Chapter 4

Development of the Rice Econometric Model with Endogenous Water in Thailand (REMEW-THAI)

4-1. Introduction

The world's leading rice exporter is Thailand, and this country exported 7.43 million metric tons (mMT) in 2006 and followed by India, Vietnam, Pakistan, and the USA, with rice exports of 3.30 mMT, 4.74 mMT, 4.64 mMT, 3.69 mMT, and 3.30 mMT respectively. Thailand's world rice trade was 24.3% in 2006; therefore, production trends affects the world food market. The variance of rice production depends in part on water supply changes and domestic policies.

There is an extensive body of existing literature on rice production and policies in Thailand. Siamwalla & Setboonsarng (1989) analyzed the effects of export taxes and price supports for rice, sugar, maize, and rubber by using a comparative static model. Kagatsume (1988) analyzed the impacts of a ricepremium policy on the market of rice in Thailand using a supply and demand model of rice, and found that this policy has a price stabilizing effect. O'Mara & Le-Si (1985) analyzed impacts of price changes of rice on agricultural income and production using an income classification model, and they shed light on the problem that farmers lost their incentives to produce through the rice-premium policy. Choeun, Godo, & Hayami (2006) used a comparative static model and clarified the issue that the export tax was higher than the optimum value in the low-income era by politicians' lead.

Tax revenue in Thailand increased due to the growth of the industrial sector, and the rice-premium policy was abolished in 1986. However, the policy had another function, the stabilization of domestic price of rice. The paddy mortgage scheme was started 1984 for the purpose of price stabilization.

The model developed in this chapter focuses on the analyses of impacts of water supply changes on the regional rice market; thus, analyses of the impacts of policy change is reserved for other articles. However, the understanding of the paddy mortgage scheme is quite important to understand the background of the supply and demand of rice in Thailand. The outline of the policy is described in the next section.

4-2. Paddy mortgage scheme

The paddy mortgage scheme allows the farmer to obtain financing from the Bank of Agricultural Cooperatives (BAAC) when the farmer pledges their paddy to the Public Warehouse Organization (PWO). If the market price is higher than the loan rate plus interest rate, the farmer will be able to buy back their paddy at this lower adjusted loan price. Conversely, if the market price is lower than the loan rate plus interest rate, pledged paddy of farmers will be confiscated by the government and the farmer retains the original payment.

Let's examine the workflow in more detail. First, farmers applies to participate in the scheme to the office of the Ministry of Agriculture and Cooperatives (MOAC), and if the office affirms that the farmer cultivates his or her land, they will get a certificate of registration in the scheme. The farmers bring their paddy to a miller who is also a member of the scheme. The farmers will get a certificate of shipment after the examination of the water content of the paddy by the PWO. Farmers who get the certificate present it to the BAAC and obtain the bank loan. The paddy is milled by directive of the government and is brought to the warehouse of the PWO. Furthermore, the interest rate of the BAAC for the scheme in the wet season in 2008 was 3%, and the upper limit of the loan provision to an individual farm was 500,000 Baht.

If a farmer participates in the scheme and sells his or her paddy to the government at the loan rate, the farmer gets the revenue which is loan rate times sales quantity. The paddy mortgage scheme forms a floor revenue when the market price is lower than the loan rate. However, the percentage of paddy production enrolled in the scheme has varied between 2.89% in 1999 and 25.23% in 2005. Clearly, the loan rate is not the floor price for all farmers in Thailand.

Academic and business experts pointed out some problems of the scheme in our interviews in Bangkok and its suburb. The problems raised are as follows; (1) The scheme mainly assists rich farmers who cultivate rice in the dry season. (2) The scheme diminishes the function of price formation in the central market. (3) The scheme expands the budget deficit. (4) The price of the milled rice sold by the government is higher than the market price, and it lowers the competitive edge of Thai rice in the global market.

The loan rate in dry season has been higher than the average farm price from 2004 to 2008; however, the loan rate in wet season has been lower than the average farm price from 2002 to 2007. The

fluctuations in price of dry season rice is wider than that of wet season rice, so, the government may have set the loan rate at a relatively high level for dry season rice.

The price stabilization effect of the paddy mortgage scheme is one of the mitigation policies for reducing impacts of the water supply changes on producers.

4-3. Model

The supply and demand model of rice in Thailand is more detailed in the North-East region because of its location in the critical Mekong River basin. Yield and planted area functions are estimated for each province in the North-East region and those in the North, Central, and South regions are estimated at the regional aggregate. There are nineteen provinces in the North-East region. There are two cultivation types, i.e., major rice or rainy season rice and second rice or dry season rice. The generalized forms of the model are as follows:

Yield function of major rice: $YW^{i} = f_{YWi} (T, ET_{MAR'i}^{i}, \dots, ET_{DEC'}^{i}),$ (4-1) Planted Area function of major rice: $APW^{i}_{i} = f_{APWi} (APW^{i}_{i-1}, FP_{i-1}, ET_{MAR'i-1}^{i}, \dots, ET_{DEC'i-1}^{i})$ (4-2) Harvested area of major rice: $AHW^{i} = APW^{i} - ABW^{i} = APW^{i} (1-RABW^{i})$

Production of major rice: $QW^{i} = YW^{i}AHW^{i}, QW = \sum_{i}QW^{i},$ (4-4) Yield function of second rice: $YD^{i} = f \quad (T \ FT \ ^{i} \ FT UIN^{i})$ (4-5)

$$ID = \int_{YDi} (1, ET_{NOV,i-1}, \dots, ETJON_i), \qquad (4-5)$$

Planted Area function of second rice:
$$APD^{i} = f_{vov} (APD^{i}, EP, ETNOV^{i}, \dots, ETvo^{i})$$

$$(4-6)$$

Harvested area of second rice: $AHD'_{t} = APD'_{t} - ABD'_{t} = APD'_{t}(1-RABD'_{t})$ (4-7)Production of second rice: QD' = YD'AHD', $QD = \sum_{i}QD'$, (4-8)Total production: (4-9)Q = 0.667(QW + QD),Export function: $EXP = f_{EXP}(T, Q),$ (4-10)Stock change function: $STC = f_{STC} (T, FP_{1,1-1}, Q_{1,1-1}),$ (11)Total supply: QS = Q + IMP - EXP - STC, (12)

Demand function: $QS/POP = f_{QS} (RP, GDP/POP),$ (13) Price linkage function:

$$FP = f_{FP} (RP), \tag{14}$$

where i is the province in the North-East region and in

the regional aggregate elsewhere, t denotes that the data are measured at time t, T is a time trend, ET_{LNN}^{i} through ET_{DEC}^{i} are evapotranspiration values for January through December, YW, APW, AHW, ABW, RABW, and QW are yield, planted area, harvested area, abandoned area, abandoned area ratio, and production of main season rice, YD, APD, AHD, ABD, RABD, and OD are vield, planted area, harvested area, abandoned area, abandoned area ratio, and production of second season rice, Q is total production, *IMP* is imports, *EXP* is exports, STC is the annual change of stocks, i.e., ending stock minus beginning stock, QS is total supply, POP is population, GDP is gross domestic products, EXR is exchange rate, FP is the producer price, RP is the retail price. The retail price is fed to the other three countries' models through price linkage functions. The retail price of the Bangkok 5% broken is used to Laotian and Cambodian rice models, and that of the Bangkok 35% broken is used for Vietnamese rice model. All functions are specified as linear functions.

The planted area functions are based on the adaptive expectation model in which the ET is expected variable for farmers. There are a total of 80 functions in the Thai rice model and an additional 45 identities. Figure 4-1 and Figure 4-2 show flowcharts of the model for the production and the supply and demand sector.

4-4. Data

The source of the data of evapotranspiration (ET) is same as that of the Lao and Cambodian rice models.

The time series data for production and planted area of the two types of rice cultivations for each province are provided by the Center for Agricultural Information at the Office of Agricultural Economics of the Ministry of Agriculture and Co-operatives of Thailand. The farm price for rice is obtained from FAO-STAT and the retail price of rice is obtained from the IRRI, which is available from 1961 to 1997 and is held constant after 1997. These prices are a national average price for Thailand. CPI, GDP, and population are from the Asian Development Bank (ADB) and the exchange rate and the world price of rice are numbers from the International Monetary Fund (IMF). The estimation period for yield and planted area functions for each province in the North-East region and aggregated other regions, and import, stock change, and demand functions for the country as a whole are from 1982 to 2000 which starts in the earliest available year for statistics of production and ends in the last year of available ET values.

Fig. 4-1. Flowchart of the rice production sector of Thai rice model

Fig. 4-2. Flowchart of the supply and demand sector of Thai rice model

4-5. Estimation results of all functions

The estimation method of all functions is OLS, and the estimation period is from 1982 to 2000. First, yield functions of major rice in North East region for each province are shown, and yield functions of major rice in the other three aggregate regions, i.e., North, South, and Central regions follow them. Second, yield functions of second rice in these regions are shown. Third, planted area functions of major and second rice in these regions are shown. Finally, estimated results of export, stock change, demand, and price linkage function are shown.

```
4-5-1. Yield functions
4-5-1-1. Yield function of major rice
4-5-1-1-1. Yield function of major rice in
North East region
4-5-1-1-1. Yield function of major rice in Nakhon Phanom
YMH01 = +0.62083
(1.58)
```

+ 0.04878*TREND (12.03) - 0.00823*ET01MAY

	(-7.06)	[-0.4	431]
	+ 0.01179*E	ET01	JLY
	(3.90)	[0.6	68]
	- 0.00768*E	T01/	AUG
	(-3.79)	[-0.4	404]
	+ 0.00761*E	ET01	OCT
	(3.85)	[0.5	00]
	- 0.23554*D	97	
	(-3.22)		
	0.22855*D	989	
	(-3.90)		
AdjR ² =0.908	9		D.W.=1.559

YMH01	Yield of Major Rice in Nakhon Phanom
TREND	Time Trend from 1982 to 2000
ET01MAY	Evapotranspiration of May in Nakhon Phanom
ET01JLY	Evapotranspiration of July in Nakhon Phanom
ET01AUG	Evapotranspiration of August in Nakhon Phanom
ET01OCT	Evapotranspiration of October in Nakhon Phanom
D97	Dummy Variable, 1 in 1997, 0 otherwise
D989	Dummy Variable, 1 in 1998 to 1999, 0 otherwise

4-5-1-1-1-2. Yield function of major rice in Sakon Nakhon

YMH02 = +1.63175 (2.82) + 0.04597*T8298) (8.19) + 0.00806*ET02APR (6.19) [0.252] - 0.01782*ET02MAY (-7.52) [-0.922] -0.02310*ET02JUN (-3.96) [-1.173] + 0.02406*ET02JLY (4.76) [1.274] + 0.00724*ET02AUG (2.88)[0.360] -0.00583*ET02SEP (-2.35) [-0.313] + 0.00668*ET02NOV (1.89) [0.302] + 0.31891*D84 (4.23) + 0.34969*D93 (4.27) - 0.39614*D94 (-3.77) AdjR²=0.8474 D.W.=1.992

YMH02	Yield of Major Rice in Sakon Nakhon		
T8298	Time Trend from 1982 to 1998, 0 before 1982,		
	0 after 1998		
ET02APR	Evapotranspiration of April in Sakon Nakhon		
ET02MAY	Evapotranspiration of May in Sakon Nakhon		
ET02JUN	Evapotranspiration of June in Sakon Nakhon		
ET02JLY	Evapotranspiration of July in Sakon Nakhon		
ET02AUG	Evapotranspiration of August in Sakon Nakhon		
ET02SEP	Evapotranspiration of September in Sakon Nakhon		

D84 Dummy Variable, 1 in 1984, 0 otherwise

D93 Dummy Variable, 1 in 1993, 0 otherwise

D94 Dummy Variable, 1 in 1994, 0 otherwise

4-5-1-1-1-3. Yield function of major rice in Nong Khai

	• •
YMH03 =	+ 0.46487
	(1.65)
	+ 0.01231*TREND
	(3.40)
	+ 0.00369*ET03APR
	(3.83) [0.112]
	- 0.00935*ET03MAY
	(-4.99) [-0.484]
	+ 0.01476*ET03AUG
	(5.95) [0.705]
	+ 0.00633*ET03OCT
	(2.34) [0.355]
	- 0.36983*D86
	(-4.47)
	- 0.37117*D90
	(-4.42)
	- 0.14839*D967
	(-2.33)
AdjR ² =0.86	57 D.W.=2.057
YMH03	Yield of Major Rice in Nong Khai
TREND	Time Trend from 1982 to 2000
ET03APR	Evapotranspiration of April in Nong Khai
ET03MAY	Evapotranspiration of May in Nong Khai
ET03AUG	Evapotranspiration of August in Nong Khai
ET03OCT	Evapotranspiration of October in Nong Kha

ET03OCTEvapotranspiration of October in Nong KhaiD86Dummy Variable, 1 in 1986, 0 otherwiseD90Dummy Variable, 1 in 1990, 0 otherwiseD967Dummy Variable, 1 in 1996 to 1997, 0 otherwise

4-5-1-1-1-4. Yield function of major rice in Udon Thani YMH04 = +2.53763 (4.18) + 0.00379*ET04APR (2.78) [0.111] -0.00543*ET04JUN (-1.53) [-0.288] + 0.00745*ET04SEP (1.74) [0.391] -0.01589*ET04NOV (-2.62) [-0.717] -0.39942*D87 (-3.33) - 1.45489*D88 (-12.02) - 0.43588*D93 (-2.43) $AdjR^{2} = 0.8953$ D.W.= 2.066

YMH04Yield of Major Rice in Udon ThaniET04APREvapotranspiration of April in Udon ThaniET04JUNEvapotranspiration of June in Udon Thani

ET04SEP	Evapotranspiration of Septemer in Udon Thani				
ET04NOV	Evapotranspiration of November in Udon Thani				
D87	Dummy Variable, 1 in 1987, 0 otherwise				
D88	Dummy Variable, 1 in 1988, 0 otherwise				
D93	Dummy Variable, 1 in 1993, 0 otherwise				
4-5-1-1-1-5.	Yield function of major rice in Loei				
YMH06 =	- 1.17177				
	(-1.41)				
	- 0.01282*ET06MAY				
	(-7.00) [-0.426]				
	+ 0.02831*ET06JLY				
	(4.96) [0.965]				
	+ 0.03165*ET06NOV				
	(5.48) [0.925]				
	- 0.46734*D82				
	(-3.77)				
	+ 0.59201*D00				
	(4.81)				
AdjR ² =0.85	07 D.W.=1.817				
YMH06	Yield of Major Rice in Loei				
ET06MAY	Evapotranspiration of May in Loei				
ET06JLY	Evapotranspiration of July in Loei				
ET06NOV	Evapotranspiration of November in Loei				
D82	Dummy Variable, 1 in 1982, 0 otherwise				
D00	Dummy Variable, 1 in 2000, 0 otherwise				
4-5-1-1-1-6.	Yield function of major rice in Yasothon				
YMH08 =	+ 2.53918				
	(4.07)				
	+ 0.02670*TREND				
	(7.64)				
	+ 0.00466*ET08MAY				
	(3.03) [0.248]				
	- 0.00698*ET08JUN				
	(-2.06) [-0.385]				
	+ 0.00786*ET08JLY				
	(2.40) [0.454]				
	+ 0.00712*ET08SEP				
	(2.41) [0.407]				
	- 0.01154*ET08OCT				
	(-3.80) [-0.795]				
	- 0.01385*ET08NOV				
	(-2.89) [-0.428]				
	- 0.56166*D88				
	(-5.27)				
AdjR ² =0.89	11 D.W.=2.097				
YMH08	Yield of Major Rice in Yasothon				
TREND	Time Trend from 1982 to 2000				
ET08MAY	Evapotranspiration of May in Yasothon				
ET08JUN	Evapotranspiration of June in Yasothon				
ET08JLY	Evapotranspiration of July in Yasothon				

ET08SEPEvapotranspiration of September in YasothonET08OCTEvapotranspiration of October in YasothonET08NOVEvapotranspiration of November in Yasothon

Dummy Variable, 1 in 1988, 0 otherwise

D88

4-5-1-1-7. Yield function of major rice in Ubon Ratchathani

61

	5
YMH09=	+ 1.16657
	(3.07)
	+ 0.01449*TREND
	(2.63)
	- 0.00327*ET09APR
	(-2.07) [-0.091]
	+ 0.00583*ET09MAY
	(3.25) [0.338]
	-0.00972*ET09JLY
	(-2.82) [-0.616]
	+ 0.00747*ET09AUG
	(2.38) [0.457]
	+ 0.46127*D85
	(5.45)
$AdjR^2=0.88$	D.W.=2.237
-	
YMH09	Yield of Major Rice in Ubon Ratchathani
TREND	Time Trend from 1982 to 2000
ET09APR	Evapotranspiration of April in Ubon Ratchathani
ET09MAY	Evapotranspiration of May in Ubon Ratchathani
ET09JLY	Evapotranspiration of July in Ubon Ratchathani
ET09AUG	Evapotranspiration of August in Ubon Ratchathani
D85	Dummy Variable, 1 in 1985, 0 otherwise
	-
4-5-1-1-1-8	. Yield function of major rice in Kalasin
YMH11=	+ 4.15186
	(5.08)
	+ 0.03328*TREND
	(8.92)
	- 0.00205*ET11 APR
	(-2.01) [-0.052]
	+ 0.00282*ET11MAY
	(1.48) [0.121]
	- 0.00970*ET11JLY
	(-2.04) [-0.462]
	- 0.00802*ET11AUG
	(-2.76) [-0.361]
	- 0.00380*ET11OCT
	(-1.52) [-0.201]
	-0.01067*ET11NOV
	(-2.66) [-0.428]
	+ 0 57323*D83
	(4.85)
	- 0 21475*D934
	(-2.61)
	- 0 33656*D989
	(-5.64)
$AdiR^2 = 0.87$	(-5.07) D W =1 033
Aujit -0.64	D. W1.755
VMH11	Vield of Major Rice in Kalasin
TREND	Time Trend from 1982 to 2000

YMH11	Yield of Major Rice in Kalasin
TREND	Time Trend from 1982 to 2000
ETIIAPR	Evapotranspiration of April in Kalasin
ET11MAY	Evapotranspiration of May in Kalasin
ETIIJLY	Evapotranspiration of July in Kalasin
ETIIAUG	Evapotranspiration of August in Kalasin
ETIIOCT	Evapotranspiration of October in Kalasin

ET11NOV	Evapotranspiration of November in Kalasin		- 0.01191*ET14JUN	
D83	Dummy Variable, 1 in 1983, 0 otherwise		(-3.67) [-0.633]	
D934	4 Dummy Variable, 1 in 1993 to 1994, 0 otherwise		+ 0.00947*ET14JLY	
D989 Dummy Variable, 1 in 1998 to 1999, 0 otherwise			(2.43) [0.532]	
			- 0.32715*D82	
4-5-1-1-1-9	. Yield function of major rice in Khon Kaen		(-3.51)	
YMH12 =	+ 2.51256		- 0.35764*D989	
	(10.08)		(-4.91)	
	+ 0.00532*ET12JUN	AdjR ² =0.89	D.W.=2.119	
	(3.23) [0.278]			
	- 0.00463*ET12JLY	YMH14	Yield of Major Rice in Roi Et	
	(-2.66) [-0.253]	TREND	Time Trend from 1982 to 2000	
	- 0.00577*ET12SEP	ET14JUN	Evapotranspiration of June in Roi Et	
	(-2.57) [-0.279]	ET14JLY	Evapotranspiration of July in Roi Et	
	- 0.00401*ET12OCT	D82	Dummy Variable, 1 in 1982, 0 otherwise	
	(-3.01) [-0.227]	D989	Dummy Variable, 1 in 1998 to 1999, 0 otherwise	
	- 0.22654*D82			
	(-3.92)	4-5-1-1-1-1	2. Yield function of major rice in Buri Ram	
	- 0.40232*D87	YMH15 =	+ 1.93605	
	(-8.41)		(8.40)	
	- 0.09938*D95		+ 0.03313*TREND	
	(-1.91)		(8.82)	
$AdiR^2=0.86$	D.W.=2.095		- 0.00382*ET15APR	
5			(-3.30) [-0.110]	
YMH12	Yield of Major Rice in Khon Kaen		- 0.00489*ET15OCT	
TREND	Time Trend from 1982 to 2000		(-2.30) [-0.281]	
ET12JUN	Evapotranspiration of June in Khon Kaen		+ 0.56244*D835	
ET12JLY	Evapotranspiration of July in Khon Kaen		(9.94)	
ET12SEP	Evapotranspiration of September in Khon Kaen		- 0.22791*D912	
ET12OCT	Evapotranspiration of October in Khon Kaen		(-3.71)	
D82	Dummy Variable, 1 in 1982, 0 otherwise	AdiR ² =0.88	D.W.=1.763	
D87	Dummy Variable, 1 in 1987, 0 otherwise			
D95	Dummy Variable, 1 in 1995, 0 otherwise	YMH15	Yield of Major Rice in Buri Ram	
2,70	2	TREND	Time Trend from 1982 to 2000	
4-5-1-1-1-1	0. Yield function of major rice in Maha Sarakham	ET15APR	Evapotranspiration of April in Buri Ram	
YMH13 =	+ 1.51352	ET15OCT	Evapotranspiration of October in Surin	
	(7.76)	D835	Dummy Variable, 1 in 1983 to 1985, 0 otherwise	
	+ 0.04631*TREND	D912	Dummy Variable, 1 in 1991 to 1992, 0 otherwise	
	(13.34)			
	- 0 00509*ET13UN			
	(-2 10) [-0.262]	4-5-1-1-1-1	3. Yield function of major rice in Surin	
	+ 0.44242*D834	YMH16=	+ 0.60350	
	(7.78)		(1.12)	
	- 0 30566*D99		+ 0.00411*ET16APR	
	(-4.06)		(2.27) [0.109]	
$AdiR^2=0.90$	D W = 2.112		+ 0.00744 * ET16JLY	
ridjit 0.54	5 22		(2.06) [0.390]	
VMH13	Yield of Major Rice in Maha Sarakham		$+ 0.00764 \times ET16AUG$	
TREND	Time Trend from 1982 to 2000		(2.48) [0.407]	
FT13IUN	Evanotranspiration of June in Maha Sarakham		+ 0.00664*ET16SEP	
D834	Dummy Variable 1 in 1983 to 1984 0 otherwise		(1.97) [0.325]	
D99	Dummy Variable 1 in 1999 0 otherwise		- 0.01085*ET16OCT	
~			(-3.50) [-0.628]	
4-5-1-1-1-1	11. Yield function of major rice in Roi Et		+ 0.43567*D88	
YMH14=	+ 1 35644		(3.17)	
1 111117	(3.80)		+ 0.68427*D94	
	+ 0.04313*TREND		(6.34)	
	(9.43)		+ 0.33107*D97	
	(****)			

Chapter 4 Development of the Rice Econometric Model with Endogenous Water in Thailand (REMEW-THAI)

	(3.50)		(-3.54) [-0.774]
$AdjR^2 = 0.90$	D.W.=2.053		+ 0.46670*D83
			(3.03)
YMH16	Yield of Major Rice in Surin		+ 0.59224*D96
ET16APR	Evapotranspiration of April in Surin		(4.08)
ET16JLY	Evapotranspiration of July in Surin		+ 0.82541*D00
ET16AUG	Evapotranspiration of August in Surin		(5.68)
ET16SEP	Evapotranspiration of September in Surin	AdjR ² =0.88	D.W.=1.895
ET16OCT	Evapotranspiration of October in Surin		
D88	Dummy Variable, 1 in 1988, 0 otherwise	YMH18	Yield of Major Rice in Chaiyaphum
D94	Dummy Variable, 1 in 1994, 0 otherwise	ET18MAY	Evapotranspiration of May in Chaiyaphum
D97	Dummy Variable, 1 in 1997, 0 otherwise	ET18JUN	Evapotranspiration of June in Chaiyaphum
		ET18AUG	Evapotranspiration of August in Chaiyaphum
4-5-1-1-1-1-	4. Yield function of major rice in Si Sa Ket	ET18SEP	Evapotranspiration of September in Chaiyaphum
YMH17 =	- 0.58471	ET18OCT	Evapotranspiration of October in Chaiyaphum
	(-1.19)	ET18NOV	Evapotranspiration of November in Chaiyaphum
	+ 0.04291*TREND	D83	Dummy Variable, 1 in 1983, 0 otherwise
	(8.18)	D96	Dummy Variable, 1 in 1996, 0 otherwise
	+ 0.00461*ET17MAY	D00	Dummy Variable, 1 in 2000, 0 otherwise
	(3.14) [0.232]		• · · ·
	- 0.01698*ET17JUN	4-5-1-1-1-1	6. Yield function of major rice in Nakhon
	(-4.91) [-0.870]	Ratchasim	a
	+ 0.01026*ET17JLY	YMH19 =	+ 4.97683
	(2.41) [0.554]		(6.96)
	+ 0.01248*ET17SEP		+ 0.05049*TREND
	(3.31) [0.639]		(9.31)
	+ 0.01103*ET17NOV		- 0.00997*ET19APR
	(2.32) [0.582]		(-7.57) [-0.320]
	- 0.31936*D923		+ 0.00394*ET19MAY
	(-4.54)		(2.48) [0.202]
	- 0.39813*D989		- 0.00376*ET19JLY
	(-5.32)		(-1.54) [-0.204]
AdjR ² =0.86	37 D.W.=2.222		+ 0.00984*ET19SEP
5			(2.90) [0.483]
YMH17	Yield of Major Rice in Si Sa Ket		- 0.01299*ET19OCT
TREND	Time Trend from 1982 to 2000		(-5.40) [-0.747]
ET17MAY	Evapotranspiration of May in Si Sa Ket		- 0.03524*ET19NOV
ET17JUN	Evapotranspiration of June in Si Sa Ket		(-6.06) [-1.925]
ET17JLY	Evapotranspiration of July in Si Sa Ket		+ 0.64573*D825
ET17SEP	Evapotranspiration of September in Si Sa Ket		(7.78)
ET17NOV	Evapotranspiration of November in Si Sa Ket		+ 0.26546*D89
D923	Dummy Variable, 1 in 1992 to 1993, 0 otherwise		(3.50)
D989	Dummy Variable, 1 in 1998 to 1999, 0 otherwise		+ 0.35398*D98
			(3.75)
4-5-1-1-1-1	5. Yield function of major rice in Chaiyaphum	$AdjR^2 = 0.8$	924 D.W.=1.686
YMH18 =	+ 4.09209		
	(4.54)	YMH19	Yield of Major Rice in Nakhon Ratchasima
	- 0.01267*ET18MAY	TREND	Time Trend from 1982 to 2000
	(-4.11) [-0.573]	ET19APR	Evapotranspiration of April in Nakhon Ratchasin

- 0.01186*ET18JUN

- 0.00952*ET18AUG

+ 0.01531*ET18SEP

+ 0.00780*ET18OCT

-0.01677*ET18NOV

[-0.571]

[-0.458]

[0.673]

[0.405]

(-2.63)

(-2.03)

(2.66)

(1.73)

	(6.96)
	+ 0.05049*TREND
	(9.31)
	- 0.00997*ET19APR
	(-7.57) [-0.320]
	+ 0.00394*ET19MAY
	(2.48) [0.202]
	- 0.00376*ET19JLY
	(-1.54) [-0.204]
	+ 0.00984*ET19SEP
	(2.90) [0.483]
	- 0.01299*ET19OCT
	(-5.40) [-0.747]
	- 0.03524*ET19NOV
	(-6.06) [-1.925]
	+ 0.64573*D825
	(7.78)
	+ 0.26546*D89
	(3.50)
	+ 0.35398*D98
	(3.75)
$AdjR^2 = 0.89$	D.W.=1.686
YMH19	Yield of Maior Rice in Nakhon Ratchasima
TREND	Time Trend from 1982 to 2000
ET19APR	Evapotranspiration of April in Nakhon Ratchasima
ET19MAY	Evapotranspiration of May in Nakhon Ratchasima
ET19JLY	Evapotranspiration of July in Nakhon Ratchasima
ET19SEP	Evapotranspiration of September in Nakhon
	Ratchasima
ET19OCT	Evapotranspiration of October in Nakhon Ratchasima
ET19NOV	Evapotranspiration of November in Nakhon
	Ratchasima
D825	Dummy Variable, 1 in 1982 to 1985, 0 otherwise
D89	Dummy Variable, 1 in 1989, 0 otherwise

D98 Dummy Variable, 1 in 1998, 0 otherwise

4-5-1-1-2. Yield function of major rice in North region

YMH_N=	- 0.30514		
	(-0.51)		
	+ 0.02299	*TREND	
	(5.53)		
	+ 0.00734	*ETNJUN	
	(3.23)	[0.212]	
	- 0.00838*	ETNAUG	
	(-3.35)	[-0.230]	
	+ 0.01499		
	(3.36)	[0.395]	
	- 0.01050*	ETNOCT	
	(-3.43)	[-0.295]	
	+ 0.02736	*ETNNOV	
	(4.47)	[0.711]	
	+ 0.00876	*ETNDEC	
	(3.87)	[0.164]	
	- 0.29898*	D90	
	(-3.52)		
	- 0.20411*	°D979	
	(-3.50)		
	+ 0.33102	*SHIFT00	
	(3.32)		
AdjR ² =0.86	511		D.W.=2.626

YMH_N Yield of Major Rice in North region
ETNJUN Evapotranspiration of June in North region
ETNAUG Evapotranspiration of August in North region
ETNSEP Evapotranspiration of September in North region
ETNOCT Evapotranspiration of October in North region
ETNNOV Evapotranspiration of November in North region
ETNDEC Evapotranspiration of December in North region
Dummy Variable, 1 in 1990, 0 otherwise
SHIFT00 Dummy Variable, 1 after 2000, 0 otherwise

4-5-1-1-3. Yield function of major rice in South region

D.W.=1.631

 $YMH_S = -0.62642$ (-1.63)+ 0.03423*TREND (10.98) + 0.01348*ETSJUN (4.32) [0.509] + 0.01658*ETSOCT (5.47) [0.609] -0.00532*ETSDEC (-3.13) [-0.251] -0.32229*D90 (-4.92) -0.21043*D92 (2.95) AdjR2=0.9200

YMH_S	Yield of Major Rice in South region
TREND	Time Trend from 1982 to 2000
ETSJUN	Evapotranspiration of June in South region
ETSOCT	Evapotranspiration of October in South region
ETSDEC	Evapotranspiration of December in South region
D90	Dummy Variable, 1 in 1990, 0 otherwise
D92	Dummy Variable, 1 in 1992, 0 otherwise

4-5-1-1-4. Yield function of major rice in Central region

$YMH_C =$	+ 0.95407
	(3.69)
	+ 0.04902*TREND
	(19.18)
	+ 0.01224*ETCNOV
	(4.53) [0.306]
	- 0.74002*D90
	(-12.03)
AdjR ² =0.97	09 D.W.=2.695
YMH_C	Yield of Major Rice in Central region
TREND	Time Trend from 1982 to 2000
ETCNOV	Evapotranspiration of November in Central region
D90	Dummy Variable, 1 in 1990, 0 otherwise
4-5-1-2. Yield function of second rice 4-5-1-2-1. Yield function of second rice in North Fast region	
THUR THE	astregion

```
4-5-1-2-1-1. Yield function of second rice in Nakhon Phanom
YSH01 = +1.76190
            (11.59)
           + 0.01774*TREND
            (2.80)
           -0.00912*ET01MAR
            (-2.61) [-0.105]
           + 0.01272*ET01APR
            (5.48)
                      [0.259]
           - 0.40577*D91
            (-2.38)
           + 0.59741*D97
            (3.44)
AdjR<sup>2</sup>=0.8456
                             D.W.=1.772
```

- YSH01Yield of Second Rice in Nakhon PhanomTRENDTime Trend from 1982 to 2000
- ET01MAR Evapotranspiration of March in Nakhon Phanom
- ET01APR Evapotranspiration of April in Nakhon Phanom
- D91 Dummy Variable, 1 in 1991, 0 otherwise
- D97 Dummy Variable, 1 in 1997, 0 otherwise
- 4-5-1-2-1-2. Yield function of second rice in Sakon Nakhon

YSH02 = -1.14095 (-1.74) - 0.01760*TREND (-2.26) + 0.02715*ET02NOV(t-1) (3.32) [0.955] - 0.04772*ET02DEC(t-1)

Development of the Rice Econometric Model with Endogenous Water in Thailand (REMEW-THAI)

	(-4.54)	[-0.81	5]
4	- 0.03309*E	T02JA	.N
	(2.44)	[0.255]
4	- 0.01097*E	T02M	AR
	(3.40)	[0.154]
-	0.00430*E	T02AP	R
	(-2.27)	[-0.104	4]
4	- 0.02966*E	T02M	AY
	(7.30)	[1.195]
4	- 1.03905*E	086	
	(6.14)		
-	0.72469*D	90	
	(-4.22)		
4	- 1.24464*E	091	
	(6.79)		
AdjR ² =0.8683	i		D.W.=2.534

YSH02	Yield of Second Rice in Sakon Nakhon
ET02NOV	Evapotranspiration of November in Sakon Nakhon
ET02DEC	Evapotranspiration of December in Sakon Nakhon
ET02JAN	Evapotranspiration of January in Sakon Nakhon
ET02MAR	Evapotranspiration of March in Sakon Nakhon
ET02APR	Evapotranspiration of April in Sakon Nakhon
ET02MAY	Evapotranspiration of May in Sakon Nakhon
D86	Dummy Variable, 1 in 1986, 0 otherwise
D90	Dummy Variable, 1 in 1990, 0 otherwise
D91	Dummy Variable, 1 in 1991, 0 otherwise

4-5-1-2-1-3. Yield function of second rice in Nong Khai

```
YSH03 = +3.76808
           (6.19)
          + 0.02507*TREND
           (3.61)
           -0.04723*ET03NOV(t-1)
           (-7.19) [-1.232]
           + 0.03150*ET03JAN
                     [0.245]
           (3.84)
          -0.01500*ET03FEB
           (-2.76)
                    [-0.112]
           + 0.01446*ET03MAR
            (4.34)
                     [0.173]
           -0.00870*ET03APR
            (-3.62)
                    [-0.162]
           + 0.01958*ET03MAY
            (5.00)
                     [0.622]
           - 0.85520*D87
           (-5.27)
           - 0.93102*D934
            (-5.98)
           - 0.82979*D00
            (-4.42)
AdjR<sup>2</sup>=0.9031
                           D.W.=2.060
YSH03
TREND
```

ET03APR	Evapotranspiration of April in Nong Khai
ET03MAY	Evapotranspiration of May in Nong Khai
ET03NOV	Evapotranspiration of November in Nong Khai
D87	Dummy Variable, 1 in 1987, 0 otherwise
D934	Dummy Variable, 1 in 1993 to 1994, 0 otherwise
D00	Dummy Variable, 1 in 2000, 0 otherwise

4-5-1-2-1-4. Yield function of second rice in Udon Thani

```
YSH04 = +0.20609
            (0.41)
           + 0.01645*TREND
            (2.35)
           + 0.05106*ET04NOV(t-1)
            (5.45)
                      [1.563]
           -0.04324*ET04DEC(t-1)
            (-4.73) [-0.666]
           -0.01080*ET04FEB
            (-1.94)
                     [-0.078]
           + 0.33744*D889
            (2.73)
           + 0.90961*D90
            (5.58)
           + 0.88404*D99
            (4.97)
AdjR<sup>2</sup>=0.8657
                            D.W.=2.216
YSH04
           Yield of Second Rice in Udon Thani
TREND
           Time Trend from 1982 to 2000
ET04FEB Evapotranspiration of February in Udon Thani
ET04NOV Evapotranspiration of November in Udon Thani
ET04DEC Evapotranspiration of December in Udon Thani
```

LIUTDLC	Evaportatispitation of December in Odon Than
D889	Dummy Variable, 1 in 1988 to 1989, 0 otherwise
D90	Dummy Variable, 1 in 1990, 0 otherwise

D99 Dummy Variable, 1 in 1999, 0 otherwise

4-5-1-2-1-5. Yield function of second rice in Loei

YSH06 = +3.00217(5.07) -0.03449*ET06NOV(t-1) (-3.38) [-0.953] + 0.03746*ET06DEC(t-1) (5.08) [0.649] + 0.01461*ET06MAR (4.06) [0.165] + 0.89519*D92 (4.24)+ 1.03827*D96 (4.76) - 0.43222*D989 (-2.49) AdjR²=0.8740 D.W.=2.306

		YSH06	Yield of Second Rice in Loei
YSH03	Yield of Second Rice in Nong Khai	ET06MAR	Evapotranspiration of March in Loei
TREND	Time Trend from 1982 to 2000	ET06NOV	Evapotranspiration of November in Loei
ET03JAN	Evapotranspiration of January in Nong Khai	ET06DEC	Evapotranspiration of December in Loei
ET03FEB	Evapotranspiration of February in Nong Khai	D92	Dummy Variable, 1 in 1992, 0 otherwise
ET03MAR	Evapotranspiration of March in Nong Khai	D96	Dummy Variable, 1 in 1996, 0 otherwise

YSH11 =

D989 Dummy Variable, 1 in 1998 to 1999, 0 otherwise

4-5-1-2-1-6.	Yield	function	of second	rice in	Yasothon
			0. 0000114		* *******

YSH08 =	+ 4.03983	
	(3.37)	
	- 0.04115*	ET08NOV(t-1)
	(-3.05)	[-1.262]
	+0.05793	*ET08DEC(t-1)
	(4.22)	[0.757]
	- 0.01455*	ET08FEB
	(-2.29)	[-0.070]
	+0.02063	*ET08MAY
	(7.06)	[0.627]
	- 0.02036*	ET08JUN
	(-2.90)	[-0.641]
	+ 1.02254	*D92
	(6.32)	
	+0.99383	*D96
	(7.03)	
	+ 0.86071	*D98
	(6.10)	
AdjR ² =0.89	98	D.W.=1.968

YSH08	Yield of Second Rice in Yasothon
ET08FEB	Evapotranspiration of February in Yasothon
ET08MAY	Evapotranspiration of May in Yasothon
ET08JUN	Evapotranspiration of June in Yasothon
ET08NOV	Evapotranspiration of November in Yasothon
ET08DEC	Evapotranspiration of December in Yasothon
D92	Dummy Variable, 1 in 1992, 0 otherwise
D96	Dummy Variable, 1 in 1996, 0 otherwise

D98 Dummy Variable, 1 in 1998, 0 otherwise

4-5-1-2-1-7. Yield function of second rice in Ubon Ratchathani

YSH09 = +2.79164 (4.91)+ 0.04823*T8292 (6.86) -0.01509*ET09NOV(t-1) (-2.93) [-0.705] -0.01497*ET09JAN (-3.36) [-0.175] + 0.01133*ET09MAR [0.118] (3.01) + 0.00717*ET09JUN (2.12)[0.317] - 0.73377*D91 (-7.01) - 0.61404*D98 (-4.81) AdjR²=0.8744 D.W.=2.070

YSH09

T8292

ET09NOV	Evapotranspiration of November in Ubon Ratchathani
D91	Dummy Variable, 1 in 1991, 0 otherwise

Dummy Variable, 1 in 1998, 0 otherwise D98

4-5-1-2-1-8. Yield function of second rice in Kalasin

+ 4.85052 (6.95) + 0.04600*TREND (5.18)+ 0.03074*ET11DEC(t-1) (3.01) [0.308] -0.01383*ET11FEB (-1.87) [-0.056] - 0.03550*ET11JUN (-5.08) [-0.924] + 0.34197*D890 (2.46)- 1.06759*D94 (-4.20)AdjR²=0.8742 D.W.=1.958

YSH11	Yield of Second Rice in Kalasin
TREND	Time Trend from 1982 to 2000
ETIIFEB	Evapotranspiration of February in Kalasin
ET11JUN	Evapotranspiration of June in Kalasin
ETIIDEC	Evapotranspiration of December in Kalasin
D890	Dummy Variable, 1 in 1989 to 1990, 0 otherwise
D94	Dummy Variable, 1 in 1994, 0 otherwise

4-5-1-2-1-9. Yield function of second rice in Khon Kaen

YSH12 = +1.09285 (1.66)+ 0.07713*TREND (8.45) -0.01717*ET12NOV(t-1) (-2.33)[-0.421] + 0.06347*ET12JAN (4.54) [0.294] -0.01858*ET12MAR [-0.163] (-4.79) -0.00643*ET12APR [-0.092] (-2.38) + 0.02822*ET12JUN (4.65) [0.747] + 0.78400*D85 (4.40)- 1.51149*D93 (-7.50)-0.89488*D956 (-5.96)

D.W.=1.640

Yield of Second Rice in Ubon Ratchathani YSH12 Yield of Second Rice in Khon Kaen Time Trend from 1982 to 1992, 0 before 1982, TREND Time Trend from 1982 to 2000 0 after 1992 ET12JAN Evapotranspiration of January in Khon Kaen ET09JAN Evapotranspiration of January in Ubon Ratchathani ET12MAR Evapotranspiration of March in Khon Kaen ET09MAR Evapotranspiration of March in Ubon Ratchathani ET12APR Evapotranspiration of April in Khon Kaen ET09JUN Evapotranspiration of June in Ubon Ratchathani ET12JUN Evapotranspiration of June in Khon Kaen

AdjR²=0.8636

ET12NOV	Evapotranspiration of November in Khon Kaen	- 0.03807*ET15DEC(t-1)
D85	Dummy Variable, 1 in 1985, 0 otherwise	(-3.50) [-0.634]
D93	Dummy Variable, 1 in 1993, 0 otherwise	+ 0.12514*ET15JAN
D956	Dummy Variable, 1 in 1995 to 1996, 0 otherwise	(5.02) [0.796]
		-0.03341*ET15FEB
4-5-1-2-1-1	0. Yield function of second rice in Maha Sarakham	(-2.53) [-0.195]
YSH13 =	+ 4.50255	- 0.01729*ET15MAR
	(6.80)	(-2.64) [-0.150]
	+ 0.0775*TREND	+ 0.02078*ET15MAY
	(9.13)	(3.79) [0.651]
	- 0.02489*ET13MAR	- 0.03028*ET15JUN
	(-4.23) [-0.188]	(-3.24) [-0.998]
	+ 0.00807*ET13APR	- 0.86525*D87
	(2.12) [0.107]	(-3.45)
	- 0.00468*ET13MAY	- 0.92406*D89
	(-1.30) [0.100]	(-3.57)
	- 0.02173*ET13JUN	+ 0.79307*D93
	(-2.97) [-0.514]	(3.12)

(-2.97) [-0.514] + 0.88063*D890

AdjR²=0.8735 D.W.=2.057

YSH13	Yield of Second Rice in Maha Sarakham
TREND	Time Trend from 1982 to 2000
ET13MAR	Evapotranspiration of March in Maha Sarakham
ET13APR	Evapotranspiration of April in Maha Sarakham
ET13MAY	Evapotranspiration of May in Maha Sarakham
ET13JUN	Evapotranspiration of June in Maha Sarakham
D890	Dummy Variable, 1 in 1989 to 1990, 0 otherwise
D98	Dummy Variable, 1 in 1998, 0 otherwise

4-5-1-2-1-11. Yield function of second rice in Roi Et

YSH14 = - 2.87485 (-4.49) + 0.06625*ET14NOV(t-1) (8.24) [1.714] + 0.02756*ET14MAR (6.59) [0.224] - 1.1150*D82 (-7.71)- 1.15959*D87 (-7.51)+ 0.58066*D912 (5.09) AdjR²=0.9177 D.W.=2.361

YSH14 Yi	ield of Second	Rice	in F	Roi	Et
----------	----------------	------	------	-----	----

ET14MAR	Evapotranspiration of March in Roi Et
ET14NOV	Evapotranspiration of November in Roi Et
D82	Dummy Variable, 1 in 1982, 0 otherwise

- D87 Dummy Variable, 1 in 1987, 0 otherwise
- D912 Dummy Variable, 1 in 1991 to 1992, 0 otherwise

```
4-5-1-2-1-12. Yield function of second rice in Buri Ram
```

YSH15 = +3.88415

(5.20)

YSH15 Yield of Second Rice in Buri Ram ET15JAN Evapotranspiration of January in Buri Ram ET15FEB Evapotranspiration of February in Buri Ram ET15MAR Evapotranspiration of March in Buri Ram ET15MAY Evapotranspiration of May in Buri Ram ET15JUN Evapotranspiration of June in Buri Ram ET15DEC Evapotranspiration of December in Buri Ram D87 Dummy Variable, 1 in 1987, 0 otherwise D89 Dummy Variable, 1 in 1989, 0 otherwise D93 Dummy Variable, 1 in 1993, 0 otherwise

D.W.=1.876

AdjR²=0.8071

4-5-1-2-1-13. Yield function of second rice in Surin

YSH16 = + 5.49422 (3.74)+ 0.03696*TREND (2.99)-0.05185*ET16NOV(t-1) (-3.02)[-1.950] + 0.02561*ET16DEC(t-1) (3.88) [0.431] + 0.03191*ET16FEB (3.85) [0.209] -0.01606*ET16MAR (-2.62)[-0.151] - 0.56121*D82 (-3.10)+ 0.65824*D91 (4.35) -1.31875*D96 (-7.69) - 1.07867*SHIFT98 (-7.17) AdjR²=0.9110 D.W.=1.784 Yield of Second Rice in Surin

TREND Time Trend from 1982 to 2000 ET16FEB Evapotranspiration of January in Surin ET16MAR Evapotranspiration of January in Surin

YSH16

ET16NOV	Evapotranspiration of January in Surin			
ET16DEC	Evapotranspiration of January in Surin			
D82	Dummy Variable, 1 in 1982, 0 otherwise			
D91	Dummy Variable, 1 in 1991, 0 otherwise			
D96	Dummy Variable, 1 in 1996, 0 otherwise			
SHIFT98	Dummy Variable, 1 after 1998, 0 otherwise			
4-5-1-2-1-14	4. Yield function of second rice in Si Sa Ket			
YSH17 =	- 0.89927			
	(-1.83)			
	+ 0.05499*ET17DEC(t-1)			
	(4.94) [0.966]			
	-0.04007*ET17JAN			
	(-2.24) [-0.296]			
	- 0.04265*ET17FEB			
	(-3.80) [-0.245]			
	+ 0.04484*ET17MAR			
	(9.11) [0.372]			
	+ 0.00801*ET17APR			
	(4.55) [0.156]			
	+ 0.01193*ET17JUN			
	(2.99) [0.463]			
	- 0.63630*D87			
	(-5.27)			
	+ 0.30943*D91			
	(2.87)			
	- 0.32/30*D989			
AdjR ² =0.93	56 D.W.=2.224			
YSH17	Yield of Second Rice in Si Sa Ket			
ET17JAN	Evapotranspiration of January in Si Sa Ket			
ET17FEB	Evapotranspiration of February in Si Sa Ket			
ET17MAR	Evapotranspiration of March in Si Sa Ket			
ET17APR	Evapotranspiration of April in Si Sa Ket			
ET17JUN	Evapotranspiration of June in Si Sa Ket			
ET17DEC	Evapotranspiration of December in Si Sa Ket			
D87	Dummy Variable, 1 in 1987, 0 otherwise			
D91	Dummy Variable, 1 in 1991, 0 otherwise			
D989	Dummy Variable, 1 in 1998 to 1999, 0 otherwise			
4-5-1-2-1-15. Yield function of second rice in Chaiyaphum				
4-5-1-2-1-1	5. Yield function of second rice in Chaiyaphum			
4-5-1-2-1-1 YSH18 =	5. Yield function of second rice in Chaiyaphum + 6.00024			
4-5-1-2-1-1 YSH18 =	5. Yield function of second rice in Chaiyaphum + 6.00024 (9.81)			
4-5-1-2-1-1 YSH18 =	5. Yield function of second rice in Chaiyaphum + 6.00024 (9.81) + 0.06028*T8292			
4-5-1-2-1-1 YSH18 =	5. Yield function of second rice in Chaiyaphum + 6.00024 (9.81) + 0.06028*T8292 (4.73)			
4-5-1-2-1-1 YSH18 =	5. Yield function of second rice in Chaiyaphum + 6.00024 (9.81) + 0.06028*T8292 (4.73) - 0.02309*ET18DEC(t-1) (2.26) [0.258]			
4-5-1-2-1-1 YSH18 =	5. Yield function of second rice in Chaiyaphum + 6.00024 (9.81) + 0.06028*T8292 (4.73) - 0.02309*ET18DEC(t-1) (-2.26) [-0.358] + 0.05427#ET181AN			
4-5-1-2-1-1 : YSH18 =	5. Yield function of second rice in Chaiyaphum + 6.00024 (9.81) + 0.06028*T8292 (4.73) - 0.02309*ET18DEC(t-1) (-2.26) [-0.358] + 0.05427*ET18JAN (2.88) [0.314]			
4-5-1-2-1- 19 YSH18 =	5. Yield function of second rice in Chaiyaphum + 6.00024 (9.81) + 0.06028*T8292 (4.73) - 0.02309*ET18DEC(t-1) (-2.26) [-0.358] + 0.05427*ET18JAN (2.88) [0.314] - 0.02342*ET18FEB			
4-5-1-2-1- 1: YSH18 =	5. Yield function of second rice in Chaiyaphum + 6.00024 (9.81) + 0.06028*T8292 (4.73) - 0.02309*ET18DEC(t-1) (-2.26) [-0.358] + 0.05427*ET18JAN (2.88) [0.314] - 0.02342*ET18FEB (-3.17) [-0.155]			
4-5-1-2-1-1: YSH18 =	5. Yield function of second rice in Chaiyaphum + 6.00024 (9.81) + 0.06028*T8292 (4.73) - 0.02309*ET18DEC(t-1) (-2.26) [-0.358] + 0.05427*ET18JAN (2.88) [0.314] - 0.02342*ET18FEB (-3.17) [-0.155] - 0.00850*ET18MAR			
4-5-1-2-1-1: YSH18 =	5. Yield function of second rice in Chaiyaphum + 6.00024 (9.81) + 0.06028*T8292 (4.73) - 0.02309*ET18DEC(t-1) (-2.26) [-0.358] + 0.05427*ET18JAN (2.88) [0.314] - 0.02342*ET18FEB (-3.17) [-0.155] - 0.00850*ET18MAR (-2.18) [-0.092]			
4-5-1-2-1-1: YSH18 =	5. Yield function of second rice in Chaiyaphum + 6.00024 (9.81) + 0.06028*T8292 (4.73) - 0.02309*ET18DEC(t-1) (-2.26) [-0.358] + 0.05427*ET18JAN (2.88) [0.314] - 0.02342*ET18FEB (-3.17) [-0.155] - 0.00850*ET18MAR (-2.18) [-0.092] - 0.00648*ET18MAY			
4-5-1-2-1-1: YSH18 =	5. Yield function of second rice in Chaiyaphum + 6.00024 (9.81) + 0.06028*T8292 (4.73) - 0.02309*ET18DEC(t-1) (-2.26) [-0.358] + 0.05427*ET18JAN (2.88) [0.314] - 0.02342*ET18FEB (-3.17) [-0.155] - 0.00850*ET18MAR (-2.18) [-0.092] - 0.00648*ET18MAY (-1.48) [-0.192]			
4-5-1-2-1-1: YSH18 =	5. Yield function of second rice in Chaiyaphum + 6.00024 (9.81) + 0.06028*T8292 (4.73) - 0.02309*ET18DEC(t-1) (-2.26) [-0.358] + 0.05427*ET18JAN (2.88) [0.314] - 0.02342*ET18FEB (-3.17) [-0.155] - 0.00850*ET18MAR (-2.18) [-0.092] - 0.00648*ET18MAY (-1.48) [-0.192] - 0.02481*ET18JUN			

	+ 0.36519*D856
	(2.30)
	+ 0.98348*D93
	(4.22)
	+ 0 80015*D97
	(3.78)
AdjR ² =0.859	D.W.=2.380
-	
YSH18	Yield of Second Rice in Chaiyaphum
T8292	Time Trend from 1982 to 1992, 0 before 1982,
	0 after 1992
ET18JAN	Evapotranspiration of January in Chaiyaphum
ET18FEB	Evapotranspiration of February in Chaiyaphum
ET18MAR	Evapotranspiration of March in Chaiyaphum
ET18MAY	Evapotranspiration of May in Chaiyaphum
ET18JUN	Evapotranspiration of June in Chaiyaphum
ET18DEC	Evapotranspiration of December in Chaiyaphum
D856	Dummy Variable, 1 in 1985 to 1986, 0 otherwise
D93	Dummy Variable, 1 in 1993, 0 otherwise
D97	Dummy Variable, 1 in 1997, 0 otherwise
4-5-1-2-1-16	5. Yield function of second rice in Nakhon
Ratchasima	
YSH19 =	+ 1.50479
	(6.27)
	+ 0.00871*ET19DEC(t-1)
	(2.37) [0.143]
	+ 0.00491*ET19APR
	(2.28) [0.089]
	+ 0.00752*ET19MAY
	(2.57) [0.217]
	+ 0.72592*D89
	(5.30)
	+ 1.09139*D92
	(7.40)
	- 0.33658*D96
	(-2.41)
AdjR ² =0.85	78 D.W.=2.631
VSH10	Vield of Second Rice in Nakhon Ratchasima
ET10APP	Evanotranspiration of April in Nakhon Ratchasima
FT10MAV	Evapotranspiration of May in Nakhon Ratchasima
ETIODEC	Evapotranspiration of December in Nakhon
LIIJDEC	Patchasima
090	Dummy Variable 1 in 1989 0 otherwise
D02	Dummy Variable, 1 in 1909, 0 otherwise
D92	Dummy Variable, 1 in 1992, 0 otherwise
090	Dummy variable, 1 in 1990, 0 otherwise
4-5-1-2-2	2. Yield function of second rice in
North re	gion
YSH N=	+ 2.26145
-	(12.00)

(12.89) + 0.14069*T8292 (19.72) - 0.14707*T9600 (-7.21) + 0.00790*ETNJAN (1.95) [0.063]

Chapter 4

Development of the Rice Econometric Model with Endogenous Water in Thailand (REMEW-THAI)

	+ 0.02075*ETNFEB	
	(3.26) [0.119]	
	+ 0.005186*ln(ETNMA	R)
	(2.08) [0.029]	
	- 0.573257*D87(-6.14)	
AdjR ² =0.966	69	D.W.=2.064
YSH_N	Yield of Second Rice in I	North region
T8292	Time Trend from 1982 to	1992, 1 before 1982, 11
Т9600	Time Trend from 1996 to	2000, 1 before 1996
ETNJAN	Evapotranspiration of Jar	uary in North region
ETNFEB	Evapotranspiration of Fe	bruary in North region
ETNMAR	Evapotranspiration of Ma	arch in North region
D87	Dummy Variable, 1 in 19	987, 0 otherwise

4-5-1-2-3. Yield function of second rice in South region

YSH S =+2.82790(9.35) + 0.19791*T8789 (9.99)-0.00471*ETSDEC(t-1) (-2.59)[-0.172] - 0.00411*ETSFEB (-3.47)[-0.101] + 0.00316*ETSMAR (2.70)[0.070] -0.00287*ETSAPR (-2.81)[-0.080] + 0.00672*ETSMAY (3.46) [0.233] -0.00383*ETSJUN (-1.14)[-0.136] + 0.382326*D82 (4.69)-0.57866*D90 (-9.50) - 0.34906*D926 (-9.98) AdjR²=0.9629 D.W.=2.302 YSH S Yield of Second Rice in South region T8789 Time Trend from 1987 to 1989, 1 before 1987, 3 after 1989 ETSFEB Evapotranspiration of February in South region ETSMAR Evapotranspiration of March in South region ETSAPR Evapotranspiration of April in South region Evapotranspiration of May in South region ETSMAY ETSJUN Evapotranspiration of June in South region ETSDEC Evapotranspiration of December in South region D82 Dummy Variable, 1 in 1982, 0 otherwise D90 Dummy Variable, 1 in 1990, 0 otherwise D926 Dummy Variable, 1 in 1992 to 1996, 0 otherwise

4-5-1-2-4. Yield function of second rice in Central region YSH_C = +3.46934

D92

```
(48.39)
           + 0.05174*TREND
            (11.15)
           + 0.00581*ETCMAR
            (2.36)
                      [-0.040]
           -0.33076*D87
            (-3.18)
           -1.87457*D90
            (16.68)
           + 0.35704*D96
            (3.34)
AdjR<sup>2</sup>=0.9699
                                        D.W.=2.094
YSH C
           Yield of Second Rice in Central region
TREND
           Time Trend from 1982 to 2000
ETCMAR Evapotranspiration of March in Central region
D87
           Dummy Variable, 1 in 1987, 0 otherwise
D90
           Dummy Variable, 1 in 1990, 0 otherwise
D96
           Dummy Variable, 1 in 1996, 0 otherwise
4-5-2. Planted area functions
4-5-2-1. Planted area function of major rice
4-5-2-1-1. Planted area function of major rice
in North East region
4-5-2-1-1-1. Planted area function of major rice in Nakhon
Phanom
APM01=
           - 57036
            (-0.80)
           + 0.49673*APM01(t-1)
            (3.34)
           + 5.66909*[FPR(t-1)/CPI(t-1)/100]
            (2.06)
                       [0.153]
           - 460.38753* ET01MAY(t-1)
            (-4.10)
                      [-0.189]
           + 751.20376* ET01JLY(t-1)
            (2.13)
                       [0.331]
           + 1223.51665* ET01OCT(t-1)
            (3.71)
                       [0.631]
           - 1336.95339*ET01NOV(t-1)
            (-3.02)
                      [-0.529]
           + 2137.33188*ET01DEC(t-1)
            (2.84)
                       [0.410]
           - 30740*D823
            (-4.98)
           - 23189*D92
            (-3.88)
AdjR<sup>2</sup>=0.9016
                             D.W.=2.246
APM01
           Planted Area of Major Rice in Nakhon Phanom
           Farm Price of Thai Rice (baht per KG)
FPR
           Consumer Price Index (1998=100)
CPI
ET01MAY Evapotranspiration of May in Nakhon Phanom
ET01JLY Evapotranspiration of July in Nakhon Phanom
ET01OCT Evapotranspiration of October in Nakhon Phanom
ET01NOV Evapotranspiration of November in Nakhon Phanom
ET01DEC Evapotranspiration of December in Nakhon Phanom
D823
           Dummy Variable, 1 in 1982 to 1983, 0 otherwise
```

Dummy Variable, 1 in 1992, 0 otherwise

4-5-2-1-1-2.	Planted area function of major rice in Sakon
Nakhon	
APM02=	+ 325123
	(2.72)
	$+ 0.59106^{*}\text{APM02(t-1)}$
	(3.28)
	+ 21.169/8*[FFR(t-1)/CPI(t-1)/100]
	(3.00) [0.437]
	$+ 981.21300 \cdot E102AI ((-1))$
	(3.25) $[0.172]$
	(-2.87) [-0.545]
	- 2858 21242*ET02AUG(t-1)
	(-4.47) [-0.913]
	+ 3884.42246*ET02SEP(t-1)
	(6.48) [1.355]
	- 4901.40208*ET02NOV(t-1)
	(-4.53) [-1.434]
	+ 37671*D88
	(2.19)
	+ 46493*D91
	(2.30)
	+ 69480*D95
	(3.78)
AdjR ² =0.74	43 D.W.=1.812
APM02	Planted Area of Major Rice in Sakon Nakhon
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ET02APR	Evapotranspiration of April in Sakon Nakhon
ET02MAY	Evapotranspiration of May in Sakon Nakhon
ET02AUG	Evapotranspiration of August in Sakon Nakhon
ET02SEP	Evapotranspiration of September in Sakon Nakhon
ET02NOV	Evapotranspiration of November in Sakon Nakhon
D88	Dummy Variable, 1 in 1988, 0 otherwise
D91	Dummy Variable, 1 in 1991, 0 otherwise
D95	Dummy Variable, 1 in 1995, 0 otherwise
4-5-2-1-1-3	. Planted area function of major rice in Nong Khai
APM03=	+ 230472
	(4.87)
	+ 0.21182*APM03(t-1)
	(2.40)
	+ 13.68872*[FPR(t-1)/CPI(t-1)/100]
	(6.51) [0.446]
	- 882.44676*E103MAY (t-1)
	(-0.89) [-0.460]
	$\pm 1003./4230^{\pm}E103JUN(t-1)$
	(3.90) $[0.640]2526 12207*ET02SED(+ 1)$
	(-2.2.0.12207 E1030EF((-1))
	+ 1680 74831*ET03OCT(t-1)
	(7.80) [0.948]
	- 4733.56802*ET03NOV(t-1)
	(-11.53) [-2.030]
	+ 4137.42883*ET03DEC(t-1)

(11.30) [1.022]

+ 52651*D90 (8.70)- 18520*D93 (-2.82) - 92658*D97 (-12.21) AdjR²=0.9438 D.W.=2.397 APM03 Planted Area of Major Rice in Nong Khai Farm Price of Thai Rice (baht per KG) FPR CPI Consumer Price Index (1998=100) ET03MAY Evapotranspiration of May in Nong Khai ET03JUN Evapotranspiration of June in Nong Khai ET03SEP Evapotranspiration of September in Nong Khai ET03OCT Evapotranspiration of October in Nong Khai ET03NOV Evapotranspiration of November in Nong Khai ET03DEC Evapotranspiration of December in Nong Khai D90 Dummy Variable, 1 in 1990, 0 otherwise D93 Dummy Variable, 1 in 1993, 0 otherwise D97 Dummy Variable, 1 in 1997, 0 otherwise 4-5-2-1-1-4. Planted area function of major rice in Udon Thani APM04 = +257903 (4.48) + 0.20507*APM04(t-1) (2.03) + 10.00143*[FPR(t-1)/CPI(t-1)/100] (1.84) [0.127] + 1017.70684*ET04MAR(t-1) (3.29) [-0.070] - 1255.39328*ET04APR(t-1) (-5.17) [-0.132] + 1621.82874*ET04MAY(t-1) (5.73) [0.316] - 855.06144*ET04JUN(t-1) (-1.99) [-0.168] - 122204*D82 (-7.59) + 38527*D00 (2.32)AdjR²=0.8748 D.W.=2.270 APM04 Planted Area of Major Rice in Udon Thani FPR Farm Price of Thai Rice (baht per KG) CPI Consumer Price Index (1998=100) ET04MAR Evapotranspiration of March in Udon Thani ET04APR Evapotranspiration of April in Udon Thani ET04MAY Evapotranspiration of May in Udon Thani ET04JUN Evapotranspiration of June in Udon Thani D82 Dummy Variable, 1 in 1982, 0 otherwise D00 Dummy Variable, 1 in 2000, 0 otherwise 4-5-2-1-1-5. Planted area function of major rice in Loei APM06 = -94713 (-3.97) + 0.62760*APM06(t-1) (5.50)+ 4.77205*[FPR(t-1)/CPI(t-1)/100]

Development of the Rice Econometric Model with Endogenous Water in Thailand (REMEW-THAI)

```
(3.23)
                       [0.436]
            + 589.44534*ET06SEP(t-1)
            (3.84)
                       [0.767]
            + 505.59908*ET06OCT(t-1)
            (3.33)
                       [0.721]
            + 18958*D85
            (4.86)
            + 7332*D93
            (2.10)
            + 9301*SHIFT00
            (2.23)
AdjR<sup>2</sup>=0.8869
                           D.W.=2.078
```

APM06	Planted Area of Major Rice in Loei
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ET06SEP	Evapotranspiration of September in Loei
ET06OCT	Evapotranspiration of October in Loei
D85	Dummy Variable, 1 in 1985, 0 otherwise
D93	Dummy Variable, 1 in 1993, 0 otherwise
SHIFT00	Dummy Variable, 1 after 2000, 0 otherwise

4-5-2-1-1-6. Planted area function of major rice in Yasothon

```
APM08 = +200244
            (6.45)
           + 0.16365*APM08(t-1)
            (1.56)
           + 6.05595*[FPR(t-1)/CPI(t-1)/100]
            (2.98)
                     [0.203]
           + 243.19072*ET08APR(t-1)
            (2.19)
                      [0.061]
           - 452.47485*ET08MAY(t-1)
            (-3.24)
                    [-0.223]
           - 1022.97716*ET08JLY(t-1)
            (-4.80)
                    [-0.543]
           - 400.05764*ET08AUG(t-1)
            (-1.81)
                    [-0.206]
           + 635.83002*ET08SEP(t-1)
            (3.12)
                      [0.339]
           - 71917*D82
            (-11.14)
           + 34551*D94
            (5.05)
           + 18432*D99
            (2.47)
AdjR<sup>2</sup>=0.8991
                          D.W.=1.609
```

APM08	Planted Area of Major Rice in Yasothon
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ET08APR	Evapotranspiration of April in Yasothon
ET08MAY	Evapotranspiration of May in Yasothon
ET08JLY	Evapotranspiration of July in Yasothon
ET08AUG	Evapotranspiration of August in Yasothon
ET08SEP	Evapotranspiration of September in Yasothon
D82	Dummy Variable, 1 in 1982, 0 otherwise
D94	Dummy Variable, 1 in 1994, 0 otherwise
D99	Dummy Variable, 1 in 1999, 0 otherwise

```
4-5-2-1-1-7. Planted area function of major rice in Ubon
Ratchathani
APM09 = - 76398
            (-1.03)
           + 0.89135*APM09 (t-1)
            (8.71)
           + 15.51384*[FPR(t-1)/CPI(t-1)/100]
           (3.69)
                      [0.144]
           -403.52314*ET09MAY(t-1)
            (-1.90) [-0.057]
           - 958.50868*ET09AUG(t-1)
            (-2.38) [-0.143]
           + 2583.35305*ET09SEP(t-1)
            (5.07)
                      [0.389]
           + 863.17759*ET09OCT(t-1)
            (2.41)
                      [0.154]
           - 1521.19193*ET09NOV(t-1)
            (-2.68) [-0.236]
           - 63632*D82
            (-6.03)
           - 26533*D913
            (-4.58)
           + 76450*D94
            (5.51)
AdjR<sup>2</sup>=0.9446
                          D.W.=2.095
```

APM09	Planted Area of Major Rice in Ubon Ratchathani
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ET09MAY	Evapotranspiration of May in Ubon Ratchathani
ET09AUG	Evapotranspiration of August in Ubon Ratchathani
ET09SEP	Evapotranspiration of September in Ubon Ratchathani
ET09OCT	Evapotranspiration of October in Ubon Ratchathani
ET09NOV	Evapotranspiration of November in Ubon Ratchathani
D82	Dummy Variable, 1 in 1982, 0 otherwise
D913	Dummy Variable, 1 in 1991 to 1993, 0 otherwise
D94	Dummy Variable, 1 in 1994, 0 otherwise

4-5-2-1-1-8. Planted area function of major rice in Kalasin

APM11 = + 56220 (0.98) + 0.24723*APM11(t-1) (2.24)+ 21.91551*[FPR(t-1)/CPI(t-1)/100] (3.97) [0.678] - 1706.00635*ET11JUN(t-1) (-3.45) [-0.832] + 1313.66003*ET11SEP(t-1) (2.54) [0.625] + 810.50056*ET11OCT(t-1) (2.28) [0.448] - 2465.92084*ET11DEC(t-1) (-3.74) [-0.465] -95808*D82 (-8.65) + 35211*D87 (2.92)

AdjR ² =0.897	77 D.W.=1.894	
APM11	Planted Area of Major Rice in Kalasin	
FPR	Farm Price of Thai Rice (baht per KG)	
CPI	Consumer Price Index (1998=100)	
ET11JUN	Evapotranspiration of June in Kalasin	
ET11SEP	Evapotranspiration of September in Kalasin	A
ET11OCT	Evapotranspiration of October in Kalasin	
ET11DEC	Evapotranspiration of December in Kalasin	A
D82	Dummy Variable, 1 in 1982, 0 otherwise	FI
D87	Dummy Variable, 1 in 1987, 0 otherwise	C
		E
4-5-2-1-1-9.	Planted area function of major rice in Khon Kaen	E
APM12 =	- 134423	E
	(-1.46)	E
	+ 0.23600*APM12(t-1)	E
	(1.54)	E
	+ 17.43296*[FPR(t-1)/CPI(t-1)/100]	D
	(3.14) [0.328]	D
	+ 1394.37618*TREND	
		4-
	+ 2484.4630/*E112OC1(t-1)	A
	(3.85) [0.800]	
	+ /6341*D834	
	(0.81)	
	+ 41616*D89	
	(2.10) + 60700*D00	
	(4.35)	
$AdiR^2=0.85$	(4.55)	
APM12	Planted Area of Major Rice in Khon Kaen	
FPR	Farm Price of Thai Rice (baht per KG)	
CPI	Consumer Price Index (1998=100)	
TREND	Time Trend from 1982 to 2000	
ET12OCT	Evapotranspiration of October in Khon Kaen	
D834	Dummy Variable, 1 in 1983 to 1984, 0 otherwise	
D89	Dummy Variable, 1 in 1989, 0 otherwise	
D00	Dummy Variable, 1 in 2000, 0 otherwise	
4 = 2 1 1 1	0. District dense function of major visa in Make	
4-5-2-1-1-10	o. Planted area function of major rice in Mana	Δ
ADM12 -	+ 687180	~
Arivity –	(7.08)	Δ
	(7.00) + 0.23836*4 DM13(t 1)	F
	(2.33)	C
	(2.33) + 10 82375*[FPR(t_1)/CPI(t_1)/100]	E
	(2 03) [0 238]	Ē
	(2.05) [0.250] - 723 13962*FT13APR(t-1)	E
	(-2.10) [-0.130]	E
	+ 1334.35315*ET13MAY(t-1)	D
	(3.63) [0.389]	D
	+ 2536.51034*ET13JUN(t-1)	D
	(3.60) [0.821]	2
	- 1202.71922*ET13JLY(t-1)	4
	(-2.19) [-0.417]	A
	- 4285.68386*ET13AUG(t-1)	

(-5.71)

[-1.465]

PR Pl 84 85 88

(-7.29) [-1.399] - 84962*D86 (-4.62)+ 37388*D990 (2.90) djR²=0.8695 D.W.=2.192 Planted Area of Major Rice in Maha Sarakham PM13 PR Farm Price of Thai Rice (baht per KG) ΡI Consumer Price Index (1998=100) T13APR Evapotranspiration of April in Maha Sarakham T13MAY Evapotranspiration of May in Maha Sarakham T13JUN Evapotranspiration of June in Maha Sarakham Evapotranspiration of July in Maha Sarakham T13JLY T13AUG Evapotranspiration of August in Maha Sarakham T13SEP Evapotranspiration of September in Maha Sarakham 86 Dummy Variable, 1 in 1989, 0 otherwise 990 Dummy Variable, 1 in 1999 to 2000, 0 otherwise -5-2-1-1-11. Planted area function of major rice in Roi Et PM14 = - 59874 (-0.70) + 0.40904*APM14(t-1) (3.40)+ 40.80481*[FPR(t-1)/CPI(t-1)/100] (7.20) [0.575] -1060.27586*ET14MAY(t-1) (-3.56) [-0.210] + 2232.47525*ET14JLY(t-1) (3.98) [0.498] - 1505.74858*ET14AUG(t-1) [-0.326] (-2.14) + 796.79684*ET14OCT(t-1) [0.207] (1.66) - 92498*D84 (-4.76) + 39365*D85 (2.42)+ 71147*D88 (3.49) djR²=0.8423 D.W.=1.926 PM14 Planted Area of Major Rice in Roi Et Farm Price of Thai Rice (baht per KG) Consumer Price Index (1998=100) T14MAY Evapotranspiration of May in Roi Et T14JLY Evapotranspiration of July in Roi Et T14AUG Evapotranspiration of August in Roi Et T14OCT Evapotranspiration of October in Roi Et Dummy Variable, 1 in 1984, 0 otherwise Dummy Variable, 1 in 1985, 0 otherwise Dummy Variable, 1 in 1988, 0 otherwise -5-2-1-1-12. Planted area function of major rice in Buri Ram PM15 = - 336450 (-1.81)

- 4291.66920*ET13SEP(t-1)

+ 0.52159*APM15(t-1)

Chapter 4

Development of the Rice Econometric Model with Endogenous Water in Thailand (REMEW-THAI)

	(3.97)
	+ 54.86962*[FPR(t-1)/CPI(t-1)/100]
	(6.27) [0.715]
	+ 3133.80343*TREND
	(3.72)
	- 854 62530*FT15APR(t-1)
	(2.02) [0.004]
	(-2.92) $[-0.094]$
	+ 6822.75234 * E115MAY(t-1)
	(10.20) [1.270]
	- 9528.72585*ET15AUG(t-1)
	(-7.63) [-2.075]
	- 7128.03099*ET15SEP(t-1)
	(-9.60) [-1.399]
	+ 6507.67104*ET15OCT(t-1)
	(5.20) [1.481]
	+ 2904 03314*FT15NOV(t-1)
	(4.40) [0.500]
	(4.40) $[0.590]$
	+ 6919.8/444*E115DEC(t-1)
	(6.11) [0.690]
	+ 216618*D84
	(8.97)
	- 78318*D86
	(-3.49)
	+ 50616*D93
	(2.93)
$A di R^2 = 0.92$	D W = 2.336
//uj/(0.72	D.W. 2.550
4 DM 41 6	Directed Arrest of Mailes Director Durin Darres
APM15	Planted Area of Major Rice in Buri Ram
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
TREND	Time Trend from 1982 to 2000
ET15APR	Evapotranspiration of April in Buri Ram
ET15MAY	Evapotranspiration of May in Buri Ram
ET15AUG	Evapotranspiration of August in Buri Ram
ET15SEP	Evapotranspiration of September in Buri Ram
ET15OCT	Evapotranspiration of October in Buri Ram
ETISNOV	Evaportanspiration of October in Buri Ram
ETISNOV	Evaporalispiration of November in Burt Kall
ETISDEC	Evapotranspiration of December in Buri Ram
D84	Dummy Variable, 1 in 1984, 0 otherwise
D86	Dummy Variable, 1 in 1986, 0 otherwise
D93	Dummy Variable, 1 in 1993, 0 otherwise
4-5-2-1-1-13	3. Planted area function of major rice in Surin
APM16=	+ 266712
	(1.92)
	$+ 0.69840* \Delta PM16(t-1)$
	(8 81)
	+ 30.19530*[FPK(t-1)/CPI(t-1)/100]
	(5.12) [0.481]
	- 3403.65471*ET16APR(t-1)
	(-6.77) [-0.360]
	+ 5495.16008*ET16MAY(t-1)
	(9.23) [1.060]
	- 4382.96428*ET16JUN(t-1)
	(-5.15) [-0.862]
	+ 3222 46877*FT1611 V(t-1)
	(2.48) [0.602]
	(J.40) [U.U72]

+ 2837.27333*ET16AUG(t-1)

	(3.42) [0.619]
	- 3201.25189*ET16OCT(t-1)
	(-3.58) [-0.764]
	- 3482.64124*ET16NOV(t-1)
	(-2.28) [-0.708]
	- 5804.47477*ET16DEC(t-1)
	(-5.05) [-0.528]
	+ 118036*D823
	(8.51)
	- 78289*D93
	(-4.06)
	+ 123196*D00
	(6.78)
AdjR ² =0.96	23 D.W.=2.366
APM16	Planted Area of Major Rice in Surin
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ET16APR	Evapotranspiration of April in Surin
ET16MAY	Evapotranspiration of May in Surin
ET16JUN	Evapotranspiration of June in Surin
ET16JLY	Evapotranspiration of July in Surin
ET16AUG	Evapotranspiration of August in Surin
ET16OCT	Evapotranspiration of October in Surin
ET16NOV	Evapotranspiration of November in Surin
ET16DEC	Evapotranspiration of December in Surin
D823	Dummy Variable, 1 in 1982 to 1983, 0 otherwise
D93	Dummy Variable, 1 in 1993, 0 otherwise
D00	Dummy Variable, 1 in 2000, 0 otherwise

4-5-2-1-1-14. Planted area function of major rice in Si Sa Ket

APM17= - 665675 (-2.71) + 0.22264*APM17(t-1) (1.31) + 36.97384*[FPR(t-1)/CPI(t-1)/100] (4.28) [0.481] + 4041.36742*TREND (2.98) -472.37718*ET17MAY(t-1) (-1.54) [-0.110] - 2872.11128*ET17JUN(t-1) (-3.06) [-0.682] + 4017.48029*ET17JLY(t-1) (3.76) [1.005] + 1658.21640*ET17AUG(t-1) (1.61) [0.408] + 4533.44519*ET17SEP(t-1) (4.58) [1.089] + 3749.95561*ET17OCT(t-1) (3.97) [1.068] - 5086.39557*ET17NOV(t-1) (-3.44) [-1.253] + 3902.32737*ET17DEC(t-1) (3.25) [0.421] + 59252*D85 (2.94) + 171277*D92

(6.21)	
- 85476*D980	
(-5.65)	
AdjR ² =0.8454	D.W.=2.385

APM17	Planted Area of Major Rice in Si Sa Ket
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
TREND	Time Trend from 1982 to 2000
ET17MAY	Evapotranspiration of May in Si Sa Ket
ET17JUN	Evapotranspiration of June in Si Sa Ket
ET17JLY	Evapotranspiration of July in Si Sa Ket
ET17AUG	Evapotranspiration of August in Si Sa Ket
ET17SEP	Evapotranspiration of September in Si Sa Ket
ET17OCT	Evapotranspiration of Ocober in Si Sa Ket
ET17NOV	Evapotranspiration of November in Si Sa Ket
ET17DEC	Evapotranspiration of December in Si Sa Ket
D85	Dummy Variable, 1 in 1985, 0 otherwise
D92	Dummy Variable, 1 in 1992, 0 otherwise
D980	Dummy Variable, 1 in 1998 to 2000, 0 otherwise

4-5-2-1-1-15. Planted area function of major rice in

Chaiyaphum

FPR

CPI T9299

APM18= -93877 (-0.94) + 0.39721*APM18(t-1) (4.49) + 26.42655*[FPR(t-1)/CPI(t-1)/100] (3.68) [0.744] - 5940.53421*T9299 (-4.23) - 900.92307*ET18APR(t-1) (-2.87) [-0.205] + 891.39063*ET18MAY(t-1) [0.373] (3.07) - 803.50716*ET18AUG(t-1) (-1.63) [-0.359] + 1293.83482*ET18OCT(t-1) (2.34)[0.624] + 51111*D83 (3.88) - 54500*D845 (-5.77) - 39337**D90 (-2.35) AdjR²=0.8516 D.W.=1.385 APM18 Planted Area of Major Rice in Chaiyaphum Farm Price of Thai Rice (baht per KG) Consumer Price Index (1998=100) Time Trend from 1992 to 1999, 0 before 1992, 0 after 1999 ET18APR Evapotranspiration of April in Chaiyaphum ETI8MAY E notr sniratio of May in Chain

EII8MAY	Evapotranspiration of May in Chaiyaphum
ET18AUG	Evapotranspiration of August in Chaiyaphum
ET18OCT	Evapotranspiration of Ocotober in Chaiyaphum
D83	Dummy Variable, 1 in 1983, 0 otherwise
D845	Dummy Variable, 1 in 1984 to 1985, 0 otherwise

D90 Dummy Variable, 1 in 1990, 0 otherwise

4-5-2-1-1-16. Planted area function of major rice in Nakhon Ratchasima

APM19=	- 894888
	(-3.46)
	+ 0.70340*APM19(t-1)
	(7.81)
	+ 32.87640*[FPR(t-1)/CPI(t-1)/100]
	(3.53) [0.396]
	- 999.44193*ET19MAY(t-1)
	(-2.12) [-0.180]
	+ 4430.01488*ET19JUN(t-1)
	(3.74) [0.806]
	+ 2052.08192*ET19OCT(t-1)
	(2.25) [0.414]
	+ 4289.62393*ET19NOV(t-1)
	(3.05) [0.821]
	+ 95151*D88
	(3.77)
	- 119257*D90
	(-3.97)
	+ 96474*D93
	(3.47)
AdjR ² =0.87	60 D.W.=1.903
APM19	Planted Area of Major Rice in Nakhon Ratchasima
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ET19MAY	Evapotranspiration of May in Nakhon Ratchasima
ET19JUN	Evapotranspiration of June in Nakhon Ratchasima
ET19OCT	Evapotranspiration of October in Nakhon Ratchasima
ET19NOV	Evapotranspiration of November in Nakhon
	Ratchasima
D88	Dummy Variable, 1 in 1988, 0 otherwise
D90	Dummy Variable, 1 in 1990, 0 otherwise
D93	Dummy Variable, 1 in 1993, 0 otherwise

4-5-2-1-2. Planted area function of major rice in North region

APM_N= + 344051 (0.87) + 0.72682*LAG(APM_N) (4.83) + 29.84673*[(FPR/(CPI/100)](t-1) (1.60) [0.083] - 1979.04416*ETNAPR(t-1) (-2.65) [-0.043] - 6466.43149*ETNAUG(t-1) (-3.71) [-0.247] + 8486.67984*ETNSEP(t-1) (2.70) [0.314] + 319584 *D88 (6.14) - 195605 *D89 (-2.76) - 122122 *D92 (-2.67)

AdjR ² =0.78	73 D.W.=1.247
APM_N	Harvested Area of Major Rice in North region
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ETNAPR	Evapotranspiration of April in North region
ETNAUG	Evapotranspiration of August in North region
ETNSEP	Evapotranspiration of September in North region
D88	Dummy Variable, 1 in 1988, 0 otherwise
D89	Dummy Variable, 1 in 1989, 0 otherwise
D92	Dummy Variable, 1 in 1992, 0 otherwise

4-5-2-1-3. Planted area function of major rice in South region

```
APM S =
           - 70160
            (-0.49)
           + 0.89397*APM_S(t-1)
            (16.15)
           + 11.96174*[FPR/(CPI/100)](t-1)
            (1.86)
                      [0.151]
           - 1361.18163*ETSMAY(t-1)
            (-3.28)
                     [-0.297]
           + 2187.11507*ETSJUN(t-1)
            (2.37)
                      [0.492]
           + 875.51807*ETSJUL(t-1)
                      [0.205]
            (1.48)
           - 1888.96266*ETSOCT(t-1)
            (-2.63)
                      [-0.373]
           - 967.83482*ETSNOV(t-1)
            (-1.41)
                      [-0.187]
           + 1195.89685*ETSDEC(t-1)
            (2.94)
                      [0.276]
           + 58243*D85
            (3.06)
           - 80662*D890
            (-4.70)
```

AdjR²=0.9703

D.W.=2.489

APM_S	Harvested Area of Major Rice in North region
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ETSMAY	Evapotranspiration of May in South region
ETSJUN	Evapotranspiration of JUNE in South region
ETSJLY	Evapotranspiration of JULY in South region
ETSOCT	Evapotranspiration of October in South region
ETSNOV	Evapotranspiration of November in South region
ETSDEC	Evapotranspiration of December in South region
D85	Dummy Variable, 1 in 1985, 0 otherwise
D890	Dummy Variable, 1 from 1989 to 1990, 0 otherwise

4-5-2-1-4. Planted area function of major rice in Central region

$APM_C =$	+ 1281911
	(4.15)
	- 50080*T8892
	(-4.66)
	+ 0.52558*APM_C(t-1)

(3.84)+ 28.85434*[FPR/(CPI/100)](t-1) (2.00)[0.089] - 809.59811*ETCAPR(t-1) (-1.50)[-0.026] - 2721.19394*ETCMAY(t-1) (-3.23)[-0.153] + 2021.77212*ETCOCT(t-1) (1.82)[0.111] - 3889.93395*ETCNOV(t-1) (-2.85) [-0.172] - 85669 *D834 (-2.73)- 186982*D90 (-4.01)- 196237*SHIFT93 (-3.30)AdjR²=0.9778 D.W.=2.448 APM C Harvested Area of Major Rice in Central region T8892 Time Trend from 1988 to 1992, 0 before 1988, 0 after 1992 FPR Farm Price of Thai Rice (baht per kg) CPI Consumer Price Index (1998=100) ETCAPR Evapotranspiration of April in Central region ETCMAY Evapotranspiration of May in Central region ETCOCT Evapotranspiration of October in Central region ETCNOV Evapotranspiration of November in Central region D834 Dummy Variable, 1 from 1983 to 1984, 0 otherwise D90 Dummy Variable, 1 in 1990, 0 otherwise SHIFT93 Dummy Variable, 1 after 1993, 0 otherwise 4-5-2-2. Planted area function of second rice 4-5-2-2-1. Planted area function of second rice in North East region 4-5-2-2-1-1. Planted area function of second rice in Nakhon Phanom APS01 =+ 10674 (5.28)+ 0.74477*APS01(t-1) (7.00) + 0.12905*[FPR(t-1)/CPI(t-1)/100] (0.73)[0.356] - 109.04618*ET01NOV(t-2) (-4.30) [-4.407] + 115.41304*ET01DEC(t-2) (3.63) [2.253] + 20.11001*ET01APR(t-1) (2.56)[0.484] - 20.87385*ET01MAY(t-1) (-2.33) [-0.875] - 66.52683*ET01JUN(t-1) (-3.62)[-2.899] + 1645.15186*D989 (3.96) AdjR²=0.8956 D.W.=2.247

(-4.93)

FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ET01APR	Evapotranspiration of April in Nakhon Phanom
ET01MAY	Evapotranspiration of May in Nakhon Phanom
ET01JUN	Evapotranspiration of June in Nakhon Phanom
ET01NOV	Evapotranspiration of November in Nakhon Phanom
ET01DEC	Evapotranspiration of December in Nakhon Phanom
D989	Dummy Variable, 1 in 1998 to 1999, 0 otherwise

4-5-2-2-1-2. Planted are function of second rice in Sakon

Nakhon

APS02 = - 7991.74998 (-8.34) + 0.47788*APS02(t-1) (6.94) + 0.49060*[FPR(t-1)/CPI(t-1)/100] (4.52) [1.984] + 51.00659*ET02FEB(t-1) (5.91) [0.667] + 12.73450*ET02MAR(t-1) (2.30) [0.285] - 19.01202*ET02MAY(t-1) (-2.79) [-1.185] + 76.76855*ET02JUN(t-1) (7.10) [4.687] -1393.70226*D834 (-5.09) + 1911.31585*D88 (6.92) AdjR²=0.9530 D.W.=2.456

APS02	Planted Area of Second Rice in Sakon Nakhon
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ET02FEB	Evapotranspiration of February in Sakon Nakhon
ET02MAR	Evapotranspiration of March in Sakon Nakhon
ET02JUN	Evapotranspiration of June in Sakon Nakhon
D834	Dummy Variable, 1 in 1983 to 1984, 0 otherwise
D88	Dummy Variable, 1 in 1988, 0 otherwise

4-5-2-2-1-3. Planted area function of second rice in Nong Khai

```
APS03 = -1987.90745
           (-1.24)
          + 0.40458*APS03(t-1)
           (7.04)
          + 0.36758*[FPR(t-1)/CPI(t-1)/100]
           (2.35) [0.671]
          - 71.48689*ET03NOV(t-2)
           (-3.05) [-1.714]
          + 66.07381*ET03DEC(t-2)
           (3.34) [0.902]
          + 48.04893*ET03JUN(t-1)
           (2.56) [1.343]
          + 632.34656*T9499
           (10.82)
          -1008.27611*D901
           (-3.10)
          -2518.71811*D94
```

	- 4752.70048*D97
	(-9.82)
AdjR ² =0.96	37 D.W.=1.633
APS03	Planted Area of Second Rice in Nong Khai
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ET03JUN	Evapotranspiration of June in Nong Khai
ET03NOV	Evapotranspiration of November in Nong Khai
ET03DEC	Evapotranspiration of December in Nong Khai
T9499	Time trend from 1994 to 1999, 0 otherwise
D901	Dummy Variable, 1 in 1990 to 1991, 0 otherwise
D94	Dummy Variable, 1 in 1994, 0 otherwise
D97	Dummy Variable, 1 in 1997, 0 otherwise
4-5-2-2-1-4.	Planted area function of second rice in Udon Thani
APS04 =	- 8197.84994
	(-7.36)
	+ 0.02368*APS04(t-1)
	(0.27)
	+ 0.22650*[FPR(t-1)/CPI(t-1)/100]
	(1.78) [0.603]
	+ 196.94825*ET04NOV(t-2)
	(9.37) [6.897]
	- 283.71352*ET04DEC(t-2)
	(-9.19) [-5.176]
	+ 275.26268*ET04JAN(t-1)
	(5.03) [2.146]
	+ 25.11571*ET04APR(t-1)
	(5.00) [0.554]
	- 2445.32646*D82
	(-6.47)
	+ 989.09254*D96
	(2.34)
	- 2320.75745*D00
	(-4.04)
AdjR ² =0.89	94 D.W.=2.365
APS04	Planted Area of Second Rice in Udon Thani
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ET04JAN	Evapotranspiration of January in Udon Thani
ET04APR	Evapotranspiration of April in Udon Thani
ET04NOV	Evapotranspiration of November in Udon Thani
ET04DEC	Evapotranspiration of December in Udon Thani
D82	Dummy Variable, 1 in 1982, 0 otherwise
D96	Dummy Variable, 1 in 1996, 0 otherwise
D00	Dummy Variable, 1 in 2000, 0 otherwise
4-5-2-2-1-5	. Planted area function of second rice in Loei
APS06 =	- 1298.89276

(-5.27) + 0.22751*APS06(t-1) (1.95) + 0.04119*[FPR(t-1)/CPI(t-1)/100] (1.58) [0.879] - 23.54613*ET06DEC(t-2)

Chapter 4

Development of the Rice Econometric Model with Endogenous Water in Thailand (REMEW-THAI)

	(-4.99) [-4.089]
	+ 46.82898*ET06JAN(t-1)
	(6.17) [4.132]
	+ 5.26211*ET06MAR(t-1)
	(2.89) [0.626]
	- 2.65433*ET06APR(t-1)
	(-1.84) [-0.490]
	+ 14.62046*ET06JUN(t-1)
	(5.73) [4.833]
	+ 154.75145*D92
	(1.74)
	- 324.02005*D98
	(-3.44)
AdjR ² =0.88	50 D.W.=2.376
APS06	Planted Area of Second Rice in Loei
FPR	Farm Price of Thai Rice (babt per KG)
CPI	Consumer Price Index (1998=100)
ET06JAN	Evapotranspiration of January in Loei
ET06MAR	Evapotranspiration of March in Loei
ET06APR	Evapotranspiration of April in Loei
ET06JUN	Evapotranspiration of June in Loei
ET06DEC	Evapotranspiration of December in Loei
D92	Dummy Variable, 1 in 1992, 0 otherwise
D98	Dummy Variable, 1 in 1998, 0 otherwise
APS08 =	- 3094.03126 (-6.80) + 0.53993*APS08(t-1) (10.97) + 0.30103*[FPR(t-1)/CPI(t-1)/100] (5.15) [1.491] + 113.08309*ET08DEC(t-2) (6.02) [3.509] - 88.84498*ET08JAN(t-1) (-2.92) [-1.004] - 26.81450*ET08APR(t-1) (-9.27) [-0.999] + 1251.20415*D84 (7.74) + 724.62758*D92
	$+ 724.02736 \cdot D92$
	+ 1697.19520*D98
	(8.50)
AdjR ² =0.96	33 D.W.=1.504
APS08	Planted Area of Second Rice in Yasothon
FPR	Farm Price of Thai Rice (baht per KG)
СРІ	Consumer Price Index (1998=100)
et08jan	Evapotranspiration of January in Yasothon
ET08APR	Evapotranspiration of April in Yasothon
ET08DEC	Evapotranspiration of December in Yasothon
D84	Dummy Variable, 1 in 1984, 0 otherwise
D92	Dummy Variable, 1 in 1992, 0 otherwise
D98	Dummy Variable, 1 in 1998, 0 otherwise

4-5-2-2-1-7. Planted area function of second rice in Ubon

.

Ratchathani

APS09

```
APS09 =
         -16778
            (2.93)
           + 0.35528*APS09(t-1)
            (4.27)
           + 0.50425*[FPR(t-1)/CPI(t-1)/100]
           (1.37)
                      [0.473]
           + 310.01829*ET09NOV(t-2)
           (6.02)
                    [4.850]
           -350.56930*ET09DEC(t-2)
           (-7.61) [-2.751]
           -134.94665*ET09MAR(t-1)
            (-5.07) [-0.467]
           +156.76263*ET09APR(t-1)
            (7.95) [1.097]
           -188.37162*ET09MAY(t-1)
           (-7.96) [-2.694]
           + 214.92390*ET09JUN(t-1)
            (9.74)
                      [3.176]
           -4067.13257*D83
            (-4.16)
           -9466.71777*D87
           (-8.21)
           -3062.02409*D890
            (-3.91)
AdjR<sup>2</sup>=0.9248
                          D.W.=1.521
          Planted Area of Second Rice in Ubon Ratchathani
           Farm Price of Thai Rice (haht per KG)
```

FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ET09M AR	Evapotranspiration of March in Ubon Ratchathani
ET09APR	Evapotranspiration of April in Ubon Ratchathani
ET09MAY	Evapotranspiration of May in Ubon Ratchathani
ET09JUN	Evapotranspiration of June in Ubon Ratchathani
ET09NOV	Evapotranspiration of November in Ubon Ratchathani
ET09DEC	Evapotranspiration of December in Ubon Ratchathani
D83	Dummy Variable, 1 in 1983, 0 otherwise
D87	Dummy Variable, 1 in 1987, 0 otherwise
D890	Dummy Variable, 1 in 1989 to 1990, 0 otherwise

4-5-2-2-1-8. Planted area function of second rice in Kalasin

APS11 = +24807 (5.41) + 0.85267*APS11(t-1) (18.04) + 0.51460*[FPR(t-1)/CPI(t-1)/100] (0.87) [0.309] + 3189.24007*ln(T87) (12.91) - 859.78676*ET11DEC(t-2) (-9.00) [-3.147] + 1640.72617*ET11JAN(t-1) (11.63) [2.119] - 31.31688*ET11MAR(t-1) (-1.34) [-0.095] + 77.12215*ET11APR(t-1) (2.90) [0.392] - 161.89174*ET11MAY(t-1)

```
(-6.43) [-1.410]
            - 126.64582*ET11JUN(t-1)
                     [-1.199]
            (-3.14)
            + 4640.36286*D86
            (3.21)
            - 19145*D94
             (-11.82)
            - 23325*D99
             (-14.24)
AdjR<sup>2</sup>=0.9906
                           D.W.=2.527
APS11
            Planted Area of Second Rice in Kalasin
FPR
           Farm Price of Thai Rice (baht per KG)
            Consumer Price Index (1998=100)
CPI
LT87
            Logarithm of time trend from 1987, 0 otherwise
ET11JAN Evapotranspiration of January in Kalasin
ET11MAR Evapotranspiration of March in Kalasin
ET11APR Evapotranspiration of April in Kalasin
ET11MAY Evapotranspiration of May in Kalasin
ET11JUN Evapotranspiration of June in Kalasin
```

D86 Dummy Variable, 1 in 1986, 0 otherwiseD94 Dummy Variable, 1 in 1994, 0 otherwise

ET11DEC Evapotranspiration of December in Kalasin

D99 Dummy Variable, 1 in 1999, 0 otherwise

4-5-2-2-1-9. Planted area function of second rice in Khon Kaen

```
APS12 = -72551
            (-6.79)
           + 0.48354*APS12(t-1)
            (3.97)
           + 0.50818*[FPR(t-1)/CPI(t-1)/100]
            (0.48)
                       [0.273]
           + 921.53020*ET12NOV(t-2)
                       [7.216]
            (7.66)
           + 261.11113*ET12MAR(t-1)
            (4.48)
                       [0.753]
           - 156.80801*ET12APR(t-1)
            (-3.68)
                      [-0.689]
           - 7614.73365*D85
            (-3.64)
           - 8553.49095*D87
            (-3.49)
           + 7360.77399*D89
            (2.81)
           + 14057*D95
            (3.91)
AdjR<sup>2</sup>=0.8795
                           D.W.=1.847
```

APS12	Planted Area of Second Rice in Khon Kaen
FPR	Farm Price of Thai Rice (baht per kg)
CPI	Consumer Price Index (1998=100)
ET12MAR	Evapotranspiration of March in Khon Kaen
ET12APR	Evapotranspiration of April in Khon Kaen
ET12NOV	Evapotranspiration of November in Khon Kaen
D85	Dummy Variable, 1 in 1985, 0 otherwise
D87	Dummy Variable, 1 in 1987, 0 otherwise
D89	Dummy Variable, 1 in 1989, 0 otherwise

4-5-2-2-1-10. Planted area function of second rice in Maha Sarakham APS13 = - 37565 (-3.83)+ 0.91330*APS13(t-1) (10.15)+ 0.83544*[FPR(t-1)/CPI(t-1)/100] (0.77) [0.609] + 294.81708*ET13NOV(t-2) (2.78)[3.077] + 382.10238*ET13JAN(t-1) (2.04)[0.667] - 298.89046*ET13FEB(t-1) (-3.32) [-0.614] + 193.01579*ET13MAR(t-1) (3.11)[0.666] - 138.52959*ET13APR(t-1) (-3.39) [-0.828] + 164.15449*ET13MAY(t-1) (3.34)[1.590] + 3654.77905*D89 (1.36)-12115*D94 (-4.25) AdjR2=0.9299 D.W.=2.006

APS13	Planted Area of Second Rice in Maha Sarakham
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ET13JAN	Evapotranspiration of January in Maha Sarakham
ET13FEB	Evapotranspiration of February in Maha Sarakham
ET13MAR	Evapotranspiration of March in Maha Sarakham
ET13APR	Evapotranspiration of April in Maha Sarakham
ET13MAY	Evapotranspiration of May in Maha Sarakham
ET13NOV	Evapotranspiration of November in Maha Sarakham
D89	Dummy Variable, 1 in 1989, 0 otherwise
D94	Dummy Variable, 1 in 1994, 0 otherwise

4-5-2-2-1-11. Planted area function of second rice in Roi Et

```
APS14 = -30287
            (-3.57)
           + 0.36316*APS14(t-1)
            (3.36)
           + 0.19654*[FPR(t-1)/CPI(t-1)/100]
            (0.40)
                      [0.225]
           + 468.41894*ET14NOV(t-2)
            (3.37)
                      [7.661]
           - 818.83755*ET14DEC(t-2)
            (-2.85)
                    [-5.635]
           + 663.14523*ET14JAN(t-1)
            (1.85)
                      [1.824]
           + 144.23248*ET14FEB(t-1)
            (2.07)
                      [0.473]
           + 132.33002*ET14JUN(t-1)
            (2.93)
                      [2.286]
           + 2923.10947*D89
            (2.27)
           + 10046*D92
```

Chapter 4 Development of the Rice Econometric Model with Endogenous Water in Thailand (REMEW-THAI)

	(6.97)
	- 3821.74466*D94
	(-2.67)
AdjR ² =0.930	D.W.=1.983
APS14	Planted Area of Second Rice in Roi Et
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ET14JAN	Evapotranspiration of January in Roi Et
ET14FEB	Evapotranspiration of February in Roi Et
ET14JUN	Evapotranspiration of June in Roi Et
ET14NOV	Evapotranspiration of November in Roi Et
ET14DEC	Evapotranspiration of Necember in Roi Et
D89	Dummy Variable, 1 in 1989, 0 otherwise
D92	Dummy Variable, 1 in 1992, 0 otherwise
D94	Dummy Variable, 1 in 1994, 0 otherwise

4-5-2-2-1-12. Planted area function of second rice in Buri Ram

```
APS15 =
          -3238.14066
            (-4.23)
           + 0.52715*APS15(t-1)
            (8.18)
           + 0.13450*[FPR(t-1)/CPI(t-1)/100]
            (2.18)
                      [1.217]
           + 26.50944*ET15NOV(t-2)
            (3.57)
                       [3.721]
           + 9.74792*ET15FEB(t-1)
            (1.53)
                       [0.236]
           + 9.10498*ET15MAR(t-1)
            (1.74)
                       [9.105]
           + 1024.55174*D889
            (8.48)
           + 989.19506*D92
            (5.96)
AdjR<sup>2</sup>=0.8414
                           D.W.=2.258
```

APS15	Planted Area of Second Rice in Buri Ram
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ET15FEB	Evapotranspiration of February in Buri Ram
ET15MAR	Evapotranspiration of March in Buri Ram
ET15NOV	Evapotranspiration of November in Buri Ram
D889	Dummy Variable, 1 in 1988 to 1989, 0 otherwise
D92	Dummy Variable, 1 in 1992, 0 otherwise

4-5-2-2-1-13. Planted area function of second rice in Surin

```
APS16 = -6780.14533
(-5.81)
+ 0.63350*APS16(t-1)
(9.98)
+ 0.07752*[FPR(t-1)/CPI(t-1)/100]
(1.23) [0.533]
+ 145.56050*T8289
(7.36)
+ 133.81691*ln(T95)
(3.42)
+ 40.50127*ET16NOV(t-2)
(3.48) [4.241]
```

```
+ 36.22501*ET16JAN(t-1)
             (3.18)
                       [0.663]
            + 6.78879*ET16APR(t-1)
             (2.07)
                       [0.371]
            + 23.46808*ET16JUN(t-1)
             (5.32)
                       [2.385]
            - 243.75092*D89
             (-1.05)
            + 1096.64935*D923
             (8.41)
AdjR<sup>2</sup>=0.9594
                            D.W.=2.731
APS16
            Planted Area of Second Rice in Surin
FPR
            Farm Price of Thai Rice (baht per KG)
CPI
           Consumer Price Index (1998=100)
T8289
           Time Trend from 1982 to 1989, 0 otherwise
LT95
           Logarithm of Time Trend from 1995, 0 otherwise
ET16JAN Evapotranspiration of January in Surin
ET16APR Evapotranspiration of April in Surin
ET16JUN
           Evapotranspiration of June in Surin
ET16NOV Evapotranspiration of November in Surin
D89
            Dummy Variable, 1 in 1989, 0 otherwise
D923
            Dummy Variable, 1 in 1992 to 1993, 0 otherwise
4-5-2-2-1-14. Planted area function of second rice in Si Sa Ket
APS17 = -5854.12296
             (-3.77)
            + 0.26837*APS17(t-1)
             (3.12)
            + 0.59373*[FPR(t-1)/CPI(t-1)/100]
             (3.94)
                       [1.746]
            - 43.96068*ET17JAN(t-1)
             (-1.71)
                      [-0.385]
            - 20.39977*ET17MAY(t-1)
             (-2.46)
                       [-0.911]
            + 66.11579*ET17JUN(t-1)
                       [3.016]
             (4.37)
            + 3220.64128*D846
             (10.76)
            + 2240.93639*D88
             (4.72)
            + 2035.05366*D92
             (4.77)
AdjR<sup>2</sup>=0.9199
                            D.W.=1.823
APS17
           Planted Area of Second Rice in Si Sa Ket
FPR
            Farm Price of Thai Rice (baht per KG)
CPI
            Consumer Price Index (1998=100)
ET17JAN Evapotranspiration of January in Si Sa Ket
ET17MAY Evapotranspiration of May in Si Sa Ket
ET17JUN
           Evapotranspiration of June in Si Sa Ket
D846
            Dummy Variable, 1 in 1984 to 1986, 0 otherwise
D88
            Dummy Variable, 1 in 1988, 0 otherwise
D92
            Dummy Variable, 1 in 1992, 0 otherwise
```

4-5-2-2-1-15. Planted area function of second rice in Chaiyaphum APS18 = -4934.88547

```
(-3.10)
           + 0.33270*APS18(t-1)
            (2.69)
           + 0.16210*[FPR(t-1)/CPI(t-1)/100]
            (0.91)
                    [0.720]
           + 21.48022*ET18NOV(t-2)
            (1.43)
                      [1.448]
           - 88.04848*ET18JAN(t-1)
            (-3.22) [-1.107]
           + 18.41744*ET18MAR(t-1)
            (2.24)
                      [0.455]
           + 24.49043*ET18APR(t-1)
            (2.03)
                      [0.880]
           - 21.38045*ET18MAY(t-1)
            (-2.06) [-1.412]
           + 49.12046*ET18JUN(t-1)
            (3.25)
                      [3.473]
           + 877.22287*D889
            (3.16)
           + 2747.09344*D92
            (5.79)
AdjR<sup>2</sup>=0.8797
                          D.W.=1.921
                                       ~
```

APS18	Planted Area of Second Rice in Chaiyaphum
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ET18JAN	Evapotranspiration of January in Chaiyaphum
ET18MAR	Evapotranspiration of March in Chaiyaphum
ET18APR	Evapotranspiration of April in Chaiyaphum
ET18MAY	Evapotranspiration of May in Chaiyaphum
ET18JUN	Evapotranspiration of June in Chaiyaphum
ET18NOV	Evapotranspiration of November in Chaiyaphum
D889	Dummy Variable, 1 in 1988 to 1989, 0 otherwise
D92	Dummy Variable, 1 in 1992, 0 otherwise

4-5-2-2-1-16. Planted area function of second rice in Nakhon Ratchasima

```
APS19 = - 32297
           (-8.74)
           + 0.61102*APS19(t-1)
           (8.11)
           + 0.35556*[FPR(t-1)/CPI(t-1)/100]
           (1.43)
                     [0.456]
           + 282.85892*ET19NOV(t-2)
           (9.06)
                     [5.737]
           + 80.58050*ET19DEC(t-2)
           (-11.22) [0.868]
           - 358.38272*ET19FEB(t-1)
           (-11.82) [-1.432]
           + 241.14504*ET19MAR(t-1)
           (10.40) [1.495]
           + 43.31809*ET19APR(t-1)
           (3.23)
                   [0.500]
           - 125.50027*ET19MAY(t-1)
           (-9.02) [-2.398]
           + 149.99681*ET19JUN(t-1)
            (4.49)
                   [2.903]
           - 8996.55486*D90
```

	(-11.22)
	- 8920.60848*D98
	(8.97)
	+ 5938.94675*D00
	(8.97)
AdjR ² =0.98	80 D.W.=1.971
APS19	Planted Area of Second Rice in Nakhon Ratchasima
FPR	Farm Price of Thai Rice (baht per KG)
CPI	Consumer Price Index (1998=100)
ET19FEB	Evapotranspiration of February in Nakhon
	Ratchasima
ET19MAR	Evapotranspiration of March in Nakhon Ratchasima
ET19APR	Evapotranspiration of April in Nakhon Ratchasima
ET19MAY	Evapotranspiration of May in Nakhon Ratchasima
ET19JUN	Evapotranspiration of June in Nakhon Ratchasima
ET19NOV	Evapotranspiration of November in Nakhon
	Ratchasima
ET19DEC	Evapotranspiration of December in Nakhon
	Ratchasima
D90	Dummy Variable, 1 in 1990, 0 otherwise
D98	Dummy Variable, 1 in 1998, 0 otherwise
D00	Dummy Variable, 1 in 2000, 0 otherwise

4-5-2-2-2. Planted area function of second rice in North region

APS_N = -190405 (-2.92) + 13897.4*TREND (7.50) + 0.53896*APS_N(t-1) (5.25)+ 15.6997*[FPR/(CPI/100)](t-1) (2.13) [0.257] + 15656.5*ETNJAN(t-1) (11.48) [1.540] -15033.5*ETNFEB(t-1) (-7.48) [-1.058] + 4129.81*ETNMAR(t-1) (6.43) [0.290] -2378.73*ETNMAY(t-1) (-5.74) [-0.579] + 194653 *D86 (7.05)-138917 *D912 (-8.67) AdjR²=0.9839 APS N Harvested Area of Second Rice in North region TREND Time Trend from 1982 to 2000 Farm Price of Thai Rice (baht per KG) Consumer Price Index (1008-100)

CPI	Consumer Price Index (1998=100)
ETNJAN	Evapotranspiration of January in North region
ETNFEB	Evapotranspiration of February in North region
ETNMAR	Evapotranspiration of March in North region

D.W.=1.615

ETNMAY Evapotranspiration of May in North region D86 Dummy Variable, 1 in 1986, 0 otherwise

FPR

```
D912
            Dummy Variable, 1 in 1991 to 1992, 0 otherwise
```

4-5-2-2-3. Plante	ed area	function	of	second	rice
in South region					

$APS_S =$	+ 38495.4		
	(2.85)		
	+ 0.52253*	APS_S(t-1)	
	(5.20)		
	+ 2.59221*	[FPR/(CPI/100)]((t-1)
	(2.05)	[0.490]	
	- 354.600*]	ETSJAN(t-1)	
	(-3.13)	[-1.293]	
	- 8558.75*1	D82	
	(-2.25)		
	- 15921.4*1	D902	
	(-5.58)		
	+ 17528.6*	D99	
	(4.54)		
AdjR ² =0.85	531		D.W.=2.167
AdjR ² =0.85	(4.54) 531		D.W.=2.167

APS_S	Harvested Area of Second Rice in South region
FPR	Farm Price of Thai Rice (baht per KG)
CP1	Consumer Price Index (1998=100)
ETSJAN	Evapotranspiration of January in South region
D82	Dummy Variable, 1 in 1982, 0 otherwise
D902	Dummy Variable, 1 in 1990 to 1992, 0 otherwise
D99	Dummy Variable, 1 in 1999, 0 otherwise

4-5-2-2-4. Planted area function of second rice in Central region

```
APS_C = +370279
           (4.14)
          + 41541.3*ln(T94)
           (4.51)
          + 0.32570*APS C(t-1)
           (2.36)
          + 23.7520*[FPR/(CPI/100)](t-1)
           (2.06) [0.239]
          + 8489.08*ETCDEC(t-2)
           (5.55)
                   [1.055]
          -13446 *ETCJAN(t-1)
           (-4.66) [-0.763]
          + 5303.54*ETCFEB(t-1)
           (2.66)
                   [0.211]
          + 1230.38*ETCAPR(t-1)
           (2.07)
                   [0.114]
          - 5619.69*ETCMAY(t-1)
           (-5.62) [-0.933]
          + 65595.8*D89
           (1.70)
          - 181487 *D91
           (-5.30)
AdjR<sup>2</sup>=0.8844
                                     D.W.=2.331
```

APS_C	Harvested Area of Second Rice in Central region
LT94	Log Time Trend from 1994, 0 before 1994
FPR	Farm Price of Thai Rice (baht per kg)
CPI	Consumer Price Index (1998=100)
ETCJAN	Evapotranspiration of January in Central region
ETCJAN	Evapotranspiration of January in Central region

ETCFEB	Evapotranspiration of February in Central region
ETCAPR	Evapotranspiration of April in Central region
ETCMAY	Evapotranspiration of May in Central region
ETCDEC	Evapotranspiration of May in December region
D89	Dummy Variable, 1 in 1989, 0 otherwise
D91	Dummy Variable, 1 in 1991, 0 otherwise
4-5-3. Pr	oduction
4-5-3-1.	Production of major rice
4-5-3-1-1	. Production of major rice in North
East regi	ion
4-5-3-1-1-1	Production identity of major rice in Nakhon
Phanom	J J
OM01=	YMH01*(APM01-LM01)
OM01	Production of major rice in Nakhon Phanom (MT)
YMH01	Yield of major rice in Nakhon Phanom (MT/HA)
APM01	Planted area of major rice in Nakhon Phanom (HA)
LM01	Abandoned area of major rice in Nakhom Phanom
(HA)	· · · · · · · · · · · · · · · · · · ·
4-5-3-1-1-2.	Production identity of major rice in Sakon Nakhon
QM02=	YMH02*(APM02-LM02)
QM02	Production of major rice in Sakon Nakhon (MT)
YMH02	Yield of major rice in Sakon Nakhon (MT/HA)
APM02	Planted area of major rice in Sakon Nakhon (HA)
LM02	Abandoned area of major rice in Sakon Nakhon
(HA)	
4-5-3-1-1-3	Production identity of major rice in Nong Khai
QM03=	YMH03*(APM03-LM03)
QM03	Production of major rice in Nong Khai (MT)
YMH03	Yield of major rice in Nong Khai (MT/HA)
APM03	Planted area of major rice in Nong Khai (HA)
LM03	Abandoned area of major rice in Nong Khai (HA)
4-5-3-1-1-4	. Production identity of major rice in Udon Thani
QM04=	YMH04*(APM04-LM04)
QM04	Production of major rice in Udon Thani (MT)
YMH04	Yield of major rice in Udon Thani (MT/HA)
APM04	Planted area of major rice in Udon Thani (HA)
LM04	Abandoned area of major rice in Udon Thani (HA)
4-5-3-1-1-5	Production identity of maior rice in Loei
OM06=	YMH06*(APM06-LM06)
QM06	Production of major rice in Loei (MT)
YMH06	Yield of major rice in Loei (MT/HA)
APM06	Planted area of major rice in Loei (HA)
LM06	Abandoned area of major rice in Loei (HA)
1 5 3 1 1 4	Durduction identify of major vise in March 1
4-3-3-1-1-0	VALLOS*(ADMOS J MOS)
	I MITUO" (APMIUS-LIMUS)
VMU8	Production of major rice in Yasothon (MI)
	r reiu or major rice in y asotnon (MT/HA)
APIVIU8	A hand area of major rice in Yasothon (HA)
LIVIU8	Abandoned area of major rice in Yasothon (HA)
4-5-3-1-1-7	. Production identity of major rice in Ubon

Ratchathani

QM09=	YMH09*(APM09-LM09)
QM09	Production of major rice in Ubon Ratchathani (MT)
YMH09	Yield of major rice in Ubon Ratchathani (MT/HA)
APM09	Planted area of major rice in Ubon Ratchathani
	(HA)
LM09	Abandoned area of major rice in Ubon Ratchathani
	(HA)

4-5-3-1-1-8. Production identity of major rice in Kalasin

- YMH11*(APM11-LM11) OM11=
- QM11 Production of major rice in Kalasin (MT)
- YMH11 Yield of major rice in Kalasin (MT/HA)
- APM11 Planted area of major rice in Kalasin (HA)
- LM11 Abandoned area of major rice in Kalasin (HA)

4-5-3-1-1-9. Production identity of major rice in Khon Kaen

- Production of major rice in Khon Kaen (MT) QM12
- YMH12 Yield of major rice in Khon Kaen (MT/HA)
- APM12 Planted area of major rice in Khon Kaen (HA)
- LM12 Abandoned area of major rice in Khon Kaen (HA)

4-5-3-1-1-10. Production identity of major rice in Maha Sarakham

QM13=	YMH13*(APM13-LM13)
QM13	Production of major rice in Maha Sarakham (MT)
YMH13	Yield of major rice in Maha Sarakham (MT/HA)
APM13	Planted area of major rice in Maha Sarakham (HA)
LM13	Abandoned area of major rice in Maha Sarakham
	(HA)

4-5-3-1-11. Production identity of major rice in Roi Et

- QM14= YMH14*(APM14-LM14)
- QM14 Production of major rice in Roi Et (MT)
- Yield of major rice in Roi Et (MT/HA) YMH14
- APM14 Planted area of major rice in Roi Et (HA)
- LM14 Abandoned area of major rice in Roi Et (HA)

4-5-3-1-1-12. Production identity of major rice in Buri Ram

- YMH15*(APM15-LM15) QM15=
- QM15 Production of major rice in Buri Ram (MT)
- YMH15 Yield of major rice in Buri Ram (MT/HA)
- APM15 Planted area of major rice in Buri Ram (HA)
- LM15 Abandoned area of major rice in Buri Ram (HA)

4-5-3-1-1-13. Production identity of major rice in Surin

- YMH16*(APM16-LM16) OM16=
- QM16 Production of major rice in Surin (MT)
- YMH16 Yield of major rice in Surin (MT/HA)
- APM16 Planted area of major rice in Surin (HA)
- LM16 Abandoned area of major rice in Surin (HA)

4-5-3-1-1-14. Production identity of major rice in Si Sa Ket

- QM17= YMH17*(APM17-LM17)
- Production of major rice in Si Sa Ket (MT) QM17
- YMH17 Yield of major rice in Si Sa Ket (MT/HA)
- Planted area of major rice in Si Sa Ket (HA) APM17
- LM17 Abandoned area of major rice in Si Sa Ket (HA)

4-5-3-1-1-15. Production identity of major rice in Chaiyaphum

QM18=	YMH18*(APM18-LM18)
QM18	Production of major rice in Chaiyaphum (MT)
YMH18	Yield of major rice in Chaiyaphum (MT/HA)

- APM18 Planted area of major rice in Chaiyaphum (HA)
- LM18 Abandoned area of major rice in Chaiyaphum (HA)

4-5-3-1-1-16. Production identity of major rice in Nakhon Ratchasima

QM19=	YMH19*(APM19-LM19)
QM19	Production of major rice in Nakhon Ratchasima
	(MT)
YMH19	Yield of major rice in Nakhon Ratchasima
(MT/HA)	
APM19	Planted area of major rice in Nakhon Ratchasima
	(HA)
LM19	Abandoned area of major rice in Nakhon
	Ratchasima (HA)

4-5-3-1-1-17. Production identity of major rice for whole North East region

QM NE= QM01 + QM02 + QM03 + QM04 + QM06 + QM08 + QM09 + QM11 + QM12 + QM13 + QM14 + QM15 + QM16 + QM17 + QM18 + QM19

- OM NE Production of major rice in North East region (MT)
- OM01 Production of major rice in Nakhon Phanom (MT)
- QM02 Production of major rice in Sakon Nakhon (MT)
- QM03 Production of major rice in Nong Khai (MT)
- Production of major rice in Udon Thani (MT) QM04
- QM06 Production of major rice in Loei (MT)
- QM08 Production of major rice in Yasothon (MT) QM09
- Production of major rice in Ubon Ratchathani (MT)
- QM12 Production of major rice in Khon Kaen (MT) OM13 Production of major rice in Maha Sarakham (MT)
- OM14 Production of major rice in Roi Et (MT)
- Production of major rice in Buri Ram (MT) QM15
- QM16 Production of major rice in Surin (MT)
- QM17 Production of major rice in Si Sa Ket (MT)
- QM18 Production of major rice in Chaiyaphum (MT)
- QM19 Production of major rice in Nakhon Ratchasima (MT)

4-5-3-1-2. Production of major rice in North region

QM_N=	YMH_N*(APM_N - LM_N)
QM_N	Production of major rice in North region (MT)
YMH_N	Yield of major rice in North region (MT/HA)
APM_N	Planted area of major rice in North region (HA)
LM_N	Abandoned area of major rice in North region (HA)

4-5-3-1-3. Production of major rice in South region

QM_S=	YMH_S*(APM_S - LM_S)
QM_S	Production of major rice in South region (MT)
YMH_S	Yield of major rice in South region (MT/HA)
APM_S	Planted area of major rice in South region (HA)
LM_S	Abandoned area of major rice in South region (HA)

Chapter 4

4-5-3-1-4. Production of major rice in Central region

QM_C=	YMH_C*(APM_C - LM_C)
QM_C	Production of major rice in Central region (MT)
YMH_C	Yield of major rice in Central region (MT/HA)
APM_C	Planted area of major rice in Central region (HA)
LM_C	Abandoned area of major rice in Central region
	(HA)

4-5-3-1-5. Production of major rice for whole country

QM=	QM	[_N	E +	QM_	N +	QM	_C	2 + (QM_	S		
QM	Pro	duc	tion	ofm	ajor	rice	fo	r wl	ole	count	ry	(MT)
o	D	1		c					.1		~	

OM N Production of major rice in North region (MT)

- QM C Production of major rice in Central region (MT)
- QM S Production of major rice in South region (MT)

4-5-3-2. Production of second rice

4-5-3-2-1. Production of second rice in North East region

4-5-3-2-1-1.	Production identity of second rice in Nakhon
Phanom	
QS01=	YSH01*(APS01-LS01)
QS01	Production of second rice in Nakhon Phanom (MT)
YSH01	Yield of second rice in Nakhon Phanom (MT/HA)
APS01	Planted area of second rice in Nakhon Phanom
	(HA)
LS01	Abandoned area of second rice in Nakhom Phanom
	(HA)

4-5-3-2-1-2. Production identity of second rice in Sakon Nakhon

QS02=	YSH02*(APS02-LS02)
QS02	Production of second rice in Sakon Nakhon (MT)
YSH02	Yield of second rice in Sakon Nakhon (MT/HA)
APS02	Planted area of second rice in Sakon Nakhon (HA)
LS02	Abandoned area of second rice in Sakon Nakhon (HA)

4-5-3-2-1-3. Production identity of second rice in Nong Khai

- OS03= YSH03*(APS03-LS03)
- OS03 Production of second rice in Nong Khai (MT)
- YSH03 Yield of second rice in Nong Khai (MT/HA)
- APS03 Planted area of second rice in Nong Khai (HA)
- LS03 Abandoned area of second rice in Nong Khai (HA)

4-5-3-2-1-4. Production identity of second rice in Udon Thani

- YSH04*(APS04-LS04) OS04=
- Production of second rice in Udon Thani (MT) QS04
- YSH04 Yield of second rice in Udon Thani (MT/HA)
- APS04 Planted area of second rice in Udon Thani (HA)
- LS04 Abandoned area of second rice in Udon Thani (HA)

4-5-3-2-1-5. Production identity of second rice in Loei

YSH06*(APS06-LS06) QS06=

YSH06 Yield of second rice in Loei (MT/HA)

APS06	Planted area of second rice in Loei (HA)				
LS06	Abandoned area of second rice in Loei (HA)				
4-5-3-2-1-6. Production identity of second rice in Yasothon					
QS08=	YSH08*(APS08-LS08)				
QS08	Production of second rice in Yasothon (MT)				

YSH08 Yield of second rice in Yasothon (MT/HA) APS08 Planted area of second rice in Yasothon (HA) LS08 Abandoned area of second rice in Yasothon (HA)

4-5-3-2-1-7. Production identity of second rice in Ubon Ratchathani

OS09= YSH09*(APS09-LS09)

QS09 Production of second rice in Ubon Ratchathani (MT)YSH09 Yield of second rice in Ubon Ratchathani (MT/HA) Planted area of second rice in Ubon Ratchathani APS09 (HA)LS09 Abandoned area of second rice in Ubon Ratchathani (HA)

4-5-3-2-1-8. Production identity of second rice in Kalasin

4-5-3-2-1-9. Production identity of second rice in Khon Ka		
LS11	Abandoned area of second rice in Kalasin (HA)	
APS11	Planted area of second rice in Kalasin (HA)	
YSH11	Yield of second rice in Kalasin (MT/HA)	
QS11	Production of second rice in Kalasin (MT)	
QS11=	YSH11*(APS11-LS11)	

Kaen

QS12=	YS	SHI	2*(/	APS12-	LSI	2)	
~~	-			<u> </u>			

- Production of second rice in Khon Kaen (MT) OS12
- YSH12 Yield of second rice in Khon Kaen (MT/HA)
- APS12 Planted area of second rice in Khon Kaen (HA)
- LS12 Abandoned area of second rice in Khon Kaen (HA)

4-5-3-2-1-10. Production identity of second rice in Maha Sarakham

QS13=	YSH13*(APS13-LS13)
2S13=	YSH13*(APS13-LS13)

- QS13 Production of second rice in Maha Sarakham (MT)
- YSH13 Yield of second rice in Maha Sarakham (MT/HA)
- APS13 Planted area of second rice in Maha Sarakham (HA)
- Abandoned area of second rice in Maha Sarakham LS13 (HA)

4-5-3-2-1-11. Production identity of second rice in Roi Et

- OS14= YSH14*(APS14-LS14) **OS14** Production of second rice in Roi Et (MT) YSH14 Yield of second rice in Roi Et (MT/HA) APS14 Planted area of second rice in Roi Et (HA) LS14 Abandoned area of second rice in Roi Et (HA) 4-5-3-2-1-12. Production identity of second rice in Buri Ram QS15= YSH15*(APS15-LS15) Production of second rice in Buri Ram (MT) QS15
 - YSH15 Yield of second rice in Buri Ram (MT/HA)
- APS15 Planted area of second rice in Buri Ram (HA)
- LS15 Abandoned area of second rice in Buri Ram (HA)

4-5-3-2-1-13. Production identity of second rice in Surin

- YSH16*(APS16-LS16) OS16=
- QS16 Production of second rice in Surin (MT)
- YSH16 Yield of second rice in Surin (MT/HA)
- APS16 Planted area of second rice in Surin (HA)
- LS16 Abandoned area of second rice in Surin (HA)

4-5-3-2-1-14. Production identity of second rice in Si Sa Ket

- YSH17*(APS17-LS17) OS17=
- Production of second rice in Si Sa Ket (MT) OS17
- Yield of second rice in Si Sa Ket (MT/HA) YSH17
- APS17 Planted area of second rice in Si Sa Ket (HA)
- LS17 Abandoned area of second rice in Si Sa Ket (HA)

4-5-3-2-1-15. Production identity of second rice in Chaiyaphum

- OS18= YSH18*(APS18-LS18)
- Production of second rice in Chaiyaphum (MT) OS18 YSH18 Yield of second rice in Chaiyaphum (MT/HA) Planted area of second rice in Chaiyaphum (HA) APS18
- LS18 Abandoned area of second rice in Chaiyaphum (HA)

4-5-3-2-1-16. Production identity of second rice in Nakhon Ratchasima

QS19=	YSH19*(APS19-LS19)
QS19	Production of second rice in Nakhon Ratchasima
	(MT)
YSH19	Yield of second rice in Nakhon Ratchasima
	(MT/HA)
APS19	Planted area of second rice in Nakhon Ratchasima
	(HA)
LS19	Abandoned area of second rice in Nakhon

Ratchasima (HA)

4-5-3-2-1-17. Production identity of second rice for whole North East region

Production identity of second rice in North East region QS NE= QS01 + QS02 + QS03 + QS04 + QS06 + QS08 +

QS09 + QS11+ QS12 + QS13 + QS14 + QS15 + QS16 + QS17 + QS18 + QS19

- QS_NE Production of second rice in North East region (MT)
- OS01 Production of second rice in Nakhon Phanom (MT) QS02 Production of second rice in Sakon Nakhon (MT) QS03 Production of second rice in Nong Khai (MT) Production of second rice in Udon Thani (MT) QS04
- QS06 Production of second rice in Loei (MT)
- QS08 Production of second rice in Yasothon (MT)
- QS09 Production of second rice in Ubon Ratchathani (MT)
- Production of second rice in Kalasin (MT) QS11
- OS12 Production of second rice in Khon Kaen (MT)
- Production of second rice in Maha Sarakham (MT) OS13
- QS14 Production of second rice in Roi Et (MT)
- QS15 Production of second rice in Buri Ram (MT)
- Production of second rice in Surin (MT) QS16
- Production of second rice in Si Sa Ket (MT) QS17
- Production of second rice in Chaiyaphum (MT) QS18

OS19 Production of second rice in Nakhon Ratchasima (MT)

4-5-3-2-2. Production of second rice in North region

QS_N=	YSH_N*(APS_N - LS_N)
QS_N	Production of second rice in North region (MT
YSH_N	Yield of second rice in North region (MT/HA)

APS N Planted area of second rice in North region (HA) LS_N Abandoned area of second rice in North region

(MT)

(HA)

4-5-3-2-3. Production of second rice in South region

QS_S=	YSH_S*(APS_S - LS_S)
QS_S	Production of second rice in South region (MT)
YSH_S	Yield of second rice in South region (MT/HA)
APS_S	Planted area of second rice in South region (HA)
LS_S	Abandoned area of second rice in South region
	(HA)

4-5-3-2-4. Production of second rice in Central region

QS_C=	$YSH_C*(APS_C - LS_C)$
QS_C	Production of second rice in Central region (MT)
YSH_C	Yield of second rice in Central region (MT/HA)
APS_C	Planted area of second rice in Central region (HA)
LS_C	Abandoned area of second rice in Central region
	(HA)

4-5-3-2-5. Production of second rice for whole country

QS=	$QS_NE + QS_N + QS_C + QS_S$
QS	Production of second rice for whole country (MT)
QS_N	Production of second rice in North region (MT)
QS_C	Production of second rice in Central region (MT)
QS_S	Production of second rice in South region (MT)

4-5-3-3. Total production in milled equivalent

Q=	QM + QS
Q_ME=	0.667*(QM + QS)
Q	Total production in paddy equivalent (MT)
Q_ME	Total production in milled equivalent (MT)
QM	Production of major rice for whole country (MT)
QS	Production of second rice for whole country (MT)

4-5-4. Stock change function

STC =	- 1084551
	(-5.66)
	+ 118669 *T86
	(6.39)
	- 301.624*[FPR/(CPI/100)-FPR(t-1)/(CPI(t-1)/100)]
	(-2.60) [0.121]
	+ 0.87899*[(Q_ME ñ Q_ME(t-1)]
	(7.26) [1.408]
	+ 1209462*D857
	(4.10)

Chapter 4

Development of the Rice Econometric Model with Endogenous Water in Thailand (REMEW-THAI)

	- 1529720*D89	РОР	Рор
	(-4.05)		
	+ 2676806*D90	4-5-8. D	ema
	(4.67)	Demand F	unctio
AdjR ² =0.8	D.W.=2.292	QC =	+ 32
			(
STC	Stock change of Rice (MT)		- 1.1
T86	Time Trend from 1986, 0 before 1986		(-
FPR	Farm Price of Thai Rice (baht per kg)		- 0.0
CPI	Consumer Price Index(1998=100)		(•
Q_ME	Total Production in milled equivalent (MT)		- 1.:
D857	Dummy Variable, 1 in 1985 to 1987, 0 otherwise		(•
D89	Dummy Variable, 1 in 1989, 0 otherwise		- 10
D90	Dummy Variable, 1 in 1990, 0 otherwise		(•
			- 29
4 5 5 T			(•
4-5-5. E	Export function		+ 2.
EXP =	+ 1450479		(4
	(1.31)		+ 10
	+ /3960*1REND	4 l'D ² 0 0	(.
	(2.88)	AdjR=0.9	253
	+ 0.13051*Q	00	0
	(2.07) [0.526]	QC 78205	Cor
	+ 1416/06*D89	18295	1 117
	(3.60)	סמממ	afte
	+ 1013411*D95	RPRB	Reta
	(2.64)	CPI	Cor
	+ 889253*D989	GDP	Rea
A 11:D ² 0.0	(2.84)	POP	Pop
AdjR = 0.8	D.W.=2.191	D856	Dur
CVD	European (MT)	D87	Dur
EAP	Exportation of Rice (MT)	D89	Dur
IKEND	Tatal Production in reddy covinglant (MT)	D97	Dur
Q Deo	Duramy Variable, 1 in 1080, 0 atherwise	150 P	rico
D09	Dummy Variable, 1 in 1989, 0 otherwise	4-3-7.1	+ 21
D95	Dummy Variable, 1 in 1995, 0 otherwise	rrk =	+ 30
D989	Dunning variable, 1 m 1998 to 1999, 0 otherwise		62
4-5-6 Г	Interview and the second se		- 02
equival	ent		-) + 0
	O MELIMD EVD STC		10.
QD-	Q_ME + IMI - EAI - STC		79
Q ME	Total production in milled equivalent (MT)		- 70
V_ME IMP	Imports (MT)	Adjp2-0.0	(· 125
EXP	Exports (MT)	Aujix -0.7	.23
STC	Stock change (Ending stock - Reginning stock)	EDB	Fam
510	(MT)	TOROD	Tim
	(****)	17000	1 III 2 at
			5 41

4-5-7. Per capita consumption

QD / POP QC= QC

Per capita consumption (KG) QD Domestic supply in milled equivalent (MT)

POP	Population (thousand people)									
1-5-8.]	Demand function									
Demand	Function of Rice for Average of Thai Rice									
QC =	+ 329.064									
	(7.65)									
	- 1.77086*T8295									
	(-5.12)									
	- 0.00825*[RPRB/(CPI/100)]									
	(-2.85) [0.771]									
	- 1.32549*(GDP/POP)									
	(-11.22) [-0.320]									
	- 10.9487*D856									
	(-1.92)									
	- 29.8603*D87									
	(-4.08)									
	+ 23.7069*D89									
	(4.01)									
	+ 16.6143*D97									
	(2.47)									
AdjR ² =0.	9253 D.W.=2.186									
QC	Consumption of Rice per capita (KG)									
Г8295	Time Trend from 1982 to 1995, 0 before 1982, 0									
	after 1995									
RPRB	Retail Price of Rice (Baht/MT)									
CPI	Consumer Price Index(1998=100)									
GDP	Realized Gross Domestic Products									
РОР	Population									
0856	Dummy Variable, 1 in 1985 to 1986, 0 otherwise									
087	Dummy Variable, 1 in 1987, 0 otherwise									
089	Dummy Variable, 1 in 1989, 0 otherwise									

mmy Variable, 1 in 1997, 0 otherwise

linkage function

FPR =	+ 308.373	
	(1.01)	
	- 624.972*T9800	
	(-3.20)	
	+ 0.42693*RPRB	
	(12.93) [1.116]	
	- 783.421*D93	
	(-2.16)	
AdjR ² =0.91	25 D	.W.=2.155
FPR	Farm Price of Thai Rice (baht per	KG)
T9800	Time Trend from 1998 to 2000, 1	before 1998,
	3 after 2000	
RPRB	Retail Price of Rice (Baht/MT)	
D93	Dummy Variable, 1 in 1993, 0 oth	erwise

Table 4-1. Elasticities of yield of major rice for evapotranspiration and trend

Table 4-2. Elasticities of yield of second rice for evapotranspiration and trend

	Trend	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	Jun.
NORTH-EAST									
Nakhon Phanon	0.018					-0.105	0.259		
Sakon Nakhon	-0.018	0.955	-0.815	0.255		0.154	-0.104	1.195	
Nong Khai	0.025	-1.232		0.245	-0.112	0.173	-0.162	0.622	
Udon Thani	0.016	1.563	-0.666		-0.078				
Loei		-0.953	0.649			0.165			
Yasothon		-1.262	0.757		-0.070			0.627	-0.641
Ubon Ratchathani		-0.705		-0.175		0.118			0.317
Kalasin	0.046		0.308		-0.056				-0.924
Khon Kaen	0.077	-0.421		0.294		-0.163	-0.092		0.747
Maha Sarakham	0.078					-0.188	0.107	0.100	-0.514
Roi Et		1.714				0.224			
Buri Ram			-0.634	0.796	-0.195	-0.150		0.651	-0.998
Surin	0.037	-1.950	0.431		0.209	-0.151			
Si Sa Ket			0.966	-0.296	-0.245	0.372	0.156		0.463
Chaiyaphum			-0.358	0.314	-0.155	-0.092		-0.192	-0.784
Nakhon Ratchasima			0.143				0.089	0.217	
NORTH				0.063	0.119	0.029			
SOUTH			-0.172		-0.101	0.070	-0.080	0.233	-0.136
CENTRAL	0.052					-0.040			

87

	Table 4-3. Elasticities of planted area of major rice for farm price and evapotranspiration												
	Trand	Area	Price				E	vapotransp	piration (t-	-1)			
	Trenu	(t-1)	(t-1)	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
NORTH-EAST													
Nakhon Phanon		0.497	0.153			-0.189		0.331			0.631	-0.529	0.410
Sakon Nakhon		0.591	0.457		0.192	-0.545			-0.913	1.355		-1.434	
Nong Khai		0.212	0.446			-0.460							
Udon Thani		0.205	0.127	-0.070	-0.132	0.316	-0.168						
Loei		0.628	0.436							0.767	0.721		
Yasothon		0.164	0.203		0.061	-0.223		-0.543	-0.206	0.339			
Ubon Ratchathani		0.891	0.144			-0.057			-0.143	0.389	0.154	-0.236	
Kalasin		0.247	0.678				-0.832			0.625	0.448		-0.465
Khon Kaen	0.047	0.236	0.328								0.800		
Maha Sarakham		0.238	0.238		-0.130	0.389	0.821	-0.417	-1.465	-1.399			
Roi Et		0.409	0.575			-0.210		0.498	-0.326		0.207		
Buri Ram	0.078	0.521	0.715		-0.094	1.270			-2.075	-1.399	1.481	0.590	0.690
Surin		0.698	0.481		-0.360	1.060	-0.862	0.692	0.619		-0.764	-0.708	-0.528
Si Sa Ket	0.112	0.223	0.481			-0.110	-0.682	1.005	0.408	1.089	1.068	-1.253	0.421
Chaiyaphum		0.397	0.744		-0.205	0.373			-0.359		0.624		
Nakhon Ratchasima		0.703	0.396			-0.180	0.806				0.414	0.821	
NORTH		0.727	0.083		-0.043				-0.247	0.314			
SOUTH		0.894	0.151			-0.297	0.492	0.205			-0.373	-0.187	0.276
CENTRAL		0.526	0.089		-0.026	-0.153					0.111	-0.172	

Table 4-4. Elasticities of planted area of second rice for farm price and evapotranspiration

	Trend	Area	Price			Ev	vapotransp	oiration (t-	-1)		
	TTenu	(t-1)	(t-1)	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	Jun.
NORTH-EAST											
Nakhon Phanon		0.745	0.356	-4.407	2.253				0.484	-0.875	-2.899
Sakon Nakhon		0.478	1.984				0.667	0.285		-1.185	4.687
Nong Khai		0.405	0.671	-1.714	0.902						1.343
Udon Thani		0.024	0.603	6.897	-5.176	2.146			0.554		
Loei		0.228	0.879		-4.089	4.132		0.626	-0.490		4.833
Yasothon		0.540	1.491		3.509	-1.004			-0.999		
Ubon Ratchathani		0.355	0.473	4.850	-2.751			-0.467	1.097	-2.694	3.176
Kalasin		0.853	0.309		-3.147	2.119		-0.095	0.392	-1.410	-1.199
Khon Kaen		0.484	0.273	7.216				0.753	-0.689		
Maha Sarakham		0.913	0.609	3.077		0.667	-0.614	0.666	-0.828	1.590	
Roi Et		0.363	0.225	7.661	-5.635	1.824	0.473				2.286
Buri Ram		0.527	1.217	3.721			0.236	9.105			
Surin	0.150	0.634	0.533	4.241		0.663			0.371		2.385
Si Sa Ket		0.268	1.746			-0.385				-0.911	3.016
Chaiyaphum		0.333	0.720	1.448		-1.107		0.455	0.880	-1.412	3.473
Nakhon Ratchasima		0.611	0.456	5.737	0.868		-1.432	1.495	0.500	-2.398	2.903
NORTH	0.411	0.539	0.257			1.540	-1.058	0.290		-0.579	
SOUTH		0.522	0.490			-1.293					
CENTRAL	0.015	0.326	0.239		1.055	-0.763	0.211		0.114	-0.933	

4-6. Simulation results

4-6-1. Results of estimation of yield functions

Table 4-1 and Table 4-2 show elasticities of yield for ET in wet and dry seasons. In the case of Nakhon Phanon, the elasticity of yield of major rice for ET in July is 0.668, indicating that if ET in July increases 1%; the yield of major rice in the province will increase 0.668%.

The planting period in major rice or rainy season rice is from May to August and the harvest period is from October to December. The planting period in second rice or dry season rice is from January to February and the harvest period is from May to June.

These results for major rice show that higher ET in July leads higher yield in many provinces of the North East region. The results suggest that the water supply available in the planting season is important for the growth of rice. The results of second rice also show that ET in December and January leads to a higher yield in many provinces. Therefore, the available water supply during transplanting season is quite critical for rice production.

4-6-2. Results of estimation of planted area functions

Planted area functions of major rice and second rice are specified as linear functions based on the adaptive expectation model. The explanatory variables are time trend, one-year lagged planted area, one-year lagged farm price, and one-year lagged ETs for each month. The elasticities evaluated on the average are shown in Table 4-3 and Table 4-4.

The planted area elasticities of major rice cultivation for ET in October are positive for many provinces. It suggests that if farmers expect an abundant water supply in the flowering season of major rice, they will increase their planted area for rainy season cultivation. Meanwhile, planted area elasticities of dry season cultivation for ET in November are very high. It suggests that the water supply just before the planting period is quite critical for second rice cultivation.

4-6-3. Simulation results of supply and demand model

The simulation term is from 2001 to 2015. The assumptions of the simulation are as follows; (1) the forecast growth value of CPI is the average annual growth between 1998 and 2002, (2) the growth value of real GDP is the average annual growth between 1998 and 2002, (3) the exchange rate is same as the number in 2002, (4) the growth value of population is the average annual growth between 1992 and 2002, (5) the linear trends of the yield functions are

continued, (6) the trends of planted area functions are flat.

Figure 4-3 through Figure 4-6 show the simulation results for the production of major rice in the North East region, second rice in Central region, and two types of rice for Thailand as a whole.

The production of major rice in North East region is expected to stabilize around 9.6 million metric tons (mMT) after 2010. The production of second rice in the Central region will increase 210,000 metric tons (MT) from 2010 to 2015.

The production of major and second rice for whole Thailand will increase 594,000 MT and 378,000 MT respectively from 2010 to 2015. Productions of major rice in North and Central region will increase; however, production in the South region will decrease due to shrinking planted area. The production of second rice will increase in Central and North East regions and remain stable in the other two regions.

Fig. 4-4. Production of second rice in Central region

Fig. 4-5. Production of major rice for whole Thailand

Fig. 4-6. Production of second rice for whole Thailand

Figure 4-7 shows per capita rice consumption, which decreases from 121.3 kilogram (KG) in 2010 to 112.8 KG in 2015 due to a negative income elasticity, while total consumption expands with population. Figure 4-8 shows the simulation result of the equilibrium retail price. These prices are realized by CPI which is set to 100 in 1998. The farm price is estimated to be stable at around 14.6 Baht per KG.

4-7. Conclusions

A supply and demand model of rice in Thailand was developed for use in analyzing the impacts of changes in water supply in the provinces of the North East region and three other aggregate regions.

The supply and demand model can analyze changes in yield and planted area independently and consider supply responses and demand changes to the market price while bringing the market into equilibrium. The baseline analysis indicates that production of major rice steadily increases; however, productions in the rainy season in some regions is likely to decrease due to shrinking of planted area. The trends of production of second rice also vary widely for provinces in North East region, and the price elasticity of planted area determines the tendency of the production.

Nationwide per-capita income growth leads to a diversified diet, and rice consumption per capita will decrease as a result. This tendency is consistent with other countries in Indochina region. Stabilization of production is more important than an increase in production, while expansion of the export is also critical issue.