, (4) the growth value of population is the average annual growth between 1996 and 2003, (5) the linear trend of the yield functions are continued, (6) the trend of planted area functions are flat.

Figure 5-3 and Figure 5-4 show the simulation results for the production of spring and summer season rices in Mekong River Delta region, and Figure 5-5 through Figure 5-7 show the simulation results of the production of spring, summer, and winter season rices for the country as a whole.

The production of spring rice in Mekong River Delta region will increase 524 thousand metric tons (MT) from 2010 to 2015. On the other hand, the production of summer rice in the region will be stable at around 7.5 million MT (mMT). Summer rice production in the Mekong River Delta region drastically increased from 7.7 mMT in 2003 to 8.6 mMT in 2004; however, the model did not follow the change.

The production of spring, summer, and winter season rice will increase 1.6 mMT, 0.4 mMT, and 0.9 mMT respectively.

Figure 5-8 shows per capita rice consumption, and it will be stable around 200 kilogram (KG) Figure 5-9 shows the simulation result of the equilibrium real price. These prices are converted to real currency units using a CPI whose value is 100 in 1989. The farm price is estimated to be stable at around 200 thousand Dong per KG.

Fig. 5-3. Production of spring season rice in Mekong River Delta region

Fig. 5-5. Production of spring season rice for whole country

Fig. 5-6. Production of summer rice for whole country

Fig. 5-7. Production of winter rice for whole country

Fig. 5-9. Realized retail price (base year: 1989)

5-7. Conclusions

The supply and demand model presented can analyze changes in yield and planted area independently and consider supply responses and demand changes to the market price for rice while equating supply and demand. The baseline analysis indicates that productions of all season rice steadily increases due to an increase in yield. The planted area for the country as a whole has been decreasing in recent years and is a trend that is expected to continue in the outlook.

The cold weather and the insect disease outbreak in Vietnam are significant contributors to the sharp increase in the world price of rice in 2008. Not only high yield but climate change tolerant varieties of rice are necessary for stable rice farm management.