Chapter 2

Development of the Rice Econometric Model with Endogenous Water in Lao PDR (REMEW-LAO)

2-1. Introduction

Laos is a rice producing country in Southeast Asia where 64% of total food supply came from the staple crop in 2003. However, seasonal production is highly variable due to the low share of irrigated fields, i.e., about 10% in 2004. Laos covers 236,800 square kilometers and had a population of only 5.87 million in 2007, so the country is relatively land abundant. However, upland areas in Laos are experiencing population growth pressure and the productivity of shifting cultivation is declining. Stable water supply for wet season and upland rice cultivation is necessary for food security and farm management stabilization. The evaluation of water supply changes on rice yields and the resulting market responses from fluctuations in production are an essential theme of agricultural development in Laos. This chapter describes the supply and demand of rice in Laos, which is named Rice Econometric Model Edogenous Water in Lao (REMEW-LAO), focusing on the impacts of fluctuations of water supply on rice production.

2-2. SEDP and policies related to rice production

Following three-year socio-economic development plan from 1978 to 1980, 1st five-year socio-economic development plan (SEDP) was put into action in 1981. Under the economic plan, farmers' incomes were reduced by the following three policies; (1) High inflation rate. The inflation rate was over 50%. The inflation led to an increase in the real exchange rate and it was hard to export agricultural products. (2) High trade protectionism. Terms of trade of agricultural products got weaker against industrial products due to the high tariff rates and import quota placed on agricultural products. (3) Low government procurement price. The government price of rice and coffee were significantly lower than the prices in the black market.

The Lao government introduced the New Economic Mechanism (NEM; Rabop Mai) on the issue in the first SEDP. The NEM was one part of the liberalization policy of culture, politics, and economy (New Thinking; Chintanakan mai) modeled after Perestroika. The main policies are as follows; (1) introduction of a self-support accounting system for national and public cooporations, (2) abolishment of

the government procurement price of rice, (3) abolishment of the multiple exchange rate system, (4) liberalization of entry of private companies in production and marketing sectors, (5) streamlining of finance sector, (6) centralization of power for management of national assets and budget implementation, (7) trade liberalization except mineral products and timber.

In the agricultural sector, the government attempted to shrink the difference between the government price and the market price in 1984 and the government marketing board and distribution system of the government were abolished in 1987. Furthermore, the land tax rate was changed from a uniform rate to a variable rate depending on yields of agricultural products.

A committee consisted of Ministers and representatives of the party decided to make the transition from a strictly socialist economic system to one which includes faces of a market economy and to reform the land owner system in 1988. The reform guarantees farmers longterm use, alienation, and inheritance of land. Thus, farmers have defacto land ownership under state regulations. The independence of each farmer put an end to the favorable terms for cooperatives and state-owned farms. Participation in cooperatives became voluntary and the state-own farms were partly privatized.

The NEM reformed macro economic conditions and trade policies as follows; (1) sharp devaluation of the currency (kip) in September 1987 and abolishment of the multiple exchange rate system in July 1988, (2) moving the central bank interest closer to that of real rate, (3) abatement of printing money. These economic reforms and changes in agricultural policies increased the terms of trade by 40% from 1985 to 1989.

The 6th five-year SEDP is now in operation. The world economy is recovering and official development assistance (ODA) and foreign direct investment (FDI) are increasing. However, the high oil price had led to further hardship among the low income population. Following the situation, the SEDP set the following directions: (1) producing high value added goods, (2) increasing competitiveness and exploiting comparative advantages under the frameworks of ASEAN and WTO, (3) strengthen the linkage between economic

development and social development such as poverty reduction, (4) advancing a market economy under the socialism system.

The government also has outlined a strategic vision from 2000 to 2020. The main target is to increase per capita GDP and it will reach up to US\$885 and stepping out the category of least developing country. The main targets of agricultural sector are as follows; (1) increasing the self-sufficiency rate of food and confirmation for food security, (2) export promotion of commercial agricultural products, (3) stabilizing slash-and-burn agriculture.

In the strategic vision, agricultural land is divided into the Mekong river basin advanced market economy and the sloping region with a more closed economy. In the Mekong river basin, diversification and intensification of agriculture will be advanced and high value-added products will be promoted. In the sloping region, slush-and-burn methods are to be traded for fixed agriculture systems to increase the stability of producer livelihoods, increase of productivity, improve the socio-economic conditions, and protection of natural resources will be accomplished.

Organizations related to irrigation are important for this study. There are two types organizations. The Water Use Association (WUA) is a formal famers' association, and it manages irrigation plans and maintains irrigation facilities. Furthermore, the association purchases materials, provides finance, and works in marketing. Public assets such as pump, head works, canals, and constructions were devolved from the government.

The Water Use Group (WUG) is organized in locations where irrigation project supported by the Department of Irrigation (DOI) and Provincial Agriculture and Forestry Service (PAFS) exists. Irrigation facilities are maintained and managed by farmers' group while facility ownership is maintained by the government.

Distribution of rice and meats was restricted before 2002 and prices were controlled by the government. Previously, certificates issued by the local government were necessary for movements of these products. Now, there are no restrictions of the distributions.

Crop selection had been restricted and farmers had to follow instructions of the provincial government such as requiring farmers to cultivate rice in irrigated fields. The restriction on crop selection was also abolished in 2002.

2-3. Model

A supply and demand model for rice which includes a water supply variable affecting regional yields is developed. Planted area, yield, and production for each province, areas of province close to a small river basin, can be analyzed with the model.

The supply and demand model for rice in Laos consists of yield functions, planted area functions, production identities, supply identities, a consumption function, an import function, and a price linkage function. The yield and area functions for wet season are estimated for all provinces and monthly evapotranspiration (ET) is used as an explanatory variable which is a proxy for available water supplies. The generalized forms of these functions are as follows:

Yield function of wet season rice:

$$YL^{i} = f_{YL}(T, ET_{MAY}^{i}, \dots, ET_{NOV}^{i}),$$
 (2-1)

Area function of wet season rice:

$$AL'_{t} = f_{AL}(AL'_{t-1}, FP_{t-1}, ET'_{MAY,t-1}, \dots, ET'_{NOV,t-1}),$$
 (2-2)

Production of wet season rice:

$$QL' = YL'AL', QL = \sum_{i} YL'AL'$$
 (2-3)

Yield function of dry season rice:

$$YI^{i} = f_{YI}(T, ET_{NOV_{I-1}}^{i}, \dots, ET_{MAY_{I}}^{i}),$$
 (2-4)

Area function of dry season rice:

$$AI_{i}^{i} = f_{AI}(AI_{i-1}^{i}, FP_{i-1}, ET_{NOV_{i-2}}^{i}, \dots, ET_{MAY_{i-1}}^{i}),$$
 (2-5)

Production of dry season rice:

$$QI' = YIiAIi, QI = \sum_{i} YI'AI'$$
 (2-6)

Yield function of upland rice:

$$YU^{T} = f_{YU}(T, ET_{MAY}, \dots, ET_{NOV}),$$
 (2-7)

Area function of upland rice:

$$AU_{i}^{i} = f_{AU}(AU_{i-1}^{i}, FP_{i-1}, ET_{MA^{i}i-1}^{i}, ET_{NOV_{i-1}}^{i}),$$
 (2-8)

Production of upland rice:

$$QU^{i} = YU^{i}AU^{i}, QU = \sum_{i}YU^{i}AU^{i}$$
 (2-9)

Total production:

$$Q = QL + QI + QU, (2-10)$$

Total supply:

$$QS = Q + IMP - STC, (2-11)$$

Demand function:

$$QS/POP = f_{os}(RP, GDP/POP), \qquad (2-12)$$

Imports function:

$$IMP = f_{IMP} (WP \cdot EXR, Q), \qquad (2-13)$$

Price linkage function:

$$FP = f_{FP}(RP), \tag{2-14}$$

where *T* is time trend, *ET_May* through *ET_Nov* are evapotranspiration values for May through November, *YL*, *AL*, and *QL* are yield, planted area, and production of wet season rice, i is the number of provinces, *YI*, *AI*, and *QI* are yield, planted area, and production of dry season rice, *YU*, *AU*, and *QU* are yield, planted area, and production of upland rice, *Q* is total production, *IMP* is imports, *STC* is the annual change in stocks, *POP* is population, *GDP* is gross domestic products, *WP* is the world price of rice (Thailand, 5% broken, FOB), *EXR* is the exchange rate, *FP* is the producer price of rice, and *RP* is the retail price of rice. All are specified as linear functions.

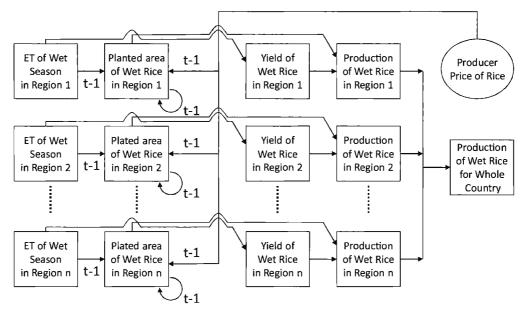


Fig. 2-1. Flowchart of wet season rice production sector

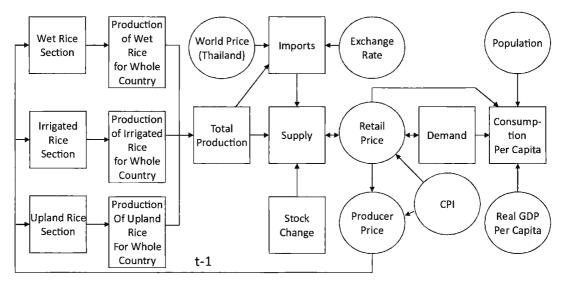


Fig. 2-2. Flowchart of supply and demand sector

Figure 2-1 and Figure 2-2 represent models for the wet season rice production sector and the overall supply and demand sector respectively. The model structures for irrigated and upland rice production sectors are same as those of the wet season rice production sector.

2-4. Data

The time series data for production and planted area for each province was provided by the Department of Planning in the Ministry of Agriculture and Forestry of Laos. The farm price for rice was obtained from FAO-STAT and the retail price of rice

was obtained from the National Statistics Center of the Committee for Planning and Cooperation of Laos. The prices used represent a national average price for Laos. CPI, GDP, and population are from the Asian Development Bank and the exchange rate and the world price of rice are data from the IMF. The estimation period for functions (1) through (14) is from 1980 to 2000 which starts in the earliest available year for CPI and ends in the last year of available ET values. The estimation period includes the turning point of the Laotian economy because the trend of rice production in the statistics showed that the shock of the economic liberalization on the rice

production was small.

The historical ET values are calculated by Ishigooka et al., 2005 and the calculation method is based on the Penman-Monteith equation (Allen et al., 1998). The climatic data for the calculation are 0.5 degree grid data and these are averaged for each province.

2-5. Estimation results of all functions

There are 17 provinces in Lao, and yield and planted area functions of wet season rice are estimated for all provinces.

Irrigated area is a small share of the total rice area in Laos, therefore, yield and area functions are estimated for only two provinces, Vientiane municipality and Savannakhet province. Yield and area of the other provinces are averaged and aggregated to the north region, central region excluding the two provinces, and south region.

These functions of upland rice are estimated for 15 provinces. There are no data of upland rice for Vientiane municiparity and Champasak province.

The estimated method is ordinary least square method (OLS) and time trends and some dummy variables are used for extreme climate or economic events.

2-5-1. Yield functions

2-5-1-1. Yield function of wet season rice (lowland rice)

2-5-1-1-1. Yield Function of Lowland Rice in Vientiane Mun.

```
YLH01=
          + 1.41350
             (0.64)
           + 0.15216*TREND
             (12.71)
           - 0.09906*T90
             (-5.28)
           + 0.76697*ET01MAY
                                  [0.599]
             (3.54)
           -1.67357*ET01OCT
             (-3.86)
                                  [-1.223]
             + 0.94395*ET01NOV
             (3.16)
                                  [0.648]
```

 $AdjR^2 = 0.9504$ D.W.=1.728

TREND Time Trend from 1980 to 2000
T90 Time Trend from 1990 to 2000, 0 otherwise
ET01MAY Evapotranspiration of May in Vientiane Mun.
ET01OCT Evapotranspiration of October in Vientiane Mun.

Yield of Lowland Rice in Vientiane Mun.

ET01NOV Evapotranspiration of November in Vientiane Mun.

2-5-1-1-2. Yield Function of Lowland Rice in Phongsaly

YLH02= + 2.38594 (1.19)

YLH01

+ 0.14034*TREND (26.60)-0.11489*T93 (-10.06)+ 0.28520*ET02MAY (3.05)[0.221]+ 0.66032*ET02JUN (3.12)[0.510]-0.55528*ET02JLY (-2.14)[-0.424]-0.66466*ET02OCT [-0.502](-3.32)+ 0.43447*D845 (8.60)- 0.92268*D93 (-10.66)-0.70954*D956 (-13.33)AdjR2=0.9876 D.W = 2.505

AdjR=0.98/6 D.W.=2.505

YLH02 Yield of Lowland Rice in Phongsaly TREND Time Trend from 1980 to 2000 T93 Time Trend from 1993 to 2000, 0 otherwise ET02MAY Evapotranspiration of May in Phongsaly ET02JUN Evapotranspiration of June in Phongsaly Evapotranspiration of July in Phongsaly ET02JLY ET02OCT Evapotranspiration of October in Phongsaly D845 Dummy Variable, 1 in 1984 to 1985, 0 otherwise D93 Dummy Variable, 1 in 1993, 0 otherwise

D956 Dummy Variable, 1 in 1995 to 1996, 0 otherwise

2-5-1-1-3. Yield Function of Lowland Rice in Luangnamtha

YLH03= + 5.66198 (3.56)+ 0.21550*TREND (12.31)-0.22559*T90 (-7.92)- 0.70205*ET03MAR (-3.95)[-0.392]+ 0.33729*ET03APR (2.30)[0.204] -0.72535*ET03MAY (-2.29)[-0.503]-1.22712*D91 (-6.22)AdjR2=0.9276 D.W.=2.366

YLH03

TREND Time Trend from 1980 to 2000
T90 Time Trend from 1990 to 2000, 0 otherwise
ET03MAR Evapotranspiration of March in Luangnamtha
ET03APR Evapotranspiration of April in Luangnamtha
ET03MAY Evapotranspiration of May in Luangnamtha
D91 Dummy Variable, 1 in 1991, 0 otherwise

Yield of Lowland Rice in Luangnamtha

Chapter 2 Development of the Rice Econometric Model with Endogenous Water in Lao PDR (REMEW-LAO)

2-5-1-1-4. \	ield Function of Lowlar	nd Rice in Oudomxav		+ 0.33312*ET06ARP	
YLH04=	- 7.63351			(3.89)	[0.221]
11104				+ 1.40548*ET06SEP	[]
	(-3.04)			(2.07)	[1.024]
	+ 0.22887*TREND		AdjR ² =0.93		D.W.=2.394
	(25.53)		•		
	- 0.24624*T90		YLH06	Yield of Lowland Rice i	n Luangprabang .
	(-17.80)		TREND	Time Trend from 1980 t	
	- 0.38784*ET04AUG		T86	Time Trend from 1986 t	to 2000, 0 otherwise
	(-2.12)	[-0.254]	ET06ARP	Evapotranspiration of A	pril in Luangprabang
	+ 1.33188*ET04SEP		ET06SEP		eptember in Luangprabang
	(2.87)	[0.886]		1 1	
	+ 1.04487*ET04OCT		2-5-1-1-7.	Yield Function of Lowlar	nd Rice in Huaphanh
	(3.41)	[0.690]	YLH07=	+ 9.51059	•
	- 0.46867*D924		I LIIO / –		
	(-7.80)			(2.39)	
$AdjR^2=0.98$	28	D.W.=1.822		+ 0.61266*TREND	
				(8.26)	
YLH04	Yield of Lowland Rice i	n Oudomxav		- 0.55814*T84	
TREND	Time Trend from 1980 t	•		(-6.95)	
T90	Time Trend from 1990 t			+ 0.79665*ET08MAY	
	Evapotranspiration of A	•		(2.63)	[0.564]
ET04SEP	Evapotranspiration of Se			- 2.82517*ET08JLY	
ET04OCT	Evapotranspiration of O	•		(-3.35)	[1.992]
D924		992 to 1994, 0 otherwise		+ 0.62473*D89	
D)21	Dummy variable, 1 m 1	John Control Wilde		(2.76)	
2-5-1-1-5. V	lield Function of Lowlar	nd Rice in Rokea	AdjR ² =0.92	226	D.W.=2.075
YLH05=	+ 0.11707	id idee iii bokeii			
121100	(14.52)		YLH07	Yield of Lowland Rice i	n Huaphanh
	+ 0.73508*ET05MAY		TREND	Time Trend from 1980 t	o 2000
	(2.18)	[0.499]	T84	Time Trend from 1984 t	to 2000
	- 1.52907*ET05JUN	[6.133]	ET07MAY	Evapotranspiration of M	lay in Huaphanh
	(-3.33)	[-1.023]	ET07JLY	Evapotranspiration of Ju-	ily in Huaphanh
	+ 2.80079*ET05JLY	[1.025]	D89	Dummy Variable, 1 in 1	989, 0 otherwise
	(3.47)	[1.837]			
	+ 1.41703*ET05AUG	C1	2-5-1-1-8.	Yield Function of Lowlar	nd Rice in Xayabury
	(3.53)	[0.934]	YLH08=	- 31.07729	
	- 0.87729*D92	[(4.61)	
	(-3.47)			+ 0.07559*TREND	
	- 1.26539*SHIFT00			(9.03)	
	(-5.61)			- 0.41746*ET08MAR	
AdjR ² =1.82		D.W.=2.155		(-2.56)	[-0.230]
,				+ 1.23084*ET08JUN	. ,
YLH05	Yield of Lowland Rice i	n Bokea		(2.43)	[0.880]
	Evapotranspiration of M	lay in Bokea		+ 2.00308*ET08SEP	. ,
ET05JUN	Evapotranspiration of Ju			(2.10)	[1.411]
ET05JLY	Evapotranspiration of Ju			+ 4.74911*ET08NOV	[]
	Evapotranspiration of A	-		(5.09)	[3.221]
D92	Dummy Variable, 1 in 1	-	AdjR ² =0.87		D.W.=2.622
SHIFT00	Dummy Variable, 1 afte		,		
	· , "	•	YLH08	Yield of Lowland Rice i	n Xayabury
2-5-1-1-6. Y	ield Function of Lowla	nd Rice in Luangprabang	TREND	Time Trend from 1980 t	
YLH06=	- 6.55499	OI		Evapotranspiration of M	
	(-2.15)		ET08JUN	Evapotranspiration of Ju	- ·
	+ 0.24501*TREND		ET08SEP	Evapotranspiration of Se	• •
	(9.63)		ET08NOV	Evapotranspiration of N	
	- 0.20084*T86				,,
	(-6.67)		2-5-1-1-9.	Yield Function of Lowlar	nd Rice in Xiengkhuang
	` /				·

(2.46)

YLH09=	+ 4.37166			- 0.40897*T82	
	(1.16)			(-2.02)	
	+ 0.38932*TREND			-0.29632*ET11MAR	
	(7.41)			(-2.68)	[-0.228]
	- 0.33745*T84			+ 0.39164*ET11APR	
	(-6.09)			(4.58)	[0.328]
	+ 1.22831*ET09MAR			- 1.43455*ET11JUN	
	(4.86)	[0.741]		(-2.68)	[-1.343]
	- 1.94472*ET09JUN	[0.7 11]		+ 1.24675*ET11JLY	
	(-3.80)	[-1.438]		(2.01)	[1.167]
	+ 1.32462*ET09SEP	[-1:+38]		+ 1.10256*ET11AUG	
	(2.13)	[0.982]		(3.08)	[1.017]
	- 1.42360*ET09OCT	[0.762]		- 0.50009*D93	
		[1 044]		(-3.29)	
AdjR²=0.91	(-2.83)	[-1.064]	$AdjR^2=0.93$	94	D.W.=1.862
AdjK =0.91	21	D.W.=2.473			
VI 1100	W. 14 CT L 4D:	37' 11	YLH11	Yield of Lowland Rice in	n Borikhamxay
YLH09	Yield of Lowland Rice in		TREND	Time Trend from 1980 to	2000
TREND	Time Trend from 1980 to		T82	Time Trend from 1982 to	o 2000, 0 otherwise
T84	Time Trend from 1984 to		ET11MAR	Evapotranspiration of M	arch in Borikhamxay
	Evapotranspiration of M		ET11APR	Evapotranspiration of A	
ET09JUN	Evapotranspiration of Ju-		ET11JUN	Evapotranspiration of Ju	
ET09SEP		ptember in Xiengkhuang	ET11JLY	Evapotranspiration of Ju	
ET09OTC	Evapotranspiration of Oc	tober in Xiengkhuang	ET11AUG		
			D93	Dummy Variable, 1 in 19	-
	Yield Function of Lowla	nd Rice in Vientiane		, , , ,	,
YLH10=	+ 0.12911		2-5-1-1-12.	Yield Function of Lowla	nd Rice in Khammuane
	(0.03)		YLH12=	+ 14.51833	no me manually
	+ 0.43839*TREND		IBILL	(3.66)	
	(8.24)			+ 0.50015*TREND	
	- 0.38372*T84			(6.09)	
	(-6.85)			- 0.45942*T84	
	+ 1.48876*ET10MAY			(-5.32)	
	(5.80)	[0.984]		- 0.40583*ET12MAR	
	- 2.21065*ET10JUN				[0.271]
	(4.56)	[-1.435]		(-2.81) + 1.02754*ET12MAY	[-0.271]
	+ 2.08830*ET10SEP				[0.0£1]
	(3.41)	[1.355]		(5.45)	[0.851]
	-1.19108*ET10OCT			-2.37920*ET12JUN	F 1 0743
	(-2.28)	[-0.781]		(-4.47)	[-1.974]
	-0.53829*SHIFT00			-1.41696*ET12OCT	5.1.000
	(-2.99)			(-2.19)	[-1.207]
$AdjR^2=0.92$	05	D.W.=1.824		-1.51262*D88	
				(-5.99)	
YLH10	Yield of Lowland Rice in	n Vientiane		-0.79501*D93	
TREND	Time Trend from 1980 to	2000		(-3.76)	
T84	Time Trend from 1984 to	2000, 0 otherwise	$AdjR^2=0.88$	304	D.W.=2.593
	Evapotranspiration of Ma	•			
ET10JUN	Evapotranspiration of Ju-	•	YLH12	Yield of Lowland Rice in	
ET10SEP	Evapotranspiration of Se		TREND	Time Trend from 1980 to	
ET10OCT	Evapotranspiration of Oc		T84	Time Trend from 1984 to	•
SHIFT00	Dummy Variable, 1 after		ET12MAR	Evapotranspiration of M	arch in Khammuane
D.111 100	Zaminy randolo, i altoi	. 2005, o omor moo	ET12MAY	Evapotranspiration of M	ay in Khammuane
2-5-1-1-11	Vield Function of Lowle	nd Rice in Borikhamxay	ET12JUN	Evapotranspiration of Ju	ne in Khammuane
YLH11=	-4.10774		ET12OCT	Evapotranspiration of O	ctober in Khammuane
I DILLI	(-1.64)		D88	Dummy Variable, 1 in 19	988, 0 otherwise
	+ 0.49191*TREND		D93	Dummy Variable, 1 in 19	993, 0 otherwise
	· U.TSISI TREND				

2-5-1-1-13. Yield Function of Lowland Rice in Savannakhet

13

Chapter 2 Development of the Rice Econometric Model with Endogenous Water in Lao PDR (REMEW-LAO)

YLH13=	+ 4.27109			(-2.63)	[-1.061]
	(1.88)			+ 1.21379*ET15AUG	
	+ 0.35008*T	REND		(2.56)	[1.004]
	(5.94)			+ 1.57427*ET15OCT	
	-0.30109*T8	34		(4.53)	[1.289]
	(-4.66)			- 1.43919*ET15NOV	
	+ 0.76054*E	T13MAY		(-3.46)	[-1.178]
	(3.56)	[0.573]		+ 0.87315*D846	
	- 1.45541*E	Γ13JLY		(8.72)	
	(-2.77)	[-1.118]		+ 0.75926	*SHIFT00
	- 1.71606*D	88		(4.37)	
	(-9.70)		$AdjR^2=0.95$	58	D.W.=2.585
	- 0.46290*D	93			
2	(-2.79)		YLH15	Yield of Lowland Rice	-
$AdjR^2 = 0.9$	437	D.W.=2.052	TREND	Time Trend from 1980	
			T9294	Time Trend from 1992	•
YLH13	Yield of Lowland Rice in		ET15MAR	• •	-
TREND	Time Trend from 1980 to		ET15JUN	Evapotranspiration of J	-
T84	Time Trend from 1984 to	·	ET15JLY	Evapotranspiration of J	
	Evapotranspiration of Ma		ET15AUG		· ·
ET13JLY	Evapotranspiration of July		ET15OCT		· ·
D88	Dummy Variable, 1 in 198		ET15NOV		
D93	Dummy Variable, 1 in 199	93, 0 otherwise	D846	•	1984 to 1986, 0 otherwise
251114	Vi-13 F 4 6 T 1	4 mi i C	SHIFT00	Dummy Variable, 1 after	er 2000, U otherwise
2-5-1-1-14. YLH14=	Yield Function of Lowlan + 18.84528	u Rice in Saravane	251116	Viold Eurotion of Low	and Diag in Champagael
ILMI4-	(4.34)]		2-5-1-1-10. YLH16=	-7.46465	and Rice in Champasack
	+ 0.51017*TREND		1 Lillo-	(-2.49)	
	(5.96)			+ 0.02978*TREND	
	- 0.47213*T84			(3.63)	
	(-5.09)			- 0.71741*ET16MAR	
	- 2.90249*ET14JLY			(-5.16)	[-0.389]
		[-2.202]		- 1.96447*ET16JUN	[0.003]
	- 1.13524*ET14SEP			(-5.06)	[-1.532]
	(-2.15)	[-0.850]		+ 1.46027*ET16SEP	
	- 1.10894*D98			(3.54)	[1.129]
	(-4.60)			+ 3.06727*ET16OCT	
$AdjR^2=0.86$	536	D.W.=1.495		(7.06)	[2.441]
				- 0.66619*D812	
YLH14	Yield of Lowland Rice in	Saravane		(-4.66)	
TREND	Time Trend from 1980 to	2000		+ 0.58777*D846	
T84	Time Trend from 1984 to	2000, 0 otherwise		(5.65)	
ET14JLY	Evapotranspiration of July	in Saravane		+ 0.71947*SHIFT00	
ET14SEP	Evapotranspiration of Sep			(4.14)	
D98	Dummy Variable, 1 in 198	32, 0 otherwise	$AdjR^2=0.91$	199	D.W.=2.768
	Yield Function of Lowlan	d Rice in Sekong	YLH16	Yield of Lowland Rice	•
YLH15=	- 6.57882		TREND	Time Trend from 1980	
	(-2.06)		ET16MAR	• •	-
	+ 0.03889*TREND		ET16JUN ET16SEP	Evapotranspiration of J	-
	(4.17) + 0.39730*T9294		ET16OCT		eptember in Champasack
	(8.73)		D812	Evapotranspiration of C	1981 to 1982, 0 otherwise
	+ 0.40307*ET15MAR		D812 D846	•	1981 to 1982, 0 otherwise
		[0.284]	SHIFT00	Dummy Variable, 1 after	•
	+ 1.41744*ET15JUN	[0.204]	51111 100	Daminy variable, I all	or 2000, o onici wisc
		[1.165]	2-5-1-1-17	Yield Function of Lowl	and Rice in Attaneu
	- 1.28748*ET15JLY	3	YLH17=	- 3.21988	
	· =/			· · · · · ·	

	(0 00)		TTO INION	T	371
	(-0.90)				ovember in Vientiane Mun.
	+ 0.01754*TREND		ET01DEC	· · · · · · · · · · · · · · · · · · ·	cember in Vientiane Mun.
	(2.29)		ET01FEB	Evapotranspiration of Fe	•
	- 0.91118*ET17JUN			Evapotranspiration of Ma	
	(-3.10)	[-0.725]	D801	Dummy Variable, 1 in 19	
	+ 1.30282*ET17AUG		D867	Dummy Variable, 1 in 19	
	(2.68)	[1.041]	D90	Dummy Variable, 1 in 19	990, 0 otherwise
	+ 0.92477*ET17SEP				
	(3.06)	[0.726]	2-5-1-2-2.	ield Function of Irrigate	d Rice in Savannakhet
	- 0.98006*ET17OCT		YIH13=	- 0.95591	
	(-2.50)	[-0.782]		(-1.31)	
	+ 0.93113*ET17NOV			+ 0.14845*T82	
	(2.42)	[0.745]		(14.04)	
	- 0.70824*D803			- 0.67468*ET13DEC(t-1)
	(-6.46)			(3.40)	[-0.412]
	- 1.17524*D88			- 0.85887*D81	
	(-6.73)			(3.02)	
	- 0.89641*D98			- 0.62802*D857	
	(-6.39)			(3.63)	
AdjR ² =0.92	• •	1	AdjR ² =0.91		D.W.=1.894
AdjR -0.92	2 D.W.=2.52		ragic on		21117 1105 1
YLH17	Yield of Lowland Rice in	n Attapeu	YIH13	Yield of Irrigated Rice in	Savannakhet
TREND	Time Trend from 1980 to	2000	T82	Time Trend from 1982 to	
ET17JUN	Evapotranspiration of Ju-	ne in Attapeu	ET13DEC	Evapotranspiration of De	•
ET17AUG	Evapotranspiration of Au	igust in Attapeu	D81	Dummy Variable, 1 in 19	
ET17SEP	Evapotranspiration of Se	ptember in Attapeu	D81 D857	•	
ET17OCT	Evapotranspiration of Oc	ctober in Attapeu	ונפע	Dummy Variable, 1 in 19	983 to 1987, 0 otherwise
ET17NOV	Evapotranspiration of No	ovember in Attapeu	251223	#-13 F	J Direct New Design
D803	Dummy Variable, 1 in 19	980 to 1983, 0 otherwise		rield Function of Irrigate	a Rice in North Region
D88	Dummy Variable, 1 in 19	988, 0 otherwise	YIHN=	+ 7.66036	
D00					
D98	Dummy Variable, 1 in 19			(2.43)	
	Dummy Variable, 1 in 19			+ 0.10050*TREND	
D98	•	998, 0 otherwise		+ 0.10050*TREND (14.01)	
D98 2-5-1-2.	Yield function of			+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1)
D98 2-5-1-2. season ri	Yield function of ice)	998, 0 otherwise		+ 0.10050*TREND (14.01)) [-1.648]
2-5-1-2. season ri 2-5-1-2-1. Y	Yield function of ice)	998, 0 otherwise		+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1	[-1.648]
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) Yield Function of Irrigate ity.	998, 0 otherwise		+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1 (-2.67)	[-1.648]
2-5-1-2. season ri 2-5-1-2-1. Y	Yield function of ice) Yield Function of Irrigate ity. + 5.11881	998, 0 otherwise		+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1	[-1.648])
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) Yield Function of Irrigate ity. + 5.11881 (3.65)	998, 0 otherwise		+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62)	[-1.648])
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) Vield Function of Irrigate ity. + 5.11881 (3.65) + 0.12231*T82	998, 0 otherwise	$AdjR^2=0.92$	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62)	[-1.648])
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) (ield Function of Irrigate ity. + 5.11881 (3.65) + 0.12231*T82 (22.78)	998, 0 otherwise irrigated rice (dry ed Rice in Vientiane	$AdjR^2=0.92$	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62)	[-1.648]) [0.619]
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) Yield Function of Irrigate ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) - 1.55728*ET01NOV(t-	irrigated rice (dry ed Rice in Vientiane	$AdjR^2=0.92$ YIHN	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62)	[-1.648]) [0.619] D.W.=2.541
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) Yield Function of Irrigate ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) - 1.55728*ET01NOV(t-1) (-3.22)	irrigated rice (dry ed Rice in Vientiane	•	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62)	[-1.648]) [0.619] D.W.=2.541
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) Yield Function of Irrigate (ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) - 1.55728*ET01NOV(t-(-3.22)) + 0.95342*ET01DEC(t-	irrigated rice (dry ed Rice in Vientiane	YIHN	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1 (3.64) + 0.55173*D98 (2.62) 276 Yield of Irrigated Rice in	[-1.648]) [0.619] D.W.=2.541 a North Region c 2000
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) Yield Function of Irrigate ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) -1.55728*ET01NOV(t-(-3.22)) + 0.95342*ET01DEC(t-(4.29)	irrigated rice (dry ed Rice in Vientiane	YIHN TREND	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62) 276 Yield of Irrigated Rice in Time Trend from 1980 to	[-1.648]) [0.619] D.W.=2.541 a North Region b 2000 ovember in North Region
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) Yield Function of Irrigate (ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) - 1.55728*ET01NOV(t-1.3.22) + 0.95342*ET01DEC(t-(4.29) + 0.31563*ET01FEB	irrigated rice (dry ed Rice in Vientiane [-0.898]	YIHN TREND ETNNOV	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62) 276 Yield of Irrigated Rice in Time Trend from 1980 to Evapotranspiration of No	[-1.648]) [0.619] D.W.=2.541 North Region 2000 exember in North Region exember in North Region
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) (ield Function of Irrigate ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) - 1.55728*ET01NOV(t-1.2.22) + 0.95342*ET01DEC(t-(4.29) + 0.31563*ET01FEB (2.75)	irrigated rice (dry ed Rice in Vientiane	YIHN TREND ETNNOV ETNDEC	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62) (2.62) (2.62) (2.62) (2.63) (2.64) Yield of Irrigated Rice in Time Trend from 1980 to Evapotranspiration of No Evapotranspiration of December 2.000 (14.01)	[-1.648]) [0.619] D.W.=2.541 North Region 2000 exember in North Region exember in North Region
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) Yield Function of Irrigate ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) - 1.55728*ET01NOV(t-(-3.22)) + 0.95342*ET01DEC(t-(4.29)) + 0.31563*ET01FEB (2.75) - 0.23937*ET01MAR	irrigated rice (dry ed Rice in Vientiane [-0.898] [0.488] [0.131]	YIHN TREND ETNNOV ETNDEC D98	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62) (2.62) (2.62) (2.62) (2.63) (2.64) Yield of Irrigated Rice in Time Trend from 1980 to Evapotranspiration of Note Evapotranspiration of December 2.34000000000000000000000000000000000000	[-1.648]) [0.619] D.W.=2.541 a North Region b 2000 ovember in North Region becember in North Region becember in North Region becomber in North Region becomber in North Region becomber in North Region becomber in North Region
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) Yield Function of Irrigate ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) - 1.55728*ET01NOV(t-(-3.22)) + 0.95342*ET01DEC(t-(4.29)) + 0.31563*ET01FEB (2.75) - 0.23937*ET01MAR (-2.57)	irrigated rice (dry ed Rice in Vientiane [-0.898]	YIHN TREND ETNNOV ETNDEC D98	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62) 276 Yield of Irrigated Rice in Time Trend from 1980 to Evapotranspiration of Decomposition of Decompositi	[-1.648]) [0.619] D.W.=2.541 a North Region b 2000 ovember in North Region becember in North Region becember in North Region becomber in North Region becomber in North Region becomber in North Region becomber in North Region
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) Yield Function of Irrigate (ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) -1.55728*ET01NOV(t-(-3.22) + 0.95342*ET01DEC(t-(4.29) + 0.31563*ET01FEB (2.75) - 0.23937*ET01MAR (-2.57) + 1.94770*D801	irrigated rice (dry ed Rice in Vientiane [-0.898] [0.488] [0.131]	YIHN TREND ETNNOV ETNDEC D98 2-5-1-2-4a. Region	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62) (7.66 Yield of Irrigated Rice in Time Trend from 1980 to Evapotranspiration of No Evapotranspiration of De Dummy Variable, 1 in 19 Yield Function of Irrigated	[-1.648]) [0.619] D.W.=2.541 a North Region b 2000 ovember in North Region becember in North Region becember in North Region becomber in North Region becomber in North Region becomber in North Region becomber in North Region
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) Yield Function of Irrigate ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) - 1.55728*ET01NOV(t-16.3.22) + 0.95342*ET01DEC(t-16.29) + 0.31563*ET01FEB (2.75) - 0.23937*ET01MAR (-2.57) + 1.94770*D801 (13.23)	irrigated rice (dry ed Rice in Vientiane [-0.898] [0.488] [0.131]	YIHN TREND ETNNOV ETNDEC D98 2-5-1-2-4a.	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62) (7.66 Yield of Irrigated Rice in Time Trend from 1980 to Evapotranspiration of No Evapotranspiration of De Dummy Variable, 1 in 19 Yield Function of Irrigated	[-1.648]) [0.619] D.W.=2.541 a North Region b 2000 ovember in North Region becember in North Region becember in North Region becomber in North Region becomber in North Region becomber in North Region becomber in North Region
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) Yield Function of Irrigate (ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) - 1.55728*ET01NOV(t-1.4.29) + 0.95342*ET01DEC(t-(4.29) + 0.31563*ET01FEB (2.75) - 0.23937*ET01MAR (-2.57) + 1.94770*D801 (13.23) + 0.27719*D867	irrigated rice (dry ed Rice in Vientiane [-0.898] [0.488] [0.131]	YIHN TREND ETNNOV ETNDEC D98 2-5-1-2-4a. Region (including 0	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62) 276 Yield of Irrigated Rice in Time Trend from 1980 to Evapotranspiration of No Evapotranspiration of De Dummy Variable, 1 in 19 Yield Function of Irrigated Properties of the Properties of P	[-1.648]) [0.619] D.W.=2.541 a North Region b 2000 ovember in North Region becember in North Region becember in North Region becomber in North Region becomber in North Region becomber in North Region becomber in North Region
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) (ield Function of Irrigate ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) - 1.55728*ET01NOV(t-1.2.22) + 0.95342*ET01DEC(t-(4.29) + 0.31563*ET01FEB (2.75) - 0.23937*ET01MAR (-2.57) + 1.94770*D801 (13.23) + 0.27719*D867 (3.02)	irrigated rice (dry ed Rice in Vientiane [-0.898] [0.488] [0.131]	YIHN TREND ETNNOV ETNDEC D98 2-5-1-2-4a. Region (including 0	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62) (76 Yield of Irrigated Rice in Time Trend from 1980 to Evapotranspiration of No Evapotranspiration of De Dummy Variable, 1 in 19 Yield Function of Irrigated Pol and 13)	[-1.648]) [0.619] D.W.=2.541 a North Region b 2000 ovember in North Region becember in North Region becember in North Region becomber in North Region becomber in North Region becomber in North Region becomber in North Region
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) Vield Function of Irrigate ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) - 1.55728*ET01NOV(t-(-3.22)) + 0.95342*ET01DEC(t-(4.29)) + 0.31563*ET01FEB (2.75) - 0.23937*ET01MAR (-2.57) + 1.94770*D801 (13.23) + 0.27719*D867 (3.02) + 0.73267*D90	irrigated rice (dry ed Rice in Vientiane [-0.898] [0.488] [0.131]	YIHN TREND ETNNOV ETNDEC D98 2-5-1-2-4a. Region (including 0	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62) 276 Yield of Irrigated Rice in Time Trend from 1980 to Evapotranspiration of Note Evapotranspiration of Decommy Variable, 1 in 19 Yield Function of Irrigated In 19 10 and 13) - 10.94278 (4.31) + 0.13108*TREND	[-1.648]) [0.619] D.W.=2.541 a North Region b 2000 ovember in North Region becember in North Region becember in North Region becomber in North Region becomber in North Region becomber in North Region becomber in North Region
D98 2-5-1-2. season ri 2-5-1-2-1. YMunicipari YIH01=	Yield function of ice) Vield Function of Irrigate ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) - 1.55728*ET01NOV(t-(-3.22)) + 0.95342*ET01DEC(t-(4.29)) + 0.31563*ET01FEB (2.75) - 0.23937*ET01MAR (-2.57) + 1.94770*D801 (13.23) + 0.27719*D867 (3.02) + 0.73267*D90 (4.72)	irrigated rice (dry ed Rice in Vientiane [-0.898] [-0.488] [-0.131] [-0.112]	YIHN TREND ETNNOV ETNDEC D98 2-5-1-2-4a. Region (including 0	+ 0.10050*TREND (14.01) -2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62) 276 Yield of Irrigated Rice in Time Trend from 1980 to Evapotranspiration of Note Evapotranspiration of Decommy Variable, 1 in 19 Yield Function of Irrigated In 19 10 and 13) -10.94278 (-4.31) + 0.13108*TREND (24.38)	[-1.648]) [0.619] D.W.=2.541 North Region 2000 Exember in North Region Exember in North Region P98, 0 otherwise ted Rice in Central
2-5-1-2. season ri 2-5-1-2-1. Municipari	Yield function of ice) Vield Function of Irrigate ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) - 1.55728*ET01NOV(t-(-3.22)) + 0.95342*ET01DEC(t-(4.29)) + 0.31563*ET01FEB (2.75) - 0.23937*ET01MAR (-2.57) + 1.94770*D801 (13.23) + 0.27719*D867 (3.02) + 0.73267*D90 (4.72)	irrigated rice (dry ed Rice in Vientiane [-0.898] [0.488] [0.131]	YIHN TREND ETNNOV ETNDEC D98 2-5-1-2-4a. Region (including 0	+ 0.10050*TREND (14.01) -2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62) 276 Yield of Irrigated Rice in Time Trend from 1980 to Evapotranspiration of No Evapotranspiration of Dommy Variable, 1 in 19 Yield Function of Irrigated Standard Stand	[-1.648]) [0.619] D.W.=2.541 I North Region 2000 Ovember in North Region Exember in North Region 1998, 0 otherwise Ited Rice in Central
D98 2-5-1-2. season ri 2-5-1-2-1. YMunicipari YIH01=	Yield function of ice) Vield Function of Irrigate ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) - 1.55728*ET01NOV(t-(-3.22)) + 0.95342*ET01DEC(t-(4.29)) + 0.31563*ET01FEB (2.75) - 0.23937*ET01MAR (-2.57) + 1.94770*D801 (13.23) + 0.27719*D867 (3.02) + 0.73267*D90 (4.72)	irrigated rice (dry ed Rice in Vientiane [-0.898] [-0.488] [-0.131] [-0.112]	YIHN TREND ETNNOV ETNDEC D98 2-5-1-2-4a. Region (including 0	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62) (2.62) (2.62) (2.62) (2.62) (2.62) (2.63) (2.62) (2.63) (2.63) (2.64) (2.64) (2.65) (2.67) (2.	[-1.648]) [0.619] D.W.=2.541 North Region 2000 Exember in North Region Exember in North Region Exember in North Region Exemption Exe
D98 2-5-1-2. season ri 2-5-1-2-1. YMunicipari YIH01=	Yield function of ice) Vield Function of Irrigate ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) - 1.55728*ET01NOV(t-(-3.22)) + 0.95342*ET01DEC(t-(4.29)) + 0.31563*ET01FEB (2.75) - 0.23937*ET01MAR (-2.57) + 1.94770*D801 (13.23) + 0.27719*D867 (3.02) + 0.73267*D90 (4.72)	irrigated rice (dry ed Rice in Vientiane [1] [-0.898] [1] [0.488] [0.131] [-0.112]	YIHN TREND ETNNOV ETNDEC D98 2-5-1-2-4a. Region (including 0	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62) 276 Yield of Irrigated Rice in Time Trend from 1980 to Evapotranspiration of No Evapotranspiration of De Dummy Variable, 1 in 19 Yield Function of Irrigated F	[-1.648]) [0.619] D.W.=2.541 North Region 2000 Exember in North Region Exember in North Region Exember in North Region Exemple in North Region Exemple in Central (1.618]
D98 2-5-1-2. season ri 2-5-1-2-1. YMunicipari YIH01=	Yield function of ice) Yield Function of Irrigate (ity. + 5.11881 (3.65) + 0.12231*T82 (22.78) - 1.55728*ET01NOV(t-1.43.22) + 0.95342*ET01DEC(t-(4.29) + 0.31563*ET01FEB (2.75) - 0.23937*ET01MAR (-2.57) + 1.94770*D801 (13.23) + 0.27719*D867 (3.02) + 0.73267*D90 (4.72)	irrigated rice (dry ed Rice in Vientiane [-0.898] [-0.488] [-0.112] D.W.=2.414 a Vientiane Mun.	YIHN TREND ETNNOV ETNDEC D98 2-5-1-2-4a. Region (including 0	+ 0.10050*TREND (14.01) - 2.34302*ETNNOV(t-1) (-2.67) + 0.93688*ETNDEC(t-1) (3.64) + 0.55173*D98 (2.62) (2.62) (2.62) (2.62) (2.62) (2.62) (2.63) (2.62) (2.63) (2.63) (2.64) (2.64) (2.65) (2.67) (2.	[-1.648]) [0.619] D.W.=2.541 North Region 2000 Exember in North Region Exember in North Region Exember in North Region Exemption Exe

Chapter 2 Development of the Rice Econometric Model with Endogenous Water in Lao PDR (REMEW-LAO)

	(201) [0.171]			0.06696*ETCADD	
	(-3.01) [-0.171]			- 0.96686*ETSAPR	[0.540]
	+ 1.07729*ETCMAY			(-4.04) + 0.92542*ETSMAY	[-0.549]
	(3.80) [0.647]				[0.626]
	- 0.59786*D98			(2.20)	[0.526]
. 17D? 0.05	(-3.14)	W. 1000		- 1.49482*ETSJUN	F 1 0003
$AdjR^2=0.97$	28 L	o.W.=1.990		(-2.57)	[-1.000]
				-0.62043*D801	
YIHC	Yield of Irrigated Rice in Central Region			(-3.94)	
TREND	Time Trend from 1980 to 2000			- 1.32285*D94	
ETCNOV	Evapotranspiration of November in Cent			(-6.24)	
ETCDEC	Evapotranspiration of December in Cent			+ 0.97119*D97	
ETCAPR	Evapotranspiration of April in Central R	-	1	(4.42)	
ETCMAY	Evapotranspiration of May in Central Re	•	ljR²=0.96	47	D.W.=2.510
D98	Dummy Variable, 1 in 1998, 0 otherwise				
			HS	Yield of Irrigated Rice in	•
	Yield Function of Irrigated Rice in Oth		REND	Time Trend from 1980 to	
Region (Ex	cluding 01 and 13)	ET	rsjan	Evapotranspiration of Ja-	,
YIHOC=	- 37.82907	ET	TSAPR	Evapotranspiration of Ap	·
	(-2.77)		rsmay	Evapotranspiration of M	-
	+ 0.56928*TREND	ET	rukan	Evapotranspiration of Ju	ne in South Region
	(14.82)	D8	301	Dummy Variable, 1 in 19	980 to 1981, 0 otherwise
	+ 9.56978*ETOCNOV(t-1)	D9	94	Dummy Variable, 1 in 19	994, 0 otherwise
	(3.19) [1.979]	D9	97	Dummy Variable, I in 19	997, 0 otherwise
	- 7.87553*ETOCDEC(t-1)				
	(-4.32) [-1.482]	2-	-5-1-3.`	Yield function of u	pland rice
	+ 3.92656*ETOCJAN	2-5	5-1-3-1. Y	ield Function of Upland	Rice in Phongsaly
	(2.91) [0.649]	JY	UH02=	+ 2.97859	
	- 1.92335*ETOCFEB			(1.52)	
	(-2.48) [-0.301]			+ 0.03296*TREND	
	+ 5.02468*ETOCMAY			(10.54)	
	(3.25) [1.081]			+ 0.21401*ET02APR	
	+ 2.17725*D857			(3.90)	[0.300]
	(3.03)			+ 0.72465*ET02JUN	
	- 3.69845*D89			(3.14)	[1.129]
	(-3.35)			-0.93818*ET02SEP	
$AdjR^2=0.94$	01 D.W.=2.149			(-2.94)	[-1.456]
				- 0.45164*ET02OCT	
YIHOC	Yield of Irrigated Rice in Other Central I	Region		(-1.97)	[-0.688]
TREND	Time Trend from 1980 to 2000			-0.50637*D93	
ETOCNOV	Evapotranspiration of November in Othe	r Central		(5.18)	
	Region	Ad	djR²=0.86	81	D.W.=2.382
ETOCDEC	Evapotranspiration of December in Othe	r Central			
	Region	ΥŲ	UH02	Yield of Upland Rice in	Phongsaly
ETOCJAN	Evapotranspiration of January in Other O	Central TR	REND	Time Trend from 1980 to	o 2000
	Region	ET	Γ02APR	Evapotranspiration of Ap	pril in Phongsaly
ETOCFEB	Evapotranspiration of February in Other	Central ET	Г02ЈUN	Evapotranspiration of Ju	ne in Phongsaly
	Region	ET	T02SEP	Evapotranspiration of Se	eptember in Phongsaly
ETOCMAY	Evapotranspiration of May in Other Cen	tral Region ET	r02OCT	Evapotranspiration of O	
D857	Dummy Variable, 1 in 1985 to 1987, 0 o	therwise D9	93	Dummy Variable, 1 in 1	993, 0 otherwise
D89	Dummy Variable, 1 in 1989, 0 otherwise			•	
			5-1-3-2. Y	ield Function of Upland	Rice in Luangnamtha
2-5-1-2-5.	ield Function of Irrigated Rice in Sout		UH03=	+ 5.78085	Ü
YIHS=	+ 4.36084	~		(4.01)	
	(1.32)			+ 0.03275*TREND	
	+ 0.11238*TREND			(12.04)	
	(13.23)			- 0.46538*ET03JUN	
	+ 0.89710*ETSJAN			(-2.76)	[-0.633]
	(2.20) [0.552]			0.60472*ET020CT	

(3.29)

[0.552]

- 0.60473*ET03OCT

	(-2.66)	[-0.813]		+ 1.25383*ET05SEP	
	+ 0.32814*D80	[-0.013]		(4.37)	[1.446]
	(4.26)			+ 1.86612*ET05NOV	[1,440]
	- 0.35044*D912			(6.28)	[2.037]
	(-6.14)			+ 0.35449*D901	[2.057]
	+ 0.18857*D935			(7.36)	
	(4.47)			- 0.32928*D96	
AdjR ² =0.92	, ,	D.W.=1.902		(-5.18)	
•			$AdjR^2=0.90$		D.W.=2.270
YUH03	Yield of Upland Rice in	Luangnamtha	·		
TREND	Time Trend from 1980 t	_	YUH05	Yield of Upland Rice in	Bokea
ET03JUN	Evapotranspiration of Ju	ine in Luangnamtha	T8087	Time Trend from 1980	to 1987, 0 otherwise
ET03OCT	Evapotranspiration of O	ctober in Luangnamtha	ET05APR	Evapotranspiration of A	
D80	Dummy Variable, 1 in 1	980, 0 otherwise	ET05JUN	Evapotranspiration of Ju	-
D912		991 to 1992, 0 otherwise	ET05JLY	Evapotranspiration of Ju	
D935		993 to 1995, 0 otherwise	ET05AUG	Evapotranspiration of A	ugust in Bokea
			ET05SEP	Evapotranspiration of Se	eptember in Bokea
2-5-1-3-3. \	Yield Function of Upland	l Rice in Oudomxay	ET05NOV	Evapotranspiration of N	ovember in Bokea
YUH04=	- 5.62900		D901	Dummy Variable, 1 in 1	990 to 1991, 0 otherwise
	(-2.01)		D96	Dummy Variable, 1 in 1	996, 0 otherwise
	+ 0.23653*T8087				
	(26.62)		2-5-1-3-5.	Yield Function of Upland	d Rice in Luangprabang
	- 0.21243*ET04APR		YUH06=	+ 18.20088	
	(-3.05)	[-0.256]		(3.12)	
	- 1.33144*ET04JUN			+ 0.02692*TREND	
	(-4.57)	[-1.778]		(7.82)	
	+ 1.94699*ET04SEP			+ 0.17182*ET06MAR	
	(3.70)	[2.595]		(2.49)	[0.193]
	+ 1.23437*ET04OCT			- 0.90024*ET06JLY	
	(3.62)	[1.632]		(-2.60)	[-1.233]
	- 0.68520*D92			- 1.37345*ET06SEP	
	(-5.56)			(-2.17)	[-1.905]
	- 0.45059*D94			- 0.96070*ET06OCT	
	(-4.41)			(-2.49)	[-1.326]
$AdjR^2 = 0.98$	307	D.W.=1.675		- 0.76463*ET06NOV	
				(-2.10)	[-1.005]
YUH04	Yield of Upland Rice in	Oudomxay		+ 0.36720*D95	
T8087	Time Trend from 1980 t	•		(4.10)	
ET04APR	Evapotranspiration of A	pril in Oudomxay		+ 0.29710*D98	
ET04JUN	Evapotranspiration of Ju-	ine in Oudomxay		(2.55)	
ET04SEP	Evapotranspiration of Se	eptember in Oudomxay	$AdjR^2=0.84$	174	D.W.=2.422
ET04OCT	Evapotranspiration of O	ctober in Oudomxay			
D92	Dummy Variable, 1 in 1	992, 0 otherwise	YUH06	Yield of Upland Rice in	Luangprabang
D94	Dummy Variable, 1 in 1	994, 0 otherwise	TREND	Time Trend from 1980 t	to 2000
			ET06MAR	Evapotranspiration of M	farch in Luangprabang
2-5-1-3-4. Y	Yield Function of Upland	l Rice in Bokea	ET06JLY	Evapotranspiration of Ju-	ıly in Luangprabang
YUH05=	- 17.01209		ET06SEP	Evapotranspiration of Se	eptember in Luangprabang
	(-5.51)		ET06OCT	Evapotranspiration of O	ctober in Luangprabang
	+ 0.03385*T8087		ET06NOV	Evapotranspiration of N	ovember in Luangprabang
	(7.33)		D95	Dummy Variable, 1 in 1	
	+ 0.10269*ET05APR		D98	Dummy Variable, 1 in 1	998, 0 otherwise
	(2.51)	[0.103]			
	+ 0.46675*ET05JUN			Yield Function of Upland	l Rice in Huaphanh
	(3.05)	[0.540]	YUH07=	- 17.34615	
	+ 1.26308*ET05JLY			(-4.34)	
	(4.40)	[1.433]		+ 0.03664*TREND	
	- 0.67638*ET05AUG	F 0 0013		(5.03)	
	(-5.45)	[-0.771]		+ 2.82176*ET08JUN	

${\bf Chapter~2}$ Development of the Rice Econometric Model with Endogenous Water in Lao PDR (REMEW-LAO)

	(5.18)	[3.808]		- 0.25746*D83	
	+ 1.52572*ET08OCT			(-3.06)	
	(3.05)	[2.026]		+ 0.16736*D90	
	- 1.06600*D803			(2.26)	
	(-10.34)			+ 0.37711*D92	
	+ 0.59251*D94			(4.91)	
	(3.74)		AdjR ² =0.89	159	D.W.=2.409
AdjR ² =0.96	48	D.W.=2.075			
			YUH09	Yield of Upland Rice in	Xiengkhuang
YUH07	Yield of Upland Rice in	Huaphanh	TREND	Time Trend from 1980 to	2000
TREND	Time Trend from 1980 to	0 2000	ET09MAY	Evapotranspiration of Ma	ay in Xiengkhuang
ET07JUN	Evapotranspiration of Ju-	ne in Huaphanh	ET09JLY	Evapotranspiration of Jul	y in Xiengkhuang
ET07OCT	Evapotranspiration of Oc	ctober in Huaphanh	ET09AUG	Evapotranspiration of Au	igust in Xiengkhuang
D803	Dummy Variable, 1 in19	80 to 1983, 0 otherwise	ET09SEP	Evapotranspiration of Se	ptember in Xiengkhuang
D94	Dummy Variable, 1 in 19	994, 0 otherwise	ET09OTC	Evapotranspiration of Oc	tober in Xiengkhuang
			ET09NOV	Evapotranspiration of No	ovember in Xiengkhuang
2-5-1-3-7. Y	ield Function of Upland	Rice in Xayabury	D83	Dummy Variable, 1 in 19	983, 0 otherwise
YUH08=	+ 8.44733		D90	Dummy Variable, 1 in 19	
	(5.79)		D92	Dummy Variable, 1 in 19	
	+ 0.04492*TREND			•	,
	(10.38)		2-5-1-3-9.	Yield Function of Upland	Rice in Vientiane
	- 0.98298*ET08JUN		YUH10=	- 14.14342	
	(-4.48)	[-1.271]		(-7.84)	
	- 0.70610*ET08AUG			+ 0.02490*TREND	
	(-3.13)	[-0.892]		(11.60)	
	- 0.31016*D87			+ 0.20732*ET10MAR	
	(-3.01)			(5.14)	[0.228]
	+ 0.49883*D89			+ 0.07054*ET10APR	· J
	(4.87)			(2.04)	[0.089]
	- 0.36290 *SHIFT99			+ 1.68969*ET10JLY	r
	(-4.06)			(6.48)	[2.339]
AdjR ² =0.88	•	D.W.=2.464		+ 1.54062*ET10SEP	()
	- 0			(6.85)	[2.146]
YUH08	Yield of Upland Rice in	Xavabury		- 0.42415*D83	L
TREND	Time Trend from 1980 to	• •		(-6.25)	
ET08JUN	Evapotranspiration of Ju-			- 0.20204*D93	
ET08AUG	Evapotranspiration of Au	* *		(-3.23)	
D87	Dummy Variable, 1 in 19			- 0.17020*D97	
D89	Dummy Variable, 1 in 19	·		(-2.85)	
SHIFT99	Dummy Variable, 1 after		AdjR ² =0.93		D.W.=2.182
	2 4		114 31 1 0122		2 202
2-5-1-3-8. Y	ield Function of Upland	Rice in Xiengkhuang	YUH10	Yield of Upland Rice in	Vientiane
YUH09=	- 15.73220		TREND	Time Trend from 1980 to	
	(-5.65)		ET10MAR	Evapotranspiration of Ma	
	+ 0.02125*TREND		ET10APR	Evapotranspiration of Ap	
	(8.44)		ET10JLY	Evapotranspiration of Jul	
	+ 0.58315*ET09MAY		ET10SEP	Evapotranspiration of Se	
	(4.90)	[0.758]	D83	Dummy Variable, I in 19	
	+ 1.22050*ET09JLY	[0.750]	D93	Dummy Variable, 1 in 19	•
	(4.14)	[1.549]	D97	Dummy Variable, 1 in 19	•
	- 0.65885*ET09AUG	[1.0 2]	<i>D</i> , 1	Dummy variable, 1 m 1.	777, 0 other wise
	(-3.64)	[-0.826]	2-5-1-3-10	Yield Function of Uplan	d Rice in Rorikhamyay
	+ 1.59956*ET09SEP	[0.020]	YUH11=	- 1.35070	a asiec in Durinilalitay
	(5.71)	[2.048]	101111	(-0.87)	
	+ 0.49705*ET09OCT	[2,070]		+ 0.09258*TREND	
	(2.19)	[0.641]		(28.61)	
	+ 0.57695*ET09NOV	[0.041]		+ 0.27683*ET11MAY	
		[0.706]			[0.365]
	(3.52)	[0.706]		(2.67)	[0.365]

YUH13= -3.56596

	+ 0.92119*ET11AUG			(-2.95)	
	(4.36)	[1.188]		+ 0.04120*TREND	
	-1.38712*ET11OCT			(16.76)	
	(-5.00)	[-1.861]		-0.16700*ET13APR	
	+ 0.78808*ET11NOV			(-2.53)	[-0.209]
	(5.22)	[1.009]		+ 0.44068*ET13MAY	()
	+ 0.42805*D845			(3.22)	[0.628]
	(5.97)			- 0.72157*ET13AUG	
	- 0.29626*D93			(-4.24)	[-1.041]
	(-3.28)			+ 0.93468*ET13SEP	į
	-0.31136*D95			(5.97)	[1.349]
	(-3.20)			+ 0.47253*ET13OCT	[]
AdjR ² =0.97		D.W.=1,827		(2.79)	[0.697]
				+ 0.17427*D90	[0.007.]
YUH11	Yield of Upland Rice in	Borikhamxav		(2.81)	
TREND	Time Trend from 1980	•		- 0.20587*D99	
	Evapotranspiration of M			(-3.16)	
	Evapotranspiration of A	·	AdjR ² =0.95	, ,	D.W.=1.839
	Evapotranspiration of O	•	Tagit 0.55	~ 2	2
ETIINOV		ovember in Borikhamxay	YUH13	Yield of Upland Rice in	Savannakhet
D845		984 to 1985, 0 otherwise	TREND	Time Trend from 1980	
D93	Dummy Variable, 1 in 1	·	ET13APR	Evapotranspiration of A	
D95	Dummy Variable, 1 in 1	•		Evapotranspiration of M	
<i>D</i> /3	Bulling Variable, 1 III 1	775, o other wise	ET13AUG		
2-5-1-3-11	Yield Function of Uplan	nd Rice in Khammuane	ET13SEP	- ·	eptember in Savannakhet
	_	id Rice in Knammaane	ET13OCT	Evapotranspiration of O	-
YUH12=	+ 1.37801		D90	Dummy Variable, 1 in 1	
	(1.03)		D99	Dummy Variable, 1 in 1	
	+ 0.01286*TREND		D55	Dunning Variable, 1 in 1	. 999, o otherwise
	(4.59)		2 5 1 2 12	Viold Eunstian of Unlar	ad Diag in Sanayana
	+ 0.20949*ET12MAR		2-3-1-3-13. YUH14=	Yield Function of Uplar + 2.59027	id Rice ili Saravalle
	(5.23)	[0.247]	10114-		
	+ 0.57628*ET12JLY			(1.11) + 0.02284*TREND	
	(3.64)	[0.843]			
	+ 0.40961*ET12AUG			(3.41) - 1.56756*ET14JUN	
	(3.00)	[0.593]			[2 110]
	- 1.15021*ET12OCT			(-3.57) + 1.28597*ET14JLY	[-2.110]
	(-5.65)	[-1.734]			[1 720]
	-0.26565*D812			(2.27) - 0.32862*D812	[1.738]
	(-5.14)				
	- 0.34834*D83			(-2.72)	
	(-4.53)			- 0.77331*D88	
	+ 0.34027*D87			(-5.08)	
	(4.50)			- 1.16783*D98	
AdjR ² =0.91	26	D.W.=2.065	$AdjR^2=0.83$	(-7.68)	D W -1 (70
			Aujk -0.83	02	D.W.=1.679
YUH12	Yield of Upland Rice in	Khammuane	VI II I I	Viold of Unland Disc: !-	Carayana
TREND	Time Trend from 1980	to 2000	YUH14	Yield of Upland Rice in	
ET12MAR	Evapotranspiration of M	Iarch in Khammuane	TREND	Time Trend from 1980	
ET12JLY	Evapotranspiration of Ju	ily in Khammuane	ET14JUN	Evapotranspiration of Ju	
ET12AUG	Evapotranspiration of A	ugust in Khammuane	ET14JLY	Evapotranspiration of Ju	•
ET12OCT	Evapotranspiration of O	ctober in Khammuane	D812	•	981 to 1982, 0 otherwise
D812	Dummy Variable, 1 in 1	981 to 1982, 0 otherwise	D88	Dummy Variable, 1 in 1	
D83	Dummy Variable, 1 in 1	983, 0 otherwise	D98	Dummy Variable, 1 in 1	998, U OINETWISE
D87	Dummy Variable, 1 in I	987, 0 otherwise	9 7 4 9 4 4	Well Daniel CT 1	. 4 Dt t. C.!
				Yield Function of Uplan	ia Rice in Sekong
2 5 1 2 12	Vield Function of Unlar	ıd Rice in Savannakhet	YUH15=	+ 5.54098	
2-3-1-3-12.	ricid runction of opiai	id Ittiou in Dataminiut		(2.75)	

+ 0.04253*TREND

Chapter 2 Development of the Rice Econometric Model with Endogenous Water in Lao PDR (REMEW-LAO)

	(7.00)		D00	D V 11 1: 1000 0 4 1
	(7.08)		D89	Dummy Variable, 1 in 1989, 0 otherwise
	- 0.31172*ET15MAR	[0 416]	D98	Dummy Variable, 1 in 1998, 0 otherwise
	(-3.22) - 0.97624*ET15JUN	[-0.416]	2_5_2 P	lanted area functions
	(-2.90)	[-1.520]		Area function of wet season rice
	+ 0.89644*ET15JLY	[-1.520]	(lowland	
		[1 200]	•	Area Function of Lowland Rice in Vientiane
	(2.56) - 0.70735*ET15AUG	[1.399]		
		[1 100]	Municipali APL01=	•
	(-2.34) + 0.19795*D847	[-1.109]	AFLUI-	+ 48.09605
				(9.43) + 0.07999*APL01(t-1)
	(3.30) - 0.69819*D88			(0.98)
				+ 7.66162*[FPR(t-1)/CPI(t-1)/100]
	(-6.83) + 0.25297*D934			• , , , , -
				(2.01) [0.048] + 1.01097*T87
AdjR ² =0.88	(3.43)	D.W =2.402		
Aujk -0.88	11	D.W.=2.403		(8.67)
MILLIC	W:-14 -611-1 1D: '-	S. Laure		- 0.12314*ET01JUN(t-1)
YUH15	Yield of Upland Rice in	· ·		(-2.55) [-0.263]
TREND	Time Trend from 1980 t			- 0.09390*ET01AUG(t-1)
	Evapotranspiration of M	ū		(-2.32) [-0.189]
ET15JUN	Evapotranspiration of Ju	· ·		- 18.76004*D95
ET15JLY	Evapotranspiration of Ju	-	4 UP2 0 00	(-11.55)
	Evapotranspiration of A		$AdjR^2=0.93$	303 D.W.=2.179
D847		984 to 1987, 0 otherwise	4 PY 04	D . 14 CT 1 D . 171 . 17
D88	Dummy Variable, 1 in 1		APL01	Planted Area of Lowland Rice in Vientiane Mun.
D934	Dummy Variable, I in I	1993 to 1994, 0 otherwise	FPR	Farm Price of Laos Rice (thousand kip per kg)
251215	325-1130	1D: 1 44	CPI	Consumer Price Index (1995=100)
	Yield Function of Uplar	nd Rice in Attapeu	T87	Time Trend from 1987 to 2000, 0 otherwise
YUH17=	- 5.55920		ET01JUN	Evapotranspiration of June in Vientiane Mun.
	(-2.63)		ET01AUG	
	+ 0.03612*TREND		D95	Dummy Variable, 1 in 1995, 0 otherwise
	(8.74)			
	-0.32121*ET17MAR			Area Function of Lowland Rice in Phongsaly
	(-2.99)	[-0.410]	APL02=	- 0.92726
	- 0.93452*ET17JUN	r 1 4003		(-1.25)
	(-3.21)	[-1.480]		+ 0.10490*APL02(t-1)
	+ 1.05715*ET17JLY	[1.672]		(1.79)
	(2.91)	[1.673]		+ 1.46287*[FPR(t-1)/CPI(t-1)/100]
	+ 0.90497*ET17SEP	0.416		(2.82) [0.074]
	(4.19)	[1.415]		+ 0.07483*T83
	+ 0.67149*ET17OCT	[1,067]		(6.69)
	(2.92)	[1.067]		- 0.01077*ET02APR(t-1)
	- 0.26188*D873			(-5.47) [-0.129]
	(-6.52)			+ 0.01071*ET02MAY(t-1)
	+ 0.50360*D89			(4.82) [0.206]
	(5.51)			+ 0.01852*ET02SEP(t-1)
	- 0.53853*D98			(3.54) [0.334]
$AdjR^2 = 0.87$	(-5.86)	D.W2 179		+ 0.01779*ET02OCT(t-1)
AdjK =0.87	82	D.W.=2.178		(4.41) [0.297]
377 77 17	371-14 - 681 1 4701 - 1-	A.u		+ 0.01335*ET02NOV(t-1)
YUH17	Yield of Upland Rice in	•		(2.39) [0.181]
TREND	Time Trend from 1980 t			- 0.35942*D83
	Evapotranspiration of M		A 1002 0.00	(-2.58)
ET17JUN	Evapotranspiration of Ju		AdjR ² =0.95	546 D.W.=2.438
ET17JLY	Evapotranspiration of Ju		A DY OO	Diented Area of Landaud Director Di
ET17SEP	Evapotranspiration of Se		APL02	Planted Area of Lowland Rice in Phongsaly
ET17OCT	Evapotranspiration of O	<u>-</u>	FPR	Farm Price of Laos Rice (thousand kip per kg)
D873	Dummy Variable, I in I	987 to 1993, 0 otherwise	CPI	Consumer Price Index (1995=100)

T83	Time Trend from 1983 t		APL04	Planted Area of Lowland	·-
ET02APR	Evapotranspiration of A	- -	FPR	Farm Price of Laos Rice	(thousand kip per kg)
	Evapotranspiration of M	ay in Phongsaly	CPI	Consumer Price Index (1	•
ET02SEP	Evapotranspiration of Se	eptember in Phongsaly	T8791	Time Trend from 1987 t	•
ET02OCT	Evapotranspiration of O	ctober in Phongsaly	T92	Time Trend from 1992 t	o 2000, 0 otherwise
ET02NOV	Evapotranspiration of N	ovember in Phongsaly	ET04MAR	Evapotranspiration of M	larch in Oudomxay
D83	Dummy Variable, 1 in 1	983, 0 otherwise	ET04JUN	Evapotranspiration of Ju	ine in Oudomxay
			ET04AUG	Evapotranspiration of A	ugust in Oudomxay
2-5-2-1-3. A	Area Function of Lowlan	d Rice in Luangnamtha	D86	Dummy Variable, 1 in 1	986, 0 otherwise
APL03=	+ 12.29642		D92	Dummy Variable, 1 in 1	992, 0 otherwise
	(5.08)				
	+ 0.58906*APL03(t-1)		2-5-2-1-5. A	Area Function of Lowlan	d Rice in Bokea
	(6.54)		APL05=	- 1.28032	
	+ 2.03624*[FPR(t-1)/CF	PI(t-1)/100]		(-1.19)	
	(0.96)	[0.084]		+ 0.04186*APL05(t-1)	
	- 0.05309*ET03MAR(t-	• •		(0.29)	
	(-3.42)	[-0.328]		+ 3.13786*[FPR(t-1)/CF	PI(t-1)/1001
	- 0.04042*ET03MAY(t-			(3.41)	[0.149]
	(-3.01)	[-0.599]		- 0.38599*T8083	[0,1,15]
	- 0.05092*ET03JUN(t-1	• •		(-4.73)	
	(-2.39)	[-0.726]		+ 0.33410*T8492	
	- 3.06307*D845	[-0.720]		(6.45)	
	(-4.08)			+ 0.66956*T93	
	· ·				
	- 1.91123*D912			(6.68)	- 1)
A 4:D2_0.01	(-2.85)	D.W2.151		+ 0.01554*ET05MAY(t	•
AdjR ² =0.91	05	D.W.=2.151		(4.40)	[0.273]
				+ 0.03721*ET05NOV(t-	
APL03	Planted Area of Lowland	-		(2.86)	[0.471]
FPR	Farm Price of Laos Rice	· · · · · · · · · · · · · · · · · · ·		+ 1.23056*D93	
CPI	Consumer Price Index (1		1	(5.27)	
	Evapotranspiration of M		AdjR ² =0.99	951	D.W.=2.591
ET03JUN	Evapotranspiration of Ju	-			
D845	•	984 to 1985, 0 otherwise	APL05	Planted Area of Lowland	
D912	Dummy Variable, 1 in 1	991 to 1992, 0 otherwise	FPR	Farm Price of Laos Rice	(thousand kip per kg)
			CPI	Consumer Price Index (1	1995=100)
2-5-2-1-4. A	Area Function of Lowlan	d Rice in Oudomxay	T8083	Time Trend from 198' t	*
APL04=	+ 6.86317		T8492	Time Trend from 1984 t	to 1992, 0 otherwise
	(3.64)		T93	Time Trend from 1993 t	to 2000, 0 otherwise
	+ 0.14939*APL04(t-1)		ET05MAY	Evapotranspiration of M	lay in Bokea
	(1.31)		ET05NOV	Evapotranspiration of N	ovember in Bokea
	+ 3.40601*[FPR(t-1)/CF	PI(t-1)/100]	D93	Dummy Variable, I in I	993, 0 otherwise
	(2.02)	[0.102]			
	+ 1.22566*T8791		2-5-2-1-6.	Area Function of Lowlan	d Rice in Luangprabang
	(7.09)		APL06=	+ 5.97910	
	+ 0.32116*T92			(7.70)	
	(4.31)			+ 0.02512*APL06(t-1)	
	- 0.03774*ET04MAR(t-	-1)		(0.26)	
	(-2.86)	[-0.170]		+ 0.79977*[FPR(t-1)/CF	PI(t-1)/100]
	- 0.03446*ET04JUN(t-1	-		(1.37)	[0.024]
	(-1.87)	[-0.367]		-0.01411*ET06MAR(t-	• •
	+ 0.02644*ET04AUG(t-	- ·		(-3.46)	[-0.068]
	(1.93)	[0.256]		+ 0.00577*ET06APR(t-	
	+ 4.27495*D86	[]		(2.16)	[0.042]
	(7.94)			+ 0.01207*ET06JUN(t-	
	- 3.05029*D92			(2.03)	[0.131]
				- 1.85857*D87	[1.1.0]
AdjR ² =0.93	(-3.44)	D W -2 421			
AajK =0.93	151	D.W,=2.431		(-9.76)	

-0.90359*D92

Chapter 2
Development of the Rice Econometric Model with Endogenous Water in Lao PDR (REMEW-LAO) 21

	(-4.96)		- 0.8058*ET08MAY(t-1)
	- 0.46781*D945		(-2.59) [-4.697]
	(-3.67)		+ 0.11764*ET08JUN(t-1)
AdjR ² =0.96	,		(2.79) [0.648]
			- 0.28414*ET08JLY(t-1)
APL06	Planted Area of Lowland Rice in Luangprabang		(-3.65) [-1.460]
FPR	Farm Price of Laos Rice (thousand kip per kg)		- 0.24766*ET08AUG(t-1)
CPI	Consumer Price Index (1995=100)		(-5.90) [-1.226]
	Evapotranspiration of March in Luangprabang		+ 0.22685*ET08OCT(t-1)
ET06APR	Evapotranspiration of April in Luangprabang		(3.79) [1.224]
ET06JUN	Evapotranspiration of June in Luangprabang		- 8.62696*D83
D87	Dummy Variable, 1 in 1987, 0 otherwise		(-3.72)
D92	Dummy Variable, 1 in 1992, 0 otherwise		- 9.24236*D96
D945	Dummy Variable, 1 in 1994 to 1995, 0 otherwise		(-4.11)
	,		+ 4.41419*D98
2-5-2-1-7, A	Area Function of Lowland Rice in Huaphanh		(2.72)
APL07=	+ 4.39814	AdjR ² =0.89	
	(1.68)	J	
	+ 0.03812*APL07(t-1)	APL08	Planted Area of Lowland Rice in Xayabury
	(0.33)	FPR	Farm Price of Laos Rice (thousand kip per kg)
	+ 3.55263*[FPR(t-1)/CPI(t-1)/100]	CPI	Consumer Price Index (1995=100)
	(3.86) [0.106]	ET08APR	Evapotranspiration of April in Xayabury
	-0.86662*T8083	ET08MAY	Evapotranspiration of May in Xayabury
	(-2.79)	ET08JUN	Evapotranspiration of June in Xayabury
	+0.56311*T93	ET08JLY	Evapotranspiration of July in Xayabury
	(7.97)	ET08AUG	Evapotranspiration of August in Xayabury
	- 0.03679*ET08JUN(t-1)	ET08OCT	Evapotranspiration of October in Xayabury
	(-2.71) [-0.452]	D83	Dummy Variable, 1 in 1983, 0 otherwise
	+ 0.04704*ET08JLY(t-1)	D96	Dummy Variable, 1 in 1996, 0 otherwise
	(3.25) [0.586]	D98	Dummy Variable, 1 in 1998, 0 otherwise
	+ 0.03810*ET08SEP(t-1)		
	. 0.03610 E100BEI (t-1)		
	(2.92) [0.461]	2-5-2-1-9. A	Area Function of Lowland Rice in Xiengkhuang
	• •	2-5-2-1-9. APL09=	Area Function of Lowland Rice in Xiengkhuang + 13.86744
	(2.92) [0.461]		
	(2.92) [0.461] -1.29900*D84		+ 13.86744
	(2.92) [0.461] - 1.29900*D84 (-2.91) + 1.09874*D97 (3.12)		+ 13.86744 (6.43)
$AdjR^2=0.96$	(2.92) [0.461] - 1.29900*D84 (-2.91) + 1.09874*D97 (3.12)		+ 13.86744 (6.43) + 0.07501*APL09(t-1)
AdjR ² =0.96	(2.92) [0.461] - 1.29900*D84 (-2.91) + 1.09874*D97 (3.12)		+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48)
AdjR²=0.96 APL07	(2.92) [0.461] - 1.29900*D84 (-2.91) + 1.09874*D97 (3.12)		+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100]
	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) 529 D.W.=2.325		+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163]
APL07	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) 529 D.W.=2.325 Planted Area of Lowland Rice in Huaphanh		+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163] - 0.37718*T8088
APL07 FPR	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) 629 D.W.=2.325 Planted Area of Lowland Rice in Huaphanh Farm Price of Laos Rice (thousand kip per kg)		+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163] - 0.37718*T8088 (-4.40) - 0.44761*T9298 (-4.39)
APL07 FPR CPI	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) (29 D.W.=2.325 Planted Area of Lowland Rice in Huaphanh Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100)		+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163] - 0.37718*T8088 (-4.40) - 0.44761*T9298
APL07 FPR CPI T8083	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) (3.12) (3.12) (3.12) Planted Area of Lowland Rice in Huaphanh Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1983, 0 otherwise		+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163] - 0.37718*T8088 (-4.40) - 0.44761*T9298 (-4.39)
APL07 FPR CPI T8083 T93	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) (3.12) (3.12) D.W.=2.325 Planted Area of Lowland Rice in Huaphanh Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1983, 0 otherwise Time Trend from 1993 to 2000, 0 otherwise		+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163] - 0.37718*T8088 (-4.40) - 0.44761*T9298 (-4.39) - 0.03997*ET09MAR(t-1)
APL07 FPR CPI T8083 T93 ET07JUN	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) 329 D.W.=2.325 Planted Area of Lowland Rice in Huaphanh Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1983, 0 otherwise Time Trend from 1993 to 2000, 0 otherwise Evapotranspiration of June in Huaphanh	APL09=	+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163] - 0.37718*T8088 (-4.40) - 0.44761*T9298 (-4.39) - 0.03997*ET09MAR(t-1) (-2.70) [-0.109] + 3.10659*D86 (3.10)
APL07 FPR CPI T8083 T93 ET07JUN ET07JLY ET07SEP D84	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) 629 D.W.=2.325 Planted Area of Lowland Rice in Huaphanh Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1983, 0 otherwise Time Trend from 1993 to 2000, 0 otherwise Evapotranspiration of June in Huaphanh Evapotranspiration of July in Huaphanh		+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163] - 0.37718*T8088 (-4.40) - 0.44761*T9298 (-4.39) - 0.03997*ET09MAR(t-1) (-2.70) [-0.109] + 3.10659*D86 (3.10)
APL07 FPR CPI T8083 T93 ET07JUN ET07JLY ET07SEP	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) 529 D.W.=2.325 Planted Area of Lowland Rice in Huaphanh Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1983, 0 otherwise Time Trend from 1993 to 2000, 0 otherwise Evapotranspiration of June in Huaphanh Evapotranspiration of July in Huaphanh Evapotranspiration of September in Huaphanh	APL09=	+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163] - 0.37718*T8088 (-4.40) - 0.44761*T9298 (-4.39) - 0.03997*ET09MAR(t-1) (-2.70) [-0.109] + 3.10659*D86 (3.10)
APL07 FPR CPI T8083 T93 ET07JUN ET07JLY ET07SEP D84 D97	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) 329 D.W.=2.325 Planted Area of Lowland Rice in Huaphanh Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1983, 0 otherwise Time Trend from 1993 to 2000, 0 otherwise Evapotranspiration of June in Huaphanh Evapotranspiration of September in Huaphanh Evapotranspiration of September in Huaphanh Dummy Variable, 1 in 1984, 0 otherwise Dummy Variable, 1 in 1997, 0 otherwise	APL09= AdjR ² =0.75 APL09	+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163] - 0.37718*T8088 (-4.40) - 0.44761*T9298 (-4.39) - 0.03997*ET09MAR(t-1) (-2.70) [-0.109] + 3.10659*D86 (3.10) 559 D.W.=2.416 Planted Area of Lowland Rice in Xiengkhuang
APL07 FPR CPI T8083 T93 ET07JUN ET07JLY ET07SEP D84 D97	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) 529 D.W.=2.325 Planted Area of Lowland Rice in Huaphanh Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1983, 0 otherwise Time Trend from 1993 to 2000, 0 otherwise Evapotranspiration of June in Huaphanh Evapotranspiration of July in Huaphanh Evapotranspiration of September in Huaphanh Dummy Variable, 1 in 1984, 0 otherwise Dummy Variable, 1 in 1997, 0 otherwise	APL09= AdjR ² =0.75 APL09 FPR	+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163] - 0.37718*T8088 (-4.40) - 0.44761*T9298 (-4.39) - 0.03997*ET09MAR(t-1) (-2.70) [-0.109] + 3.10659*D86 (3.10) 559 D.W.=2.416 Planted Area of Lowland Rice in Xiengkhuang Farm Price of Laos Rice (thousand kip per kg)
APL07 FPR CPI T8083 T93 ET07JUN ET07JLY ET07SEP D84 D97	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) 529 D.W.=2.325 Planted Area of Lowland Rice in Huaphanh Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1983, 0 otherwise Time Trend from 1993 to 2000, 0 otherwise Evapotranspiration of June in Huaphanh Evapotranspiration of July in Huaphanh Evapotranspiration of September in Huaphanh Dummy Variable, 1 in 1984, 0 otherwise Dummy Variable, 1 in 1997, 0 otherwise Area Function of Lowland Rice in Xayabury + 31.23140	APL09= AdjR ² =0.75 APL09 FPR CPI	+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163] - 0.37718*T8088 (-4.40) - 0.44761*T9298 (-4.39) - 0.03997*ET09MAR(t-1) (-2.70) [-0.109] + 3.10659*D86 (3.10) 559 D.W.=2.416 Planted Area of Lowland Rice in Xiengkhuang Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100)
APL07 FPR CPI T8083 T93 ET07JUN ET07JLY ET07SEP D84 D97	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) 529 D.W.=2.325 Planted Area of Lowland Rice in Huaphanh Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1983, 0 otherwise Time Trend from 1993 to 2000, 0 otherwise Evapotranspiration of June in Huaphanh Evapotranspiration of July in Huaphanh Evapotranspiration of September in Huaphanh Dummy Variable, 1 in 1984, 0 otherwise Dummy Variable, 1 in 1997, 0 otherwise Area Function of Lowland Rice in Xayabury + 31.23140 (3.87)	APL09= AdjR ² =0.75 APL09 FPR CPI T8088	+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163] - 0.37718*T8088 (-4.40) - 0.44761*T9298 (-4.39) - 0.03997*ET09MAR(t-1) (-2.70) [-0.109] + 3.10659*D86 (3.10) 559 D.W.=2.416 Planted Area of Lowland Rice in Xiengkhuang Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1988, 0 otherwise
APL07 FPR CPI T8083 T93 ET07JUN ET07JLY ET07SEP D84 D97	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) 629 D.W.=2.325 Planted Area of Lowland Rice in Huaphanh Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1983, 0 otherwise Time Trend from 1993 to 2000, 0 otherwise Evapotranspiration of June in Huaphanh Evapotranspiration of September in Huaphanh Evapotranspiration of September in Huaphanh Dummy Variable, 1 in 1984, 0 otherwise Dummy Variable, 1 in 1997, 0 otherwise Area Function of Lowland Rice in Xayabury +31.23140 (3.87) +0.64936*APL08(t-1)	APL09= AdjR ² =0.75 APL09 FPR CPI T8088 T9298	+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163] - 0.37718*T8088 (-4.40) - 0.44761*T9298 (-4.39) - 0.03997*ET09MAR(t-1) (-2.70) [-0.109] + 3.10659*D86 (3.10) 559 D.W.=2.416 Planted Area of Lowland Rice in Xiengkhuang Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1988, 0 otherwise Time Trend from 1992 to 1998, 0 otherwise
APL07 FPR CPI T8083 T93 ET07JUN ET07JLY ET07SEP D84 D97	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) 629 D.W.=2.325 Planted Area of Lowland Rice in Huaphanh Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1983, 0 otherwise Time Trend from 1993 to 2000, 0 otherwise Evapotranspiration of June in Huaphanh Evapotranspiration of September in Huaphanh Evapotranspiration of September in Huaphanh Dummy Variable, 1 in 1984, 0 otherwise Dummy Variable, 1 in 1997, 0 otherwise Area Function of Lowland Rice in Xayabury +31.23140 (3.87) +0.64936*APL08(t-1) (6.90)	APL09= AdjR ² =0.75 APL09 FPR CPI T8088 T9298 ET09MAR	+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163] - 0.37718*T8088 (-4.40) - 0.44761*T9298 (-4.39) - 0.03997*ET09MAR(t-1) (-2.70) [-0.109] + 3.10659*D86 (3.10) 559 D.W.=2.416 Planted Area of Lowland Rice in Xiengkhuang Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1988, 0 otherwise Time Trend from 1992 to 1998, 0 otherwise Evapotranspiration of March in Xiengkhuang
APL07 FPR CPI T8083 T93 ET07JUN ET07JLY ET07SEP D84 D97	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) D.W.=2.325 Planted Area of Lowland Rice in Huaphanh Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1983, 0 otherwise Time Trend from 1993 to 2000, 0 otherwise Evapotranspiration of June in Huaphanh Evapotranspiration of September in Huaphanh Evapotranspiration of September in Huaphanh Dummy Variable, 1 in 1984, 0 otherwise Dummy Variable, 1 in 1997, 0 otherwise Area Function of Lowland Rice in Xayabury + 31.23140 (3.87) + 0.64936*APL08(t-1) (6.90) + 9.70013*[FPR(t-1)/CPI(t-1)/100]	APL09= AdjR ² =0.75 APL09 FPR CPI T8088 T9298	+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163] - 0.37718*T8088 (-4.40) - 0.44761*T9298 (-4.39) - 0.03997*ET09MAR(t-1) (-2.70) [-0.109] + 3.10659*D86 (3.10) 559 D.W.=2.416 Planted Area of Lowland Rice in Xiengkhuang Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1988, 0 otherwise Time Trend from 1992 to 1998, 0 otherwise
APL07 FPR CPI T8083 T93 ET07JUN ET07JLY ET07SEP D84 D97	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) 529 D.W.=2.325 Planted Area of Lowland Rice in Huaphanh Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1983, 0 otherwise Time Trend from 1993 to 2000, 0 otherwise Evapotranspiration of June in Huaphanh Evapotranspiration of September in Huaphanh Evapotranspiration of September in Huaphanh Dummy Variable, 1 in 1984, 0 otherwise Dummy Variable, 1 in 1997, 0 otherwise Area Function of Lowland Rice in Xayabury + 31.23140 (3.87) + 0.64936*APL08(t-1) (6.90) + 9.70013*[FPR(t-1)/CPI(t-1)/100] (2.47) [0.155]	APL09= AdjR ² =0.75 APL09 FPR CPI T8088 T9298 ET09MAR D86	+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163] - 0.37718*T8088 (-4.40) - 0.44761*T9298 (-4.39) - 0.03997*ET09MAR(t-1) (-2.70) [-0.109] + 3.10659*D86 (3.10) 559 D.W.=2.416 Planted Area of Lowland Rice in Xiengkhuang Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1988, 0 otherwise Time Trend from 1992 to 1998, 0 otherwise Evapotranspiration of March in Xiengkhuang Dummy Variable, 1 in 1986, 0 otherwise
APL07 FPR CPI T8083 T93 ET07JUN ET07JLY ET07SEP D84 D97	(2.92) [0.461] -1.29900*D84 (-2.91) +1.09874*D97 (3.12) D.W.=2.325 Planted Area of Lowland Rice in Huaphanh Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1983, 0 otherwise Time Trend from 1993 to 2000, 0 otherwise Evapotranspiration of June in Huaphanh Evapotranspiration of September in Huaphanh Evapotranspiration of September in Huaphanh Dummy Variable, 1 in 1984, 0 otherwise Dummy Variable, 1 in 1997, 0 otherwise Area Function of Lowland Rice in Xayabury + 31.23140 (3.87) + 0.64936*APL08(t-1) (6.90) + 9.70013*[FPR(t-1)/CPI(t-1)/100]	APL09= AdjR ² =0.75 APL09 FPR CPI T8088 T9298 ET09MAR D86	+ 13.86744 (6.43) + 0.07501*APL09(t-1) (0.48) + 9.59941*[FPR(t-1)/CPI(t-1)/100] (3.90) [0.163] - 0.37718*T8088 (-4.40) - 0.44761*T9298 (-4.39) - 0.03997*ET09MAR(t-1) (-2.70) [-0.109] + 3.10659*D86 (3.10) 559 D.W.=2.416 Planted Area of Lowland Rice in Xiengkhuang Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 1988, 0 otherwise Time Trend from 1992 to 1998, 0 otherwise Evapotranspiration of March in Xiengkhuang

	(-0.08) + 0.26853*APL10(t-1) (1.19) + 16.19934*[FPR(t-1)/CPI(t-1)/100] (2.00) [0.129] - 1.55871*TREND (-2.42) + 2.17728*T87	T95 ET11APR ET11NOV D892 D96 2-5-2-1-12. APL12=	Time Trend from 1995 to 2000, 0 otherwise Evapotranspiration of April in Borikhamxay Evapotranspiration of November in Borikhamxay Dummy Variable, 1 in 1989 to 1992, 0 otherwise Dummy Variable, 1 in 1996, 0 otherwise Area Function of Lowland Rice in Khammuane + 92.89300
	(2.96) + 0.08592*ET10MAR(t-1) (1.97) [0.096] - 0.23190*ET10AUG(t-1) (-2.78) [-0.581] + 0.48446*ET10SEP(t-1) (3.63) [1.317] - 5.44443*D82 (-1.83) + 5.99169*D86		(3.46) + 0.17637*APL12(t-1) (0.89) + 24.31869*[FPR(t-1)/CPI(t-1)/100] (2.03) [0.173] + 0.18230*ET12MAY(t-1) (2.24) [0.497] - 0.35250*ET12SEP(t-1) (-2.01) [-0.969] - 0.53165*ET12OCT(t-1)
AdjR ² =0.66	(2.17) + 7.11313*D90 (3.01) 15 D.W.=1.741		(-3.00) [-1.625] + 25.52013*D92 (3.00) + 16.40433*D99 (2.76)
APL10	Planted Area of Lowland Rice in Vientiane	$AdjR^2=0.43$	D.W.=2.544
	Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Time Trend from 1980 to 2000 Time Trend from 1987 to 2000, 0 otherwise Evapotranspiration of March in Vientiane Evapotranspiration of August in Vientiane Evapotranspiration of September in Vientiane Dummy Variable, 1 in 1982, 0 otherwise Dummy Variable, 1 in 1986, 0 otherwise	APL12 FPR CPI ET12MAY ET12SEP ET12OCT D92 D99	Planted Area of Lowland Rice in Khammuane Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100) Evapotranspiration of May in Khammuane Evapotranspiration of September in Khammuane Evapotranspiration of October in Khammuane Dummy Variable, 1 in 1992, 0 otherwise Dummy Variable, 1 in 1999, 0 otherwise
D90	Dummy Variable, 1 in 1990, 0 otherwise		Area Function of Lowland Rice in Savannakhet
2-5-2-1-11	Area Function of Lowland Rice in Borikhamyay	APL13=	+ 132.12505 (5.14)
2-5-2-1-11. APL11= AdjR ² =0.95	(3.90) + 0.21849*APL11(t-1) (1.02) + 7.77065*[FPR(t-1)/CPI(t-1)/100] (2.44) [0.150] + 2.33176*T95 (4.40) + 0.03180*ET11ARP(t-1) (2.42) [0.145] - 0.07875*ET11NOV(t-1) (-3.46) [0.483] + 2.28459*D892 (2.95) + 4.42793*D96 (2.53)	$AdjR^2=0.60$ $APL13$	(5.14) + 0.09167*APL13(t-1) (0.59) + 19.26489*[FPR(t-1)/CPI(t-1)/100] (1.06) [0.057] - 0.42012*ET13MAR(t-1) (-3.34) [-0.201] - 0.48011*ET13SEP(t-1) (-2.21) [-0.541] - 17.80456*D83 (-1.94) - 19.82763*D96 (-2.54) + 24.79941*SHIFT99 (3.97) 02 D.W.=2.005
Aujk =0.95	27 D.W.=2.357	FPR	Farm Price of Laos Rice (thousand kip per kg)
APL11 FPR CPI	Planted Area of Lowland Rice in Borikhamxay Farm Price of Laos Rice (thousand kip per kg) Consumer Price Index (1995=100)	CPI	Consumer Price Index (1995=100) Evapotranspiration of March in Savannakhet Evapotranspiration of September in Savannakhet

${\it Chapter~2}$ Development of the Rice Econometric Model with Endogenous Water in Lao PDR (REMEW-LAO)

D02	D		(4 40)
D83	Dummy Variable, 1 in 1983, 0 otherwise		(4.48)
D96	Dummy Variable, 1 in 1996, 0 otherwise		- 1.09821*D96
SHIFT99	Dummy Variable, 1 from 1999, 0 otherwise	4 4:D2_0 00	(-5.22)
252114	Anna Francisco of Condend Dies in Consuma	AdjR ² =0.96	D.W.=2.592
	Area Function of Lowland Rice in Saravane	APL15	Planted Area of Lowland Rice in Sekong
APL14=	+ 13.56709	FPR	•
	(1.96)	CPI	Farm Price of Laos Rice (thousand kip per kg)
	+ 0.09541*APL14(t-1)	T84	Consumer Price Index (1995=100) Time Trend from 1984 to 2000, 0 otherwise
	(0.93) + 4.35941*[FPR(t-1)/CPI(t-1)/100]		Evapotranspiration of March in Sekong
	(0.94) [0.032]	ET15MAR ET15APR	Evapotranspiration of April in Sekong
	+ 0.013913*ET14AUG(t-1)	ET15ALK ET15AUG	Evapotranspiration of April in Sekong Evapotranspiration of August in Sekong
	(2.65) [0.039]	ET15XEG ET15SEP	Evapotranspiration of August in Sekong Evapotranspiration of September in Sekong
	- 0.07664*ET14SEP(t-1)	ET15OCT	Evapotranspiration of October in Sekong
	(-1.81) [-0.208]	D94	Dummy Variable, 1 in 1994, 0 otherwise
	+ 0.10499*ET14OCT(t-1)	D96	Dummy Variable, 1 in 1996, 0 otherwise
	(2.78) [0.322]	D70	Duminy Variable, 1 in 1996, 6 otherwise
	- 4.49593*D834	2-5-2-1-16	Area Function of Lowland Rice in Champasack
	(-2.70)	APL16=	+ 107.91658
	- 4.53109*D868		(3.90)
	(4.29)		+ 0.10362*APL16(t-1)
	- 13.67612*D93		(0.71)
	(-8.61)		+ 55.42169*[FPR(t-1)/CPI(t-1)/100]
	+ 11.86392*SHIFT00		(3.88) [0.186]
	(6.45)		- 0.36446*ET16APR(t-1)
AdjR ² =0.90			(-2.16) [-0.201]
,			+ 0.57532*ET16MAY(t-1)
APL14	Planted Area of Lowland Rice in Saravane		(3.39) [0.728]
FPR	Farm Price of Laos Rice (thousand kip per kg)		+ 0.43942*ET16JUN(t-1)
CPl	Consumer Price Index (1995=100)		(2.70) [0.563]
	Evapotranspiration of August in Saravane		- 0.39015*ET16JLY(t-1)
ET14SEP	Evapotranspiration of September in Saravane		(-2.23) [-0.501]
ET14OCT	Evapotranspiration of October in Saravane		- 0.42904*ET16SEP(t-1)
D834	Dummy Variable, 1 in 1983 to 1984, 0 otherwise		(-3.07) [-0.533]
D868	Dummy Variable, 1 in 1986 to 1988, 0 otherwise		- 0.54152*ET16NOV(t-1)
D93	Dummy Variable, 1 in 1993, 0 otherwise		(-3.06) [-0.777]
SHIFT00	Dummy Variable, 1 from 2000, 0 otherwise		- 43.70553*D88
			(-5.99)
2-5-2-1-15.	Area Function of Lowland Rice in Sekong		-27.03471*D96
APL15=	+ 1.74756		(-4.51)
	(1.64)	AdjR ² =0.75	D.W.=2.615
	+ 0.44438*APL15(t-1)		
	(3.06)	APL16	Planted Area of Lowland Rice in Champasack
	+ 1.72531*[FPR(t-1)/CPI(t-1)/100]	FPR	Farm Price of Laos Rice (thousand kip per kg)
	(2.70) [0.314]	CPI	Consumer Price Index (1995=100)
	+ 0.14857*T84	ET16APR	Evapotranspiration of April in Champasack
	(7.03)	ET16MAY	Evapotranspiration of May in Champasack
	- 0.02016*ET15MAR(t-1)	ET16JUN	Evapotranspiration of June in Champasack
	(-4.80) [-0.734]	ET16JLY	Evapotranspiration of July in Champasack
	+ 0.02153*ET15APR(t-1)	ET16SEP	Evapotranspiration of September in Champasack
	(6.08) [0.828]	ET16NOV	Evapotranspiration of November in Champasack
	- 0.02584*ET15AUG(t-1)	D88	Dummy Variable, 1 in 1988, 0 otherwise
	(-3.09) [-1.802]	D96	Dummy Variable, 1 in 1996, 0 otherwise
	- 0.01330*ET15SEP(t-1)		
	(-2.49) [-0.842]	2-5-2-1-17.	Area Function of Lowland Rice in Attapeu
	+ 0.01187*ET15OCT(t-1)	APL17=	+ 2.71396
	(2.60) [0.807]		(0.9)
	- 0.88795*D94		+ 0.81582*APL17(t-1)

	(2.77)		2 54207 *[308
	(3.77) + 9.65993*[FPR(t-1)/CPI(t-1)/100]		- 2.54397 *D98 (-5.05)
		$AdjR^2 = 0.99$	
	(4.83) [0.253] - 0.10026*ET17MAR(t-1)	Aujk -0.99	D.W2.120
	(-4.99) [-0.417]	AP101	Planted Area of Irrigated Rice in Vientiane Mun.
	- 0.11401*ET17SEP(t-1)	FPR	Farm Price of Laos Rice (thousand kip per kg)
	(-3.75) [-1.078]	CPI	Consumer Price Index (1995=100)
	- 0.07938*ET17OCT(t-1)	T95	Time Trend from 1995 to 2000, 0 otherwise
	(-3.96) [-0.818]	ET01MAY	·
	+ 0.18449*ET17NOV(t-1)	ET01JUN	Evapotranspiration of June in Vientiane Mun.
	(4.66) [1.905]	ET01JLY	Evapotranspiration of July in Vientiane Mun.
	- 4.79054*D83	ET01OCT	Evapotranspiration of October in Vientiane Mun.
	(-3.92)	D83	Dummy Variable, 1 in 1983, 0 otherwise
	+ 2.61644*D88	D87	Dummy Variable, 1 in 1987, 0 otherwise
	(3.24)	D98	Dummy Variable, 1 in 1998, 0 otherwise
	+ 2.77569*D97	2,0	Daning variable, I'm 1996, 0 office wide
	(4.24)	2-5-2-2-2.	Area Function of Irrigated Rice in Savannakhet
	+ 6.53772*SHIFT99	API13=	-17.02137
	(9.09)		(-3.54)
$AdjR^2=0.84$	` ,		+ 1.33120*T94
114/11 0101	51 1.005		(5.46)
APL17	Planted Area of Lowland Rice in Attapeu		+ 0.66973*API13(t-1)
FPR	Farm Price of Laos Rice (thousand kip per kg)		(6.29)
CP1	Consumer Price Index (1995=100)		+ 7.06345*[FPR(t-1)/CPI(t-1)/100]
	Evapotranspiration of March in Attapeu		(2.21) [0.432]
			+ 0.09520*ET13MAR(t-1)
ET17SEP	Evapotranspiration of September in Attapeu		(3.75) [0.940]
ET17OCT	Evapotranspiration of October in Attapeu		+ 0.08641*ET13JLY(t-1)
ET17NOV	Evapotranspiration of November in Attapeu		(2.47) [2.089]
D83	Dummy Variable, 1 in 1983, 0 otherwise		+ 0.12318*ET13AUG(t-1)
D88	Dummy Variable, 1 in 1988, 0 otherwise		(3.43) [2.838]
D97	Dummy Variable, 1 in 1997, 0 otherwise		- 0.07771*ET13OCT(t-1)
SHIFT99	Dummy Variable, 1 from 1999, 0 otherwise		(-1.94) [-2.022]
2522	Area function of irrigated rice (dry		- 5.61707 * D84
season ri	• •		(-3.02)
	•		+ 4.34852*D92
Municipali	Area Function of Irrigated Rice in Vientiane		(2.97)
API01=	- 4.15829	AdjR²=0.96	29 D.W.=2.641
AFIUI-	(-1.92)		
	+ 0.66562*T95	AIH13	Planted Area of Irrigated Rice in Savannakhet
•	(5.94)	FPR	Farm Price of Laos Rice (thousand kip per kg)
	+ 0.91504*API01(t-1)	CPI	Consumer Price Index (1995=100)
	(12.75)	T94	Time Trend from 1994 to 2000, 0 otherwise
	+ 5.87563*[FPR(t-1)/CPI(t-1)/100]	ET13MAR	Evapotranspiration of March in Savannakhet
	(3.72) [0.206]	ET13JLY	Evapotranspiration of July in Savannakhet
	- 0.02510*ET01MAY(t-1)	ET13AUG	Evapotranspiration of August in Savannakhet
	(-2.71) [-0.320]	ET13OCT	Evapotranspiration of October in Savannakhet
	+ 0.07931*ET01JUN(t-1)	D84	Dummy Variable, 1 in 1984, 0 otherwise
	(5.11) [0.946]	D92	Dummy Variable, 1 in 1992, 0 otherwise
	- 0.06424*ET01JLY(t-1)		
	(-3.60) [-0.771]		Area Function of Irrigated Rice in North Region
	+ 0.05304*ET01OCT(t-1)	AIHN=	-21.03793
	(3.32) [0.682]		(-7.55)
	- 1.84317*D83		+ 1.57140*T98
	(-3.54)		(8.25)
	- 1.73775*D87		+ 0.21623*AIHN(t-1)
	(-3.87)		(2.32)
			+ 1.98217*[FPR(t-1)/CPI(t-1)/100]

	(2.99)	[0.181]		- 20.42364*SHIFT00			
	+ 0.02820*ETNMAY(t-			(-12.42)			
	(3.77)	[0.981]	AdjR ² =0.99				
	-0.07016*ETNJUN(t-1)	• •	•				
	(-6.63)	[-2.317]	AIHC	Planted Area of Irrigated	l Rice in Central Region		
	+ 0.04534*ETNJLY(t-1)	-	FPR	Farm Price of Laos Rice			
	(3.08)	[1.410]	CPI	Consumer Price Index (
	+ 0.20926*ETNSEP(t-1)		T97	Time Trend from 1997 t	•		
	(9.91)	[6.783]	ETCMAR	Evapotranspiration of M			
	+ 0.04481*ETNOCT(t-1)	ETCAPR	Evapotranspiration of A	pril in Central Region		
	(3.93)	[1.405]	ETCAUG	Evapotranspiration of A			
	- 2.03450*D82		ETCSEP	Evapotranspiration of Se	eptember in Central Region		
	(-5.03)		ETCOCT	Evapotranspiration of O	ctober in Central Region		
	- 0.63629*D93		ETCNOV	Evapotranspiration of N	ovember in Central Region		
	(-2.00)		D82	Dummy Variable, 1 in 1	982, 0 otherwise		
	+ 0.93235*D96		D83	Dummy Variable, 1 in 1	983, 0 otherwise		
	(2.62)		SHIFT00	Dummy Variable, 1 from	m 2000, 0 otherwise		
$AdjR^2=0.98$	18	D.W.=2.156					
			2-5-2-2-4b.	Area Function of Irriga	ted Rice in Other Central		
AIHN	Planted Area of Irrigated	Rice in North Region	Region				
FPR	Farm Price of Laos Rice	(thousand kip per kg)	(Excluding	01 and 13)			
CPI	Consumer Price Index (1	995=100)	AIHOC=	- 19.65243			
T98	Time Trend from 1998 to	2000, 0 otherwise		(-5.52)			
ETNMAY	Evapotranspiration of Ma	ay in North Region		+ 0.66063*AIHOC(t-1)			
ETNJUN	Evapotranspiration of Jun	ne in North Region		(8.51)			
ETNJLY	Evapotranspiration of Jul	ly in North Region		+ 5.44282*[FPR(t-1)/CF	PI(t-1)/100]		
ETNSEP	Evapotranspiration of Se	ptember in North Region		(2.77)	[0.375]		
ETNOCT	Evapotranspiration of Oc	tober in North Region		+ 1.67572*T95			
D82	Dummy Variable, 1 in 19	982, 0 otherwise		(8.67)			
D93	Dummy Variable, 1 in 19	993, 0 otherwise		+ 0.06448*ETOCMAR((t-1)		
D96	Dummy Variable, 1 in 19	996, 0 otherwise		(4.52)	[0.710]		
				- 0.03920*ETOCAPR(t-	-1)		
2-5-2-2-4a.	Area Function of Irrigat	ed Rice in Central Region		(-3.20)	[-0.640]		
(including 0	1 and 13)			+ 0.08427*ETOCMAY((t-1)		
AIHC=	- 16.41978			(4.92)	[2.194]		
	(-5.46)			+ 0.11465*ETOCSEP(t-	·1)		
	+ 8.28752*T97			(3.73)	[2.861]		
	(11.74)			- 2.26245*D82			
	+ 0.82161*AIHC(t-1)			(-2.49)			
	(9.16)			+3.57380*D92			
	+ 3.61403*[FPR(t-1)/CP	I(t-1)/100]		(3.51)			
	(1.86)	[0.060]	$AdjR^2=0.98$	332	D.W.=2.348		
	+ 0.08471*ETCMAR(t-1						
	(6.17)	[0.219]	AIHOC	Planted Area of Irriga	ted Rice in Other Central		
	-0.06301*ETCAPR(t-1)			Region			
	(-5.48)	[-0.238]	FPR	Farm Price of Laos Rice	(thousand kip per kg)		
	- 0.13703*ETCAUG(t-1)		CPI	Consumer Price Index (ŕ		
	(-7.00)	[-0.766]	T95	Time Trend from 1995 t	·		
	+ 0.14443*ETCSEP(t-1)		ETOCMAR		March in Other Central		
	(5.68)	[0.871]		Region			
	+ 0.08505*ETCOCT(t-1)				pril in Other Central Region		
	(4.69)	[0.554]			lay in Other Central Region		
	+ 0.10360*ETCNOV(t-1		ETOCSEP	-	September in Other Central		
	(6.66)	[0.543]	D 0-	Region			
	-1.63112*D82		D82	Dummy Variable, 1 in 1			
	(-2.82)		D92	Dummy Variable, 1 in 1	992, 0 otherwise		
	- 2.57317*D83						
	(-3.18)		2-5-2-2-5. A	Area Function of Irrigate	ed Rice in South Region		

AIHS=	+ 0.70014	CPI	Consumer Price Index (1995=100)
AIIIo-	(0.63)	ET01JLY	Evapotranspiration of July in Phongsaly
	+ 0.82899*AIHS(t-1)		Evapotranspiration of August in Phongsaly
	` '		
	(15.40)	ET01SEP	Evapotranspiration of September in Phongsaly
	+ 5.13662*[FPR(t-1)/CPI(t-1)/100]	ET01OCT	Evapotranspiration of October in Phongsaly
	(5.03) [0.366]	D87	Dummy Variable, 1 in 1987, 0 otherwise
	+ 4.50486*T97	D92	Dummy Variable, 1 in 1992, 0 otherwise
	(23.84)		
	+ 0.04694*ETSMAY(t-1)		Area Function of Upland Rice in Luangnamtha
	(6.11) [1.215]	APU03=	+ 33.03050
	- 0.08671*ETSJLY(t-1)		(4.70)
	(-5.40) [-2.373]		+ 0.39093*APM03(t-1)
	+ 0.02525*ETSSEP(t-1)		(3.32)
	(2.87) [0.650]		+ 13.82765*[FPR(t-1)/CPI(t-1)/100]
	- 3.10834*D82		(3.15) [0.232]
	(-5.40)		- 0.12240*ET03APR(t-1)
	- 1.38559*D88		(-5.86) [-0.427]
	(-3.57)		+ 0.10406*ET03MAY(t-1)
	- 12.52035*SHIFT00		(4.79) [0.631]
	(-18.22)		- 0.21968*ET03JUN(t-1)
AdjR ² =0.99	, ,		(-6.33) [-1.282]
y +			-0.14945*ET03JLY(t-1)
AIHS	Planted Area of Irrigated Rice in South Region		(-2.72) [-0.789]
FPR	Farm Price of Laos Rice (thousand kip per kg)		+ 0.08226*ET03AUG(t-1)
CPI	Consumer Price Index (1995=100)		(3.07) [0.440]
T97	Time Trend from 1997 to 2000, 0 otherwise		- 0.07780*ET03OCT(t-1)
			, ,
ETSMAY	Evapotranspiration of May in South Region		(-2.03) [-0.430]
ETSJLY	Evapotranspiration of July in South Region		+ 3.72811*D81
ETSSEP	Evapotranspiration of September in South Region		(3.14)
D82	Dummy Variable, 1 in 1982, 0 otherwise		- 9.64960*D92
D88	Dummy Variable, 1 in 1988, 0 otherwise		(-8.85)
SHIFT00	Dummy Variable, 1 from 2000, 0 otherwise		- 3.05912*D97
		2	(-2.71)
	Area function of upland rice	AdjR ² =0.96	
2-5-2-3-1.	Area Function of Upland Rice in Phongsaly	APU03	Planted Area of Upland Rice in Luangnamtha
APU02=	+ 89.13560	FPR	Farm Price of Laos Rice (thousand kip per kg)
	(4.56)	CPI	Consumer Price Index (1995=100)
	+ 0.28997*APM01(t-1)	ET03APR	Evapotranspiration of April in Luangnamtha
	(2.29)	ET03MAY	Evapotranspiration of May in Luangnamtha
	+ 12.32442*[FPR(t-1)/CPI(t-1)/100]	ET03JUN	Evapotranspiration of June in Luangnamtha
	(3.02) [0.156]	ET03JLY	Evapotranspiration of July in Luangnamtha
	- 0.38040*ET01JLY(t-1)	ET03AUG	Evapotranspiration of August in Luangnamtha
		ET03OCT	Evapotranspiration of October in Luangnamtha
	(-3.01) [-1.671]	D81	Dummy Variable, 1 in 1981, 0 otherwise
	+ 0.15637*ET01AUG(t-1)	D92	Dummy Variable, 1 in 1992, 0 otherwise
	(3.46) [0.680]	D97	Dummy Variable, 1 in 1997, 0 otherwise
	- 0.42462*ET01SEP(t-1)		
	(-4.32) [-1.910]	2-5-2-3-3.	Area Function of Upland Rice in Oudomxay
	- 0.25368*ET01OCT(t-1)	APU04=	+ 136.23768
	(-3.44) [-1.057]		(4.72)
	- 19.98778*D87		+ 0.32724*APM04(t-1)
	(-9.21)		(2.32)
	- 5.58592*D92		+ 31.03572*[FPR(t-1)/CPI(t-1)/100]
_	(-2.54)		(3.05) [0.244]
$AdjR^2=0.84$	D.W.=1.556		+ 0.26452*ET04APR(t-1)
			(4.05) [0.492]
APL02	Planted Area of Upland Rice in Phongsaly		- 0.29712*ET04MAY(t-1)
FPR	Farm Price of Laos Rice (thousand kip per kg)		(-3.34) [-0.877]
			(5.57)

${\it Chapter~2}$ Development of the Rice Econometric Model with Endogenous Water in Lao PDR (REMEW-LAO)

		4 B1 10 C	. 5 02.777
	+ 0.63946*ET04JUN(t-1)	APU06=	+ 5.03777
	(3.94) [1.786]		(0.85)
	+ 0.40639*ET04AUG(t-1)		+ 0.48308*APM06(t-1)
	(3.96) [1.035]		(3.96)
	- 1.09198*ET04SEP(t-1)		+ 27.94326*[FPR(t-1)/CPI(t-1)/100]
	(-4.06) [-3.019]		(2.78) [0.160]
	- 1.53653*ET04NOV(t-1)		+ 0.17557*ET06MAR(t-1)
	(-5.01) [-3.342]		(2.04) [0.163]
	+ 12.25215*D81		+ 13.22756*D81
	(3.39)		(2.65)
	- 25.32420*D84		+ 27.35075*D90
	(4.08)		(5.36)
	+ 12.79532*D95		+ 23.18269*D94
A 4:D2_0 02	(3.01)	A JUD 2_0.77	(4.52)
AdjR ² =0.93	82 D.W.=1.981	AdjR ² =0.77	769 D.W.=2.046
APU04	Planted Area of Upland Rice in Oudomxay	APU06	Planted Area of Upland Rice in Luangprabang
FPR	Farm Price of Laos Rice (thousand kip per kg)	FPR	Farm Price of Laos Rice (thousand kip per kg)
CPI	Consumer Price Index (1995=100)	CPI	Consumer Price Index (1995=100)
ET04APR	Evapotranspiration of April in Oudomxay	ET06MAR	Evapotranspiration of March in Luangprabang
ET04MAY	Evapotranspiration of May in Oudomxay	D90	Dummy Variable, 1 in 1990, 0 otherwise
ET04JUN	Evapotranspiration of June in Oudomxay	D94	Dummy Variable, 1 in 1994, 0 otherwise
ET04AUG	Evapotranspiration of August in Oudomxay	D96	Dummy Variable, 1 in 1996, 0 otherwise
ET04SEP	Evapotranspiration of September in Oudomxay		
ET04NOV	Evapotranspiration of November in Oudomxay	2-5-2-3-6. A	Area Function of Upland Rice in Huaphanh
D81	Dummy Variable, 1 in 1981, 0 otherwise	APU07=	- 11.21992
D84	Dummy Variable, 1 in 1984, 0 otherwise		(-1.14)
D95	Dummy Variable, 1 in 1995, 0 otherwise		+ 0.73682*APM07(t-1)
			(6.46)
2-5-2-3-4. A	Area Function of Upland Rice in Bokea		+ 30.61079*[FPR(t-1)/CPI(t-1)/100]
APU05=	- 0.27824		(3.30) [0.318]
	(-0.09)		- 0.12271*ET08MAR(t-1)
	+ 0.87132*APM05(t-1)		(-1.94) [-0.248]
	(3.98)		+ 0.31127*ET08AUG(t-1)
	+ 5.78557*[FPR(t-1)/CPI(t-1)/100]		(3.26) [1.246]
	(3.01) [0.250]		- 0.18905*ET08NOV(t-1)
	- 0.10363*ET05JUN(t-1)		(-2.25) [-0.567]
	(-3.71) [-1.550]		- 8.78325*D82
	+ 0.09949*ET05AUG(t-1)		(-2.17)
	(4.14) [1.379]		- 9.45343*D93
	+ 2.50772*D90		(-2.29)
	(1.95)	$AdjR^2=0.87$	D.W.=2.257
	+ 4.58270*D94		
	(4.15)	APU07	Planted Area of Upland Rice in Huaphanh
	+ 1.83388*D96	FPR	Farm Price of Laos Rice (thousand kip per kg)
	(1.79)	CPI	Consumer Price Index (1995=100)
$AdjR^2=0.71$	77 D.W.=1.998	ET07MAY	Evapotranspiration of May in Huaphanh
		ET07AUG	Evapotranspiration of August in Huaphanh
APU05	Planted Area of Upland Rice in Bokea	ET07NOV	Evapotranspiration of November in Huaphanh
FPR	Farm Price of Laos Rice (thousand kip per kg)	D82	Dummy Variable, 1 in 1982, 0 otherwise
CPI	Consumer Price Index (1995=100)	D93	Dummy Variable, 1 in 1993, 0 otherwise
ET05JUN	Evapotranspiration of June in Bokea		
ET05AUG	Evapotranspiration of August in Bokea	2-5-2-3-7.	Area Function of Upland Rice in Xayabury
D90	Dummy Variable, 1 in 1990, 0 otherwise	APU08=	+ 49.99883
D94	Dummy Variable, 1 in 1994, 0 otherwise		(4.08)
D96	Dummy Variable, 1 in 1996, 0 otherwise		+ 0.40417*APM08(t-1)
			(2.44)
2-5-2-3-5. A	Area Function of Upland Rice in Luangprabang		+ 14.58704*[FPR(t-1)/CPI(t-1)/100]

	(2.26)	[0.222]		0.12402*ET10411C/4	1)
	(2.36) - 0.12723*ET08MAR(t-1	[0.222]		- 0.12403*ET10AUG(t- (-3.68)	[-1.140]
	(-3.34)	[-0.254]		(-3.08) + 2.50864*D89	[-1.140]
	-0.19508*ET08SEP(t-1)	· ·		(2.29)	
	(-1.96)	[-0.980]		+ 2.45418*D91	
	-0.16067*ET08OCT(t-1	* *		(2.20)	
	(-2.57)	[-0.822]		+ 4.06620*D92	
	-0.15800*ET08NOV(t-1	• •		(3.47)	
	(-1.94)	[-0.667]	$AdjR^2=0.92$		D.W.=1.898
	(-1.94) + 5.08602*D99	[-0.007]	Aujk -0.92	24 /	D.W1.090
	(2.22)		APU10	Planted Area of Upland	Dice in Vientiane
AdjR ² =0.86		D.W.=2.092	FPR	Farm Price of Laos Rice	
Auj0.60	31	D. W2.092	CPI	Consumer Price Index (· · · · · · · · · · · · · · · · · · ·
APU08	Planted Area of Upland I	Piga in Yayahung		Evapotranspiration of M	•
FPR	Farm Price of Laos Rice		ET10MA1	Evapotranspiration of Ju	•
CPI	Consumer Price Index (1		ET103UN ET10AUG	Evapotranspiration of A	
	Evapotranspiration of Ma	·	D89	Dummy Variable, 1 in 1	
ET08JUN		• •	D89	Dummy Variable, 1 in 1	
ET08SEP	Evapotranspiration of Jun		D91 D92	,	•
	Evapotranspiration of Se		D92	Dummy Variable, 1 in 1	992, O otherwise
ET08NOV		• •	252210	A E 41 611-1	d Disc is Desilaberance
D99	Dummy Variable, 1 in 19	999, U otnerwise		Area Function of Uplan	a Rice in Boriknamxay
25220	E - CH I I	Die in Wiesell e	APU11=	+ 7.62728	
	rea Function of Upland	Rice in Alengkhuang		(1,41)	
APU09=	+ 24.95975			+ 0.45513*APM11(t-1)	
	(6.16)			(3.49)	21/4 12/1003
	+ 0.87700*APM09(t-1)			+ 5.62442*[FPR(t-1)/CF	· / -
	(7.85)	Pt// 1)/1007		(2.19)	[0.166]
	+ 13.25962*[FPR(t-1)/C			- 0.08872*ET11JUN(t-1	•
	(4.23)	[0.237]		(-2.17)	[-0.928]
	- 0.03858*ET09APR(t-1			+ 0.09023*ET11JLY(t-1	,
	(-5.91)	[-0.165]		(2.03)	[0.954]
	- 0.32318*ET09AUG(t-1			-0.10883*ET11AUG(t-	
	(-2.20)	[-1.844]		(-3.80)	[-1.066]
	+ 5.25945*D901			+ 0.05134*ET11NOV(t-	•
	(3.91)			(2.24)	[0.560]
	+ 13.34335*D99			+ 1.78976*D902	
. ::n? 0.05	(6.05)	D.W. 1.005		(2.29)	
$AdjR^2=0.87$	39	D.W.=1.895		- 3.45526*D95	
4 P. 100	m			(-2.50)	
APU09	Planted Area of Upland I			+ 3.98765*SHIFT00	
FPR	Farm Price of Laos Rice		4 4:D2 0 03	(3.09)	D.W. 1.027
CPI	Consumer Price Index (1		$AdjR^2=0.83$	303	D.W.=1.927
ET09APR	Evapotranspiration of Ap	5 5	ADVIII	DI CIA CILLI	n' ' D ''I
	Evapotranspiration of Au		APU11	Planted Area of Upland	•
D901	Dummy Variable, 1 in 19		FPR	Farm Price of Laos Rice	
D99	Dummy Variable, 1 in 19	999, 0 otherwise	CPI	Consumer Price Index (,
			ETIJUN	Evapotranspiration of Ju	=
	Area Function of Upland	Rice in Vientiane	ETIIJLY	Evapotranspiration of Ju	•
APU10=	- 6.08877		ETITAUG	Evapotranspiration of A	•
	(-1.80)		ETIINOV		ovember in Borikhamxay
	+ 0.87499*APM10(t-1)		D902		990 to 1992, 0 otherwise
	(8.82)	77. 12(100]	D95	Dummy Variable, 1 in 1	
	+ 8.19291*[FPR(t-1)/CP	• • •	SHIFT00	Dummy Variable, 1 fror	n 2000, 0 otherwise
	(3.74)	[0.238]	252255	A E -41 051 1	I D' ! IZI
	+ 0.06845*ET10MAY(t-	·		Area Function of Uplan	a Rice in Khammuane
	(3.59)	[0.751]	APU12=	+ 7.19583	
	+ 0.09089*ET10JUN(t-1	•		(3.80)	
	(2.48)	[0.907]		+ 0.72274*APM12(t-1)	

	(10.64)			(2.65)	
	(10.64)	14 17/1001		(-3.65) - 5.94413*D98	
	+ 1.72720*[FPR(t-1)/CP	, , ,			
	(0.64) - 0.03275*ET12MAR(t-	[0.109]	$AdjR^2=0.76$	(-6.10)	D.W.=1.772
	(-3.12)	[-0.337]	Aujk -0.70	JOJ	D.W1.772
	+ 0.01783*ET12APR(t-1	• •	APU14	Planted Area of Upland	Dice in Sarayane
	(2.36)	[0.274]	FPR	Farm Price of Laos Rice	
	- 0.07627*ET12JLY(t-1)	• •	CPI	Consumer Price Index (• • •
	(-3.31)	[-1.835]	ET14JLY	Evapotranspiration of Ju	
	+ 8.17571*D80	[-1.655]	D847		984 to 1987, 0 otherwise
	(9.19)		D88	Dummy Variable, 1 in 1	
AdjR ² =0.98		D.W.=2.640	D88	Dummy Variable, 1 in 1	•
Aujk 0.70	112	D. W. 2.040	D 70	Duminy variable, 1 m 1	776, 0 Other wise
APU12	Planted Area of Upland I	Rice in Khammuane	2-5-2-3-14.	Area Function of Uplan	d Rice in Sekong
FPR	Farm Price of Laos Rice		APU15=	+ 5.54303	· ·
CPI	Consumer Price Index (1			(2.57)	
ET12MAR	Evapotranspiration of Ma			+ 0.45412*APM15(t-1)	
ET12APR	Evapotranspiration of Ap	oril in Khammuane		(3.75)	
ET12JLY	Evapotranspiration of Jul	ly in Khammuane		+ 4.11123*[FPR(t-1)/CF	PI(t-1)/100]
D80	Dummy Variable, 1 in 19	980, 0 otherwise		(2.47)	[0.184]
				-0.04131*ET15AUG(t-	1)
2-5-2-3-12.	Area Function of Uplano	d Rice in Savannakhet		(-1.93)	[-0.710]
APU13=	- 4.84468			+ 2.54847*D80	
	(-3.06)			(3.22)	
	+ 0.67045*APM13(t-1)			+ 1.10703*D867	
	(8.37)			(2.05)	
	+ 8.78030*[FPR(t-1)/CP	I(t-I)/I00]	$AdjR^2 = 0.84$	188	D.W.=1.595
	(2.39)	[0.247]			
	-0.04793*ET13APR(t-1)	APU15	Planted Area of Upland	Rice in Sekong
	(-2.58)	[-0.286]	FPR	Farm Price of Laos Rice	(thousand kip per kg)
	+ 0.07984*ET13MAY(t-	-1)	CPI	Consumer Price Index (1995=100)
	(3.59)	[0.812]	ET15AUG	Evapotranspiration of A	ugust in Sekong
	+ 2.63453*D81		D80	Dummy Variable, I in 1	980, 0 otherwise
	(2.59)		D867	Dummy Variable, 1 in 1	986 to 1987, 0 otherwise
	+ 2.64344*D912				
	(3.74)		2-5-2-3-15.	Area Function of Uplan	d Rice in Attapeu
$AdjR^2=0.96$	78 D.V	W.=2.040	APU17=	- 3.42351	
				(-2.19)	
APU13	Planted Area of Upland I	Rice in Savannakhet		+ 0.23298*APM17(t-1)	
FPR	Farm Price of Laos Rice	(thousand kip per kg)		(2.04)	
CPI	Consumer Price Index (1	995=100)		+ 2.58664*[FPR(t-1)/CI	PI(t-1)/100]
ET13APR	Evapotranspiration of Ap	oril in Savannakhet		(2.23)	[0.184]
ET13MAY	Evapotranspiration of Ma	ay in Savannakhet		- 0.02779*ET17APR(t-	1)
D81	Dummy Variable, 1 in 19	981, 0 otherwise		(-3.32)	[-0.368]
D912	Dummy Variable, 1 in 19	991 to 1992, 0 otherwise		+ 0.07055*ET17JLY(t-1)
				(4.09)	[1.921]
2-5-2-3-13.	Area Function of Uplano	d Rice in Saravane		- 2.18113*D84	
APU14=	- 2.69791			(-3.41)	
	(-0.83)			+ 1.58899*D86	
	+ 0.25820*APM14(t-I)			(2.98)	
	(2.22)			+ 1.56754*SHIFT00	
	+ 0.93255*[FPR(t-1)/CP			(2.94)	
	(0.47)	[0.034]	AdjR ² =0.71	121	D.W.=2.483
	+ 0.08602*ET14JLY(t-1				
	(2.69)	[1.222]	APU17	Planted Area of Upland	•
	+ 2.10905*D847		FPR	Farm Price of Laos Rice	
	(1.97938)		CPI	Consumer Price Index (
	- 3.68058*D88		ET17APR	Evapotranspiration of A	pril in Attapeu

ET17JLY	Evapotranspiration of July in Attapeu
D84	Dummy Variable, 1 in 1984, 0 otherwise
D86	Dummy Variable, 1 in 1986, 0 otherwise
SHIFT00	Dummy Variable, 1 from 2000, 0 otherwise

2-5-3. Demand function of rice

```
QC=
          +681.30015
             (7.63)
           + 6.67679*T8086
             (5.01)
           + 13.41221*T8688
             (2.38)
           + 15.68680*T9499
             (3.87)
           - 282.61797*RP/(CPI/100)
             (-4.19)
                                 [-0.419]
           -1.66306*RGDP/POP
                                 [-0.796]
             (-3.75)
           + 127.26798*D813
             (3.71)
           + 34.70990*D84
             (2.37)
           - 117.82337*D88
             (-5.15)
           - 30.99935*D9193
             (-3.80)
AdjR^2 = 0.8776
```

QC	Consumption of Rice per capita
T8086	Time Trend from 1980 to 1986, 0 after 1986
T8688	Time Trend from 1986 to 1988, 0 before 1986,
	0 after 1988
T9599	Time Trend from 1995 to 1999, 0 before 1996,
	5 after 1999
RP	Retail Price of Rice (Non-glutinous)
CPI	Consumer Price Index
RGDP	Realized Gross Domestic Products
POP	Population
D813	Dummy Variable, 1 in 1981 to 1983, 0 otherwise
D84	Dummy Variable, 1 in 1984, 0 otherwise
D88	Dummy Variable, 1 in 1988, 0 otherwise
D890	Dummy Variable, 1 in 1989 and 1990, 0 otherwise
D9193	Dummy Variable, 1 in 1991 and 1993, 0 otherwise
D978	Dummy Variable, 1 in 1997 and 1998, 0 otherwise

D.W.=3.051

2-5-4. Import function of rice

	•	
IMP=	70.08878	
	(5.16)	
	- 42.11725*WP*EX	R/(CPI/100)*1000000
	(-2.25)	[-0.737]
	- 0.02268*Q	
	(-3.49)	[-1.787]
	- 30.15445*D80	
	(-3.75)	
	+ 39.71473*D81	
	(4.08)	
	- 28.38935*D858	
	(-5.32)	
	- 15.39497*D893	
	(-3.73)	
	+ 28.89936*D98	
	(3.74)	
$AdjR^2=0.79$	28	D.W.=2.440
WP	World Price (Thaila	nd: US\$/MT)
EXR	Exchange Rate (Kip	/US\$)
Q	Total Production	
D80	Dummy Variable, 1	in 1980, 0 otherwise
D81	Dummy Variable, 1	in 1981, 0 otherwise
D858	Dummy Variable, 1	in 1985 to 1988, 0 otherwise
D893	Dummy Variable, 1	in 1989 to 1993, 0 otherwise

2-5-5. Price linkage function of rice

Dummy Variable, 1 in 1998, 0 otherwise

D98

FPR=	- 0.00270	
	(-1.19)	
	+ 0.49901*RP	
	(137.06)	
$AdjR^2=0.$	9989	D.W.=2.217
FPR	Farm Price of Rice	
RP	Retail Price of Rice (N	on-glutinous)

Table 2-1 through Table 2-3 show elasticities of yield of wet season rice, irrigated rice, and upland rice with respect to a time trend and evpotranspirations. Table 2-4 through Table 2-6 show elasticities of planted area of the three types of rice with respect to last year's planted area, last yearis farm price, and last yearis evapotranspirations.

Table 2-1. Elasticities of yield of wet season rice for evapotranspiration and trend

Province	Trend	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.
Vientiane Mun.	0.152	IVIAI.	Apr.	0.599	Juii.	Jui.	Aug.	оср.	-1.223	0.648
				-	0.510	0.404				0.040
Phongsaly	0.025			0.221	0.510	-0.424			-0.502	
Luangnamtha	0.216	-0.392	0.204	-0.503						
Oudomxay	-0.017						-0.254	0.889	0.690	
Bokea				0.499	-1.023	1.837	0.934			
Luangprabang	0.044		0.221					1.024		
Huaphanh	0.055			0.564		1.992				
Xayabury	0.076	-0.230			0.880			1.411		3.221
Xiengkhuang	0.052	0.741			-1.438			0.982	-1.064	
Vientiane	0.055			0.984	-1.435			1.355	-0.781	
Borikhamxay	0.083	-0.228	0.328		-1.343	1.167	1.017			
Khammuane	0.041	-0.271		0.851	-1.974				-1.207	
Savannakhet	0.049			0.573		-1.118				
Saravan	0.038					-2.202		-0.850		
Sekong	0.039	0.284			1.165	-1.061	1.004		1.289	-1.178
Champasack	0.030	-0.389			-1.532			1.129	2.441	
Attapeu	0.018				-0.725		1.041	0.726	-0.782	0.745

Note) Trend is for after 2000

Table 2-2. Elasticities of yield of irrigated rice for evapotranspiration and trend

Province	Trend	Nov.	Dec.	Jan	Feb.	Mar.	Apr.	May.	Jun.
Vientiane Mun.	0.122	-0.898	0.488		0.131	-0.112			
Savannakhet	0.148		-0.412						
North region	0.101	-1.648	0.619						
Central region	0.131	1.618	-0.385				-0.171	0.647	
Central region ²⁾	0.569	1.979	-1.482	0.649	-0.301			1.081	
South region	0.112			0.552			-0.549	0.526	-1.000

Note) Trend is for after 2000, Central region²⁾ excludes Vientiane municipality and Savannakhet province

Table 2-3. Elasticities of yield of upland rice for evapotranspirationand trend

Province	Trend	Mar.	Арг.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.
Phongsaly	0.033		0.300		1.129			-1.456	-0.688	
Luangnamtha	0.033				-0.633				-0.813	
Oudomxay			-0.256		-1.778			2.595	1.632	
Bokea			0.103		0.540	1.433	-0.771	1.446		2.037
Luangprabang	0.027	0.193				-1.233		-1.905	-1.326	-1.005
Huaphanh	0.037				3.808				2.026	
Xayabury	0.045				-1.271		-0.892			
Xiengkhuang	0.021			0.758		1.549	-0.826	2.048	0.641	0.706
Vientiane	0.025	0.228	0.089			2.339		2.146		
Borikhamxay	0.093			0.365			1.188		-1.861	1.009
Khammuane	0.013	0.247				0.843	0.593		-1.734	
Savannakhet	0.041		-0.209	0.628			-1.041	1.349	0.697	
Saravan	0.023				-2.110	1.738				
Sekong	0.043	-0.416			-1.520	1.399	-1.109			
Attapeu	0.036	-0.410			-1.480	1.673		1.415	1.067	

Note) Trend is for after 2000

Table 2-4. Elasticities of planted area of wet season rice

Province	Area	Price				Evapot	ranspirati	on (t-1)			
	(t-1)	(t-1)	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.
Vientiane Mun.	0.080	0.048				-0.263		-0.189			
Phongsaly	0.105	0.074		-0.129	0.206				0.334	0.297	0.181
Luangnamtha	0.589	0.084	-0.328		-0.599	-0.726					
Oudomxay	0.149	0.102	-0.170			-0.367		0.256			
Bokea	0.042	0.149			0.273						0.471
Luangprabang	0.025	0.024	-0.068	0.042		0.131					
Huaphanh	0.038	0.106				-0.452	0.586		0.461		
Xayabury	0.649	0.155		-0.497	-4.697	0.648	-1.460	-1.226		1.224	
Xiengkhuang	0.075	0.163	-0.109								
Vientiane	0.269	0.129	0.096					-0.581	1.317		
Borikhamxay	0.218	0.150		0.145							0.483
Khammuane	0.176	0.173			0.497				-0.969	-1.625	
Savannakhet	0.092	0.057	-0.201						-0.541		
Saravan	0.095	0.032						0.039	-0.208	0.322	
Sekong	0.444	0.314	-0.734	0.828				-1.802	-0.842	0.807	
Champasack	0.104	0.186		-0.201	0.728	0.563	-0.501		-0.533		-0.777
Attapeu	0.816	0.253	-0.417						-1.078	-0.818	1.905

Table 2-5. Elasticities of planted area of irrigated rice

Province	Area	Price				Evapot	ranspirati	on (t-1)			
	(t-1)	(t-1)	Mar.	Арт.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.
Vientiane Mun.	0.915	0.206			-0.320	0.946	-0.771			0.682	
Savannakhet	0.670	0.432	0.940				2.089	2.838		-2.022	
North region	0.216	0.181			0.981	-2.317	1.410		6.783	1.405	
Central region	0.822	0.060	0.219	-0.238				-0.766	0.871	0.554	0.543
Central region ²⁾	0.661	0.375	0.710	-0.640	2.194				2.861		
South region	0.829	0.366			1.215		-2.373		0.650		

Note) Central region²⁾ excludes Vientiane municipality and Savannakhet province

Table 2-6. Elasticities of planted area of upland rice

Province	Area	Price				Evapot	ranspirati	on (t-1)			
	(t-1)	(t-1)	Маг.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.
Phongsaly	0.290	0.156					-1.671	0.680	-1.910	-1.057	
Luangnamtha	0.391	0.232		-0.427	0.631	-1.282	-0.789	0.440		-0.430	
Oudomxay	0.327	0.244		0.492	-0.877	1.786		1.035	-3.019		-3.342
Bokea	0.871	0.250				-1.550		1.379			
Luangprabang	0.483	0.160	0.163								
Huaphanh	0.737	0.318	-0.248					1.246			-0.567
Xayabury	0.404	0.222	-0.254						-0.980	-0.822	-0.667
Xiengkhuang	0.877	0.237		-0.165				-1.844			
Vientiane	0.875	0.238			0.751	0.907		-1.140			
Borikhamxay	0.455	0.166				-0.928	0.954	-1.066			0.560
Khammuane	0.723	0.109	-0.337	0.274			-1.835				
Savannakhet	0.670	0.247		-0.286	0.812						
Saravan	0.258	0.034					1.222				
Sekong	0.454	0.184						-0.710			
Attapeu	0.233	0.184		-0.368			1.921				

2-6. Simulation results

2-6-1. Results of estimation of yield functions

Table 2-1 shows the elasticities of yield of wet season rice with respect to evapotranspiration (ET) evaluated at the average value for yield and ET. The results indicate that if the ET value for May or September increases, the resulting yield will increase, and if the ET value for June increase, the yield will decrease in many provinces. The results suggest that the water supply during the planting and flowering season greatly impacts production.

Table 2-2 shows the elasticities of yield of irrigated rice with respect to ET. If water supply in December increases, yield of irrigated rice in the north region will increase, and if the water supply in January increases, the yield in the south region will increase.

Table 2-3 shows the elasticities of yield of upland rice with respect to ET. The results are similar to those of wet season rice. If the water supply in May increases, yields will increase, and if water supply increases in June, yields will decrease. These results are consistent with the relationship between yield and planting time. If transplanting is delayed by the shift of the rainy season, the growth period will be shortened.

2-6-2. Results of estimation of planted area functions

Table 2-4 shows the elasticities of planted area of wet season rice with respect to farm price and ET. The equation is based on an adaptive expectation model in the case that ET is an expected value. The elasticities of area with respect to farm price are equivalent to the supply elasticities of price. The results indicate that if the water supply increases in September, farmers will decrease planting area. This could be a result of flood damage during the cultivation season which leads to a decrease in farmers' income. In this case, the low income will make preparation for planting difficult.

Table 2-5 and Table 2-6 show the elasticities of planted area for irrigated rice and upland rice with respect to farm price and ET. The results suggest that if the water supply increases in September, farmers will expand planting area in the dry season, because of the abundant water stock. The results also indicate that if the water supply increases in August in the north region, farmers cultivating upland rice will expand their planting area. The water supply probably induces much plant production in forest region and it will prepare suitable plant area for upland rice cultivation.

2-6-3. Simulation results of supply and demand model

The simulation term is from 2001 to 2015. The assumptions of the simulation are as follows; (1) the forecast growth rate of CPI is the average between 1995 and 2002, (2) the growth rate of real GDP is the average between 1980 and 2002, (3) the growth rate of exchange rate is the average between 1993 and 2002, (4) the growth rate of the population is the average between 1980 and 2002, (5) the linear trend of the yield functions are continued, (6) The trend of area functions are flat except for upland rice which is in decline.

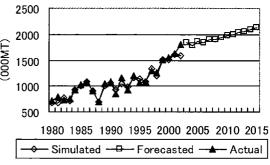


Fig. 2-3. Production of wet season rice

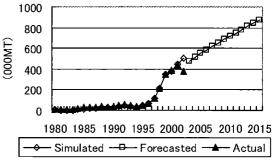


Fig. 2-4. Production of irrigated rice

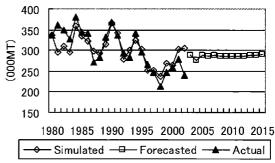


Fig. 2-5. Production of upland rice

Figure 2-3 through Figure 2-5 show the simulation results for the production of wet season rice, irrigated rice, and upland rice. The production of the wet season rice will increase 273,000 MT (metric tons) from 2005 to 2015. The dry season rice will also

increase 326,000 MT during the period. However, the production of upland rice will be stable at around 290,000 MT during the period.

Figure 2-6 shows the simulation result of the market clearing realized farm price. The realized farm price will increase from 410 kip per MT to 610 kip per MT

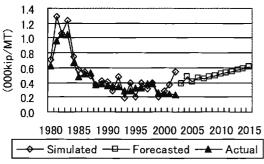


Fig. 2-6. Farm price

during the period. The realized farm prices are deflated by CPI with a base year of 1995.

2-7. Conclusion

A supply and demand model of rice in Laos which can analyze production and water supply impacts for each province is developed. The results of the baseline analyses indicate that production of wet and dry season rice steadily increases and that of upland rice remains stable at the current production level. If the cycle of shifting cultivation changes by population growth, the production of upland rice will decrease due to the reduction in the fertility of the upland crop (Evenson, 1994).

The impacts of water supply changes on rice production and market in Lao are analyzed in Chapter 6 along with the other three countries.