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Abstract 
The automation of agricultural implement changeovers is crucial for minimizing human intervention 
in the operation of autonomous farming systems. To ensure system safety and resilience, it is 
imperative to recognize implements as non-obstacle objects, thereby facilitating the seamless 
hitching of implements with autonomous tractors. This study presents the initial step in developing a 
safety function for autonomous implement changeover by assessing the performance of YOLO-based 
detectors, primarily in terms of precision and speed in detecting target implements and humans. 
These detectors are trained using transfer learning, employing four YOLOv5 variants (YOLOv5s, 
YOLOv5m, YOLOv5l, and YOLOv5x) and a custom dataset comprising 26,661 labeled images 
across nine classes of implements and eight classes of obstacles and equipment. The training results 
show a high average precision (AP) of the detectors, varying from 0.907 to 0.995, for detecting the 
implements. The mean average precision (mAP@0.5) for detecting all classes ranged from 0.955 to 
0.966. Furthermore, testing involving tractor-implement alignments demonstrates the rapid detection 
of implements and humans by all detectors, with average inference times varying from 7.0 to 20.5 ms. 
These detectors consistently provide accurate predictions for target objects, with confidence scores 
(CS) varying from 87.6% to 90.4%. Notably, the detector trained with the medium-variant YOLOv5m 
is the optimal model with overall performance in terms of both detection speed and accuracy.
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Introduction

Modern farmers are embracing smart farming 
practices to fulfill the increasing demand for agricultural 
products amid limited resources and a rising population. 
This involves leveraging autonomous technologies to 
enhance production efficiency and productivity in a safe 
and sustainable manner. Japan is making efforts to 
research and develop autonomous agricultural machinery 
for smart farming systems, making advancements in 
three levels (Cho et al. 2021). Level 3, which is the most 
challenging, realizes fully autonomous operation in 
driverless conditions, entailing remote monitoring and 
control of multiple autonomous machines by a 
single operator.

Consequently, autonomous field-to-field movement 
on farm roads has been envisioned for remote operations 
within nearby fields. However, future possibilities, 

including remote operations on public roads to access 
more distant fields or the automation of equipment 
preparation and material supply, are also being explored 
to enhance the operational efficiency of smart farming 
systems (Nguyen et al. 2023, Cho et al. 2023).

In the realm of autonomous agricultural operations, 
the deployment of artificial intelligence (AI) plays a 
pivotal role in ensuring the safety and efficiency of 
driverless tasks, particularly in scenarios that involve the 
operations of autonomous agricultural vehicles. A critical 
aspect of this autonomy involves the detection and 
recognition of various obstacles encountered in the 
agricultural environment, including humans. Driverless 
vehicles must be equipped with the capability to detect 
obstacles in proximity and respond promptly to 
ensure safety.

In the development of an autonomous tractor with a 
road driving function, an AI model was trained using the 
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YOLO algorithm and public datasets to detect obstacles 
around the tractor, including five target objects: people, 
cars, bicycles, motorcycles, and trucks (Cho et al. 2021). 
The AI model was integrated into the control system of 
the tractor, enabling it to detect humans and cars and 
perform emergency stops if necessary. However, in the 
autonomous implement changeover scenario, the model 
detects the target implement as an obstacle (Fig. 1). This 
occurred because the implements were not included in 
the training dataset, and the detection result could trigger 
an emergency tractor stop, preventing it from aligning 
with the implement for hitching. 

Consequently, a robust and accurate AI detector that 
can detect and identify target implements in an outdoor 
environment is crucial for an autonomous and seamless 
implement changeover. This study focuses on the 
performance evaluation of object detectors trained by 
YOLOv5 with a custom dataset of typical agricultural 
implements for detecting the target implement and 
humans. The evaluation was conducted during the 
process of model training with various YOLOv5 variants 
and under the deployment of trained detectors in the 
domain of autonomous implement changeover.

Materials and methods

1. Object detection algorithm YOLOv5
YOLOv5, as a single-stage detector, has the 

advantages of fast convergence, high precision, high 
detection speed, and suitability for real-time applications 
compared to its predecessors (Wang et al. 2023). 
Therefore, YOLOv5 has been widely applied for the 
real-time monitoring of crop growth and the detection of 
diseases, weeds, and obstacles in the agricultural 
environment (Li, J. et al. 2022, Li, S. et al. 2022, Zhang 
et al. 2023, Rahman et al. 2023, Chen & Noguchi 2023). 
These aid farmers in decision-making regarding irrigation 

and fertilization to prevent the excessive use of pesticides 
and herbicides, secure the safety of driverless operations, 
and promote sustainable farming practices.

For the research in this paper, YOLOv5 was used to 
train and evaluate the AI detectors utilizing the 
pre-trained weights of the four YOLOv5 variants 
(YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x) with 
a custom dataset of agricultural implements. The detector 
with the best overall performance was determined using 
several evaluation metrics obtained from model training 
and testing.  

2. Creation of an agricultural implement dataset
A custom dataset was created for nine classes of 

typical implements (Fig. 2): broad_caster (BC), rotary_
tiller (RT), soybean_seeder (SS), wing_harrow (WH), 
cultivator (CP), plough (TP), power_harow (PH), roll_
baler (RB), and fertilizer spreader (DS). Eight other 
classes were included to represent obstacles, such as 
persons, agricultural vehicles, and equipment, that may 
be encountered in the domain of autonomous implement 
changeover operations. The dataset comprises 26,661 
images in 17 categories captured by the authors and 
collected from the Internet, considering variations within 
each class, such as machine models, lighting conditions, 
and backgrounds. All the images were resized to a 
resolution of 960 × 720 pixels or less.

The image assets were manually annotated with 
bounding boxes and tags to represent the location and 
size of the target objects in the images using a Visual 
Object Tagging Tool (VoTT, Microsoft 2020). The 
annotation resulted in 48,718 instances of bounding 
boxes, including 19,998 instances for the implement 
classes and 28,730 instances for other classes. The labeled 
images were exported into the Pascal VOC format and 
converted into YOLOv5 format (text format). The data 
were divided into a training set with 18,347 images 
(33,955 instances) and a validation set with 8,314 images 
(14,763 instances) at a ratio of approximately 7 to 3 
(Table 1).

3. Training environment configuration and 
evaluation metrics

Model training and validation steps were conducted 
on a desktop computer equipped with an Intel® Core™ 
i9-12900K CPU, 32 GB RAM, GPU (Graphics Processing 
Unit): NVIDIA GeForce RTX 3090 Ti with 24 GB 
VRAM, and Windows 11 Operating System. The training 
environment was set up using Python (3.10.2, 64-bit) with 
installed libraries such as PyTorch 2.0.0, YOLOv5, 
CUDA 11.6, cuDNN, and OpenCV. The key training 
parameters are listed in Table 2.

Fig. 1. �Implement detection using an AI detector developed 
for autonomous road driving
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Fig. 2. Sample images of implement and person classes

broad-caster rotary_tiller soybean_seeder

wing_harrow cultivator plough

power_harrow roll_baler fertilizer_spreader

images with various
lighting conditions 

multi-class imagesperson
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While precision, recall, and F1-score are useful for 
minimizing positive detections, false negative detections, 
and a balance of both, the mean Average Precision (mAP) 
is an overall metric for comparing different models and 
assessing their performance across a diverse set of object 

classes. Accordingly, the performances of the trained 
detectors were evaluated using the validation set in terms 
of the maximum values of the metrics (all ranging from 0 
to 1) achieved at the point of training convergence.

4. Testing of trained detectors
All trained detectors were comprehensively 

evaluated using video sources captured in an outdoor 
environment under different conditions, including two 
scenarios of static and moving cameras and two lighting 
conditions for detecting different target implements and 
humans (mannequins) in the scene (Table 3 and Fig. 3). 
The static camera tests were aimed at evaluating the 
performance of the models in terms of average inference 
time per image frame, which presents average detection 
speed (ADS), detection accuracy (DA) calculated by 
dividing the number of detected frames of target object 
by the number of captured frames, and average confidence 
score (ACS). Moving camera tests were used to provide a 
quantitative understanding of the number of detected 
objects and the corresponding confidence score (CS) for 
each class during a tractor-implement alignment 
following the predefined moving paths of the test camera. 
The locations of the test implements, mannequins, and 
static and moving cameras were determined using 
RTK-GNSS positioning with a smart antenna (A325, 
Hemisphere), as shown in Figure 3. The test tractor was 
driven forward and backward at approximately 1.2 km/h 
during the moving captures.

Four captured videos were fed into the four detectors 

Table 1. Dataset structure

Class
Number of instances

Training set Validation set

BC 1,937 871

RT 2,032 876

SS 1,423 642

WH 1,668 696

CP 2,163 928

TP 904 383

PH 1,570 661

RB 1,323 558

DS 946 407

person 5,599 3,278

tractor 3,008 853

combine harvester 1,615 710

rice transplanter 1,526 696

truck 1,312 598

hitch 2,361 745

marker 3,278 1,295

bicycle 1,290 566

Total instances 33,955 14,763

Table 2. Major hyper-parameters for model training

Hyper-parameter
YOLOv5 variant

YOLOv5s YOLOv5m YOLOv5l YOLOv5x

Pre-trained model size (KB) 14,808 42,811 93,630 174,121

Optimizer SGD a SGD SGD SGD

Image resolution (pixel) 640 × 640 640 × 640 640 × 640 640 × 640

Data augmentation true true true true

Initial learning rate 0.01 0.01 0.01 0.01

Learning rate factor 0.1 0.1 0.1 0.1

Batch size 16 16 16 16

Number of epochs 300 300 300 300

Patience b 20 epochs 20 epochs 20 epochs 20 epochs

IoU c threshold 0.2 0.2 0.2 0.2

Weight decay 5 × 10–4 5 × 10–4 5 × 10–4 5 × 10–4

Training parameters (×106) 7.1 20.9 46.2 86.3
a �Stochastic Gradient Descent, an iterative optimization algorithm, is used to minimize the loss function during the 
training of the machine learning model.

b Number of epochs with no improvement in the monitored validation loss used to stop training to prevent overfitting.
c �Intersection over the union, a parameter used to evaluate the performance of object detection by comparing the 
ground-truth bounding box to the predicted bounding box and calculating their intersection and union areas.
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to detect the target implement and human in each image 
frame with a resolution of 640 × 384 pixels using a laptop 
computer (Intel® Core™ i7-11800H CPU, 16 GB RAM, 
GPU: NVIDIA GeForce RTX 3070 with 8 GB VRAM, 
Windows 10). The thresholds of IoU and confidence 
score of the detections were set to 0.45 and 60%, 
respectively. The performances of the detectors under the 
same object detection conditions were evaluated in terms 
of ADS, the ratio between the detected objects of each 
class and the captured frames of each video (DR), and 

ACS of the detected objects of each class. All testing 
evaluation metrics were expressed as percentages.

Results and discussion

1. Results of model training and validation
The training and validation results for the four 

models using the same dataset are summarized in Table 4 
and Figure 4, respectively. The number of training epochs 
decreased with the increasing size of YOLOv5 variants, 

Table 3. Test equipment and video capturing conditions

Equipment/lighting condition Description

Camera
High Dynamic Range (HDR) See3CAM_CU81(e-con Systems) × 1 unit, field of view 120°
Horizontal angle, mounting height: approx. 1.5 m
Video capture method: static and moving cameras, resolution 1,920 × 1,080 pixel, 30 fps

Tractor ISEKI TJV85, speed of 1.2 km/h for moving camera

Detection objects 5 units of implements including BC, WH, RT, CP, SS; human: mannequin (1.8 m height)

Lighting condition Normal light: illumination 106,500 lux, sun elevation 31° - 33°, sun azimuth 138° - 142°
Backlight: illumination 80,500 lux, sun elevation 33° - 17°, sun azimuth 218° - 240°

Table 4. Training and validation results with different YOLOv5 variants

Training and validation results
YOLOv5 variants

YOLOv5s YOLOv5m YOLOv5l YOLOv5x

Training epoch number 244 204 137 127

Model convergence epoch 223rd 183rd 116th 106th

Training time (hour) 9.671 11.829 11.220 16.080

Size of trained detectors (KB) 14,126 41,298 90,781 169,207

Precision 0.948 0.957 0.957 0.959

Recall 0.922 0.937 0.943 0.946

mAP@0.5 of all classes 0.956 0.962 0.963 0.966

F1-score 0.934 0.946 0.947 0.949

mAP@0.5 of implement classes 0.969 0.975 0.975 0.978
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whereas the training time showed the opposite trend. 
Training with YOLOv5s was stopped after 244 epochs, 
and the corresponding model converged at the 223rd 
epoch, taking approximately 9.7 h. Meanwhile, those for 
other variants were 204 epochs, 183rd epoch, 11.8 h, and 
137 epochs, 116th epoch, 11.2 h, and 127 epochs, 106th 
epoch, 16.1 h, respectively. At the convergence points, the 
evaluation metrics show a slight improvement as the 
pre-trained models increase in size. All detectors 
demonstrated high precision, recall, mAP@0.5 of all 
classes, and F1-score, varying from 0.948-0.959, 
0.922-0.946, 0.956-0.966, and 0.934-0.949, respectively.

The mAP@0.5 of the implement classes varied from 
0.969-0.978, indicating that the detectors were capable of 
detecting the target implements with a high detection 
accuracy. A similar trend occurred for the person class, 
with an AP varying from 0.942-0.962. Among the nine 

implements, despite TP and DS having the smallest 
training data (less than 1,000 images), their average 
precision (AP) is extremely high, while SS had the lowest 
AP with more than 1,400 training images. This suggests 
that the object shape features of the image datasets of TP 
and DS are more easily extracted compared to other 
implements because SS has many machine models in its 
image dataset. As shown in Figure 4, the larger pre-trained 
models did not substantially improve the AP of each 
implement class. Therefore, smaller detectors may be 
more optimal for detecting implements in the real world, 
considering their real-time processing capabilities and 
computing hardware requirements.

2. Testing results
Inference for detecting implements and humans was 

carried out using four trained weights on the contents of 

Fig. 4. �Precision-recall curves of the trained detectors with different YOLOv5 variants in detecting implements, 
obstacles, and other equipment
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four videos captured during real-world implement 
changeover operations. The videos comprised 2,465 and 
1,658 frames for the static camera and 6,955 and 6,600 
frames for the moving camera under the NL and BL 
conditions, respectively. Table 5 summarizes the average 
inference times per frame for the detected objects. The 
Average Detection Speed (ADS) obtained with the test 
laptop computer varied from 6.9 to 20.6 ms, depending 
on the size of the detectors. Lighting conditions had no 
effect on the ADS obtained with SC and MC. The average 
ADS for the small, medium, large, and extra-large 
detectors were 7.0 ± 0.1, 10.3 ± 0.3, 17.4 ± 0.1, and 20.5 ± 
0.2 ms, equivalent to object detection speeds of 142.9, 
97.1, 68.3, and 48.9 FPS, respectively. Accordingly, all 
detectors could be utilized for real-time applications, 
which have a threshold of detection speed from 20 to 
30 FPS.

Samples of the detection results for the five target 

implements and humans under different test scenarios 
are shown in Figure 5. The detected bounding boxes with 
corresponding confidence scores were used to calculate 
the evaluation metrics. For inference with the static 
camera, DA was calculated by dividing the number of 
detected objects in each class by the captured frames, as 
shown in Figure 6. The implements were robustly 
detected with 100% detection accuracy under both light 
conditions at distances exceeding 6 m from the camera. 
In the case of BC, although only half of the implement 
was captured by the camera, the DA of the BC class was 
100% for all inferences. However, in the case of the 
person class, the DA was significantly reduced to 48.4% 
and 16.2% with inferences from the small and extra-large 
detectors, respectively, in the BL condition. This was 
because the mannequin was smaller than the adjacent 
target implements, making detection more difficult. In 
contrast, the medium and large detectors provided high 

Fig. 5. �Samples of detection results in NL condition (left) and BL condition (right)

Fig. 6. �Detection results of implement and person with a static camera

Table 5. Detection speed of detectors trained with different YOLOv5 variants

Light condition Camera Captured frames
Average inference time per frame (ms)

YOLOv5s YOLOv5m YOLOv5l YOLOv5x

NL
static 2,465 6.9 10.1 14.7 20.5

moving 6,955 7.0 10.2 14.6 20.6

BL
static 1,658 7.2 10.7 14.7 20.5

moving 6,600 6.9 10.2 14.6 20.2

Average 7.0 10.3 14.7 20.5

static camera static camera

movingmoving
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DA values of 96.9% and 99.6, respectively.
The ACS obtained with four detectors using the 

static camera varied between 87.6 ± 0.2% to 94.7 ± 0.3% 
for five target implements and between 68.2 ± 4.6% to 
91.0 ± 0.1% for the mannequin. Among the implements, 
the lowest ACS was observed for BC owing to its location 
and partial occlusion. The small deviation in the ACS of 
the implements, together with the high DA, indicated 
stable implement detection with the detectors deployed in 
a real environment under different light conditions. A 
small improvement in the ACS of the implements under 
the NL condition was observed between the trained 
weights. However, the medium and large detectors 
demonstrated higher performance in the detection of 
humans in the BL condition, with more than 10% 
improvement in ACS.

Figure 7a illustrates the frequency distribution of the 
CS obtained with the extra-large detector in the moving 
camera scenario under NL and BL conditions. Owing to 
variations in the camera direction and distance, the 
number of detected bounding boxes and the corresponding 
CS for each object class varied widely. The values of CS 
for the implementation and person classes fluctuated 
between the threshold of 60%, and the maximum values 
were approximately 95%-97%, respectively. The number 
of detected objects with a high CS dominated most of the 
implement and person classes except for BC.

The maximum CS of the target implements, except 
for RT and BC, was obtained at the closest distance 

between the camera and the detected objects, as shown in 
Figure 8. At the final alignment between the tractor and 
RT, the object features of the implement were reduced, 
resulting in a lower CS compared to the longer detection 
distances. In the case of BC, the CS was low during 
straight backward alignment owing to occlusion by the 
hitch frame and marker. The consideration of 
downward-angle cameras for such cases is planned for 
future evaluations.

Figure 7b demonstrates a small difference in 
performance among the four detectors under the same 
light conditions in terms of the number of detected 
objects and ACS for each class. The number of detected 
objects for the RT, SS, and CP classes reduced during 
backlight inference, but no clear differences were 
observed for WH. In contrast, the number of detected BC 
increased during BL inference, possibly because of a 
reduction in the detection of the hitch frame and marker. 
The total numbers of detected objects under the NL 
condition were 17,543, 18,320, 18,520, and 18,593 for the 
small, medium, large, and extra-large detectors, 
respectively. These values decreased to 16,895, 17,236, 
17,412, and 17,486 under BL conditions, respectively. 
ACS obtained with four detectors was consistent under 
both NL and BL conditions, varying from 87.6 ± 7.1% to 
90.4 ± 4.4%. The high ACS indicates the reliable detection 
capability of the detectors when implemented in the 
unseen real operation of the agricultural 
implement changeover.

a)

b)
Fig. 7. �Detection results of implement and person with moving camera: a) frequency distribution of CS for the extra-large 

detector; b) Number of detected objects (left) and ACS (right)
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Conclusion

This study conducted an extensive evaluation of 
YOLOv5’s performance in detecting agricultural 
implements as non-obstacle objects for seamless 
tractor-implement alignment during autonomous 

implement hitching. A custom dataset of nine typical 
agricultural implements was created. The labeled image 
data of the agricultural obstacles, including humans, 
were incorporated into the training and validation sets, 
which comprised 18,347 and 8,314 images, respectively. 
The evaluation encompassed both the model training 

Fig. 8. �Sample of detection results of implements and person using the extra-large detector during straight backward tractor-
implement alignment under BL condition
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process, utilizing transfer learning with various YOLOv5 
variants, and the deployment of trained detectors for 
inferences during implement changeover operation under 
different lighting conditions. 

The results of training with the custom dataset 
demonstrated high accuracy in detecting agricultural 
implements and obstacles, as the trained AI models 
exhibited high values of mAP@0.5, varying from 0.956 
to 0.966. The test results revealed that all detectors could 
rapidly predict the detections of five implements under 
NL and Bl conditions, with average inference time per 
frame varying from 7.0 to 20.5 ms. At a capturing 
distance of approximately 6 m, all detectors could detect 
the implements with a DA of 100% under different 
lighting conditions, but the performance of the small and 
extra-large detectors in detecting humans under BL 
conditions significantly decreased to 48.4 and 16.2%, 
respectively. However, the medium and large detectors 
dominated the performance, with a high DA of 96.9 and 
99.6%, respectively. Furthermore, the trained detectors 
accurately predicted the detected objects during the 
tractor-implement alignments, with confidence scores 
varying from 87.6% to 90.4%. In conclusion, the medium 
detector was the optimal model in terms of overall 
performance, considering the accuracy and speed in 
detecting agricultural implements and humans under 
backlight conditions.

Although YOLOv5 brought substantial 
improvements in accuracy and efficiency compared to its 
predecessor, its subsequent versions, from YOLOv6 up to 
YOLOv9, have progressively refined these capabilities, 
incorporating advanced techniques in feature extraction, 
model scaling, and post-processing. Particularly, 
YOLOv9 dynamically adjusts its learning process, 
improving detection accuracy and robustness in 
real-world conditions. In the future, the dataset will be 
expanded by adding more images of equipment and 
obstacles encountered in the agricultural environment. 
The detector will be re-trained using the state-of-the-art 
algorithm to enhance its object detection capabilities.
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List of Abbreviations

Abbreviation Definition

ACS average confidence score

ADS average detection speed

AP average precision

BC broad caster

BL backlight

CP cultivator

CS confidence score

DA detection accuracy

DR detection rate

DS fertiliser spreader

mPA mean average precision

NL normal lighting

PH power harrow

RB roll baler

RT rotary tiller

SS soybean seeder

TP plough

WH wing harrow


