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Abstract
Genotypic studies using molecular markers, such as genomic prediction (GP), have been implemented 
in maize (Zea mays L.) breeding, leading to a better understanding of significant traits. Pythium root 
and stalk rot (RSR) resistance is an important trait in maize bred in Japan. The study aims to (1) 
develop a GP model for Pythium RSR resistance in maize bred within the Japanese public sector and 
(2) utilize GP to analyze untested maize germplasms for Pythium RSR resistance via a combined 
training set derived from different heterotic groups (dent and flint). Through 1,000 repetitions of 
sampling and five-fold cross-validation, a high average prediction accuracy (r  =  0.695, 95% 
confidence interval: 0.682-0.708) was achieved across populations. Prediction accuracy improved as 
the number of markers increased, but it eventually reached a plateau that exceeded 1,000 markers. 
The population component and linkage disequilibrium between markers confirmed previous reports. 
These findings show the feasibility of GP, even with a small population (N = 41) and marker size 
(approximately 1,000). Several old inbred lines were identified with lower predicted RSR scores, 
indicating their potential as breeding materials. This is the first report on the prediction of maize 
Pythium RSR resistance using GP and emphasizes new possibilities for addressing Pythium RSR 
resistance in maize breeding.
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Introduction

Globally, maize (Zea mays L.) is an important 
crop resource for animal feed, food, and biofuel 
production. It is extremely diverse both phenotypically 
and genotypically, and several tools have been developed 
to utilize its diversity in hybrid breeding (Riedelsheimer 
et al. 2012). Furthermore, the genotypic studies on 
this crop have made remarkable progress in recent 
years; genome-wide association studies (GWAS) and 
marker-assisted selection have contributed to the 
enhancement of its important traits, which include 
disease resistance (Kump et al. 2011), flowering time 
(Chardon et al. 2004), and leaf architecture (Tian et al. 
2011). Considering that the cost of molecular genotyping 
has decreased, genome-wide marker polymorphisms are 
useful not only for detecting causal genes for agronomic 
traits via association mapping (e.g., GWAS) but also for 

predicting the agronomic performance of untested 
genotypes in major crop species.

Root and stalk rot (RSR) caused by soil-borne 
disease pathogens of the genus Pythium is an important 
trait for maize breeding in Japan. The symptoms of this 
disease include wilting or lodging of whole plants and 
drooping of ears; consequently, the plants become too 
soft to be cut during harvest, which causes challenges in 
processing the crop for forage. Furthermore, the quality 
and nutritional value of plants are decreased. In our 
previous study, certain parental inbred lines, which are 
susceptible when used in F1 hybrids, are observed to 
exhibit Pythium RSR resistance in field inoculation tests 
(Mitsuhashi et al. 2015). This makes it difficult to 
effectively develop Pythium RSR-resistant hybrids. As a 
result, genotypic studies of Pythium RSR resistance are 
crucial; however, in China, only a few studies on 
quantitative trait locus analyses exist (Duan et al. 2019, 
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Song et al. 2015).
“Genomic prediction (GP)” or “genomic selection 

(GS)” are breeding techniques in which a part of 
phenotyping can be substituted with molecular 
genotyping using predicted breeding values of untested 
genotypes. The proposal by Meuwissen et al. (2001) has 
established a remarkable achievement in dairy cattle 
breeding using genomic breeding values predicted only 
via genotypic marker information (Hayes et al. 2009b). It 
has also attracted the attention of crop breeding. Bernardo 
and Yu (2007) have attempted to employ GP and GS in 
maize breeding. Our previous computer simulation study 
has indicated that GP and GS can be powerful tools for 
maize breeding teams in the Japanese public sector 
(Tamaki et al. 2012). Nonetheless, the use of GP and 
GS in practical maize breeding in Japan has not yet 
been achieved.

The preparation of large-scale training sets is the 
major difficulty in GP. To address this, some studies have 
evaluated the effectiveness of GP for small populations of 
combined, multibreed training sets in dairy cattle 
breeding (Erbe et al. 2012, Hayes et al. 2009a). In the case 
of the resistance breeding of maize, Technow et al. (2013) 
have indicated that combined training sets (the dent and 
flint inbred lines) provide adequate prediction accuracy 
by cross-validation even if the training population sizes 
are very small (N ≥ 25). The objectives of this study are 
as follows: (1) to develop GP models for maize Pythium 
RSR resistance using data obtained in the breeding 
process within the Japanese public sector and (2) to 
employ GP to predict the Pythium RSR resistance of 
untested maize germplasms, using a combined training 
data set derived from different heterotic groups.

Materials and methods

1. Plant materials
In total, 41 maize inbred lines comprising 18 dent 

and 23 flint lines were tested as the training dataset for 
developing the GP model, and 188 inbred lines were 
considered untested germplasms for predicting the 
Pythium RSR resistance using this model. All inbred 
lines were developed at the Nasushiobara, Hokkaido, and 
Miyakonojo research stations of NARO (The National 
Agriculture and Food Research Organization, Japan), 
Prefectural public breeding sections in Nagano, Japan, or 
Governmental Tokachi Agricultural Experiment Station 
in Hokkaido, Japan. The Results and Discussion sections 
describe the details of the inbred lines.

2. Field test and phenotypic data
The breeding values of the 41 inbred lines used in 

this study were calculated based on a parental-progeny-
based best linear unbiased prediction (BLUP) approach. 
These values were derived from the phenotypic scores of 
the resistance of the F1 combinations against Pythium 
RSR in field tests carried out for 4 years from 2016 to 
2019. These breeding values were also utilized as the 
phenotypic data for the training dataset described below.

Field experiments were conducted at the Institute of 
Livestock and Grassland Science, NARO (NILGS), 
Nasushiobara, Tochigi, Japan (36°55′04″N, 139°56′29″E, 
320 m above mean sea level), following the customary 
practices had been utilized in our breeding processes. 
Maize sudangrass (Sorghum sudanense [Piper] Stapf.) 
annual rotation was implemented in the experimental and 
adjacent fields throughout the experiments. Before 
sowing, in early spring of each year, the fields were 
treated with 50 metric tons per hectare of manure, 
600 kilograms per hectare of fertilizer (containing 14% 
each of N, P2O5, and K2O), and 60 kilograms per hectare 
of insecticide (diazinon granule). Herbicides (5.0 liters 
per hectare of alachlor emulsion, 2.0 liters per hectare of 
atrazine wettable powder, and 1.5 liters per hectare of 
topramezone) were applied after sowing. All field tests 
were conducted in a randomized complete block design 
with two or four replicates. Each entry was grown in 
single-row plots, measuring 2.4 m or 3.6 m in length, 
with a spacing of 0.75 m between rows. Each plot 
consisted of 13 or 19 plants. As our fields were presumed 
to have a high level of RSR contamination, F1 hybrids 
were evaluated under natural infection conditions. 
Nevertheless, considering disease susceptibility, inbred 
lines underwent an inoculation test.

At the yellow-ripe stage of each hybrid 
(approximately 40 days after silking), the plants were cut 
approximately 5 cm above the ground, and the extent of 
rotting on the cut surface of the stalks was recorded. 
Pythium RSR was evaluated based on the infection 
frequency, represented as the percentage of plants with 
scores of 2 or higher. The field experiments, RSR 
inoculation, evaluation, and scoring procedures were 
consistent with those described in previous studies by the 
authors (Mitsuhashi et al. 2015, Mitsuhashi & Tamaki 
2022). Refer to Table 1 for further details in terms of the 
scale and overview of the field tests.

3. BLUP to estimate the breeding values of each 
inbred

To predict the breeding values (i.e., general 
combining ability [GCA]) of the 41 inbred lines, 
the following BLUP mixed model matrix equation 
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described in our previous study was adopted 
(Mitsuhashi & Tamaki 2022):

𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 + 𝜀𝜀 � (1)

where 𝑦𝑦 is the phenotypic values of F1 hybrids via the 
field experiments in Section 2, all those with and 
without the 41 inbred lines as parents, 𝑋𝑋 indicates a 
design matrix to express which F1 combination is tested 
in which field experiments, 𝛽𝛽 represents an unknown 
vector for environmental values of each experiment, 
𝑎𝑎  represents a vector for the GCA of each inbred used in 
the study, 𝑍𝑍 indicates a design matrix to express which 
inbred lines are the parents of each F1 combination, and ε 
indicates the residual effect. The solution of the matrix 
Equation 1 follows the previous study by our team:

( 𝑋𝑋′𝑅𝑅−1𝑦𝑦
𝑍𝑍′𝑅𝑅−1𝑦𝑦 )  =   ( 𝑋𝑋

′𝑅𝑅−1𝑋𝑋
𝑍𝑍′𝑅𝑅−1𝑋𝑋    𝑋𝑋′𝑅𝑅−1𝑍𝑍

𝑍𝑍′𝑅𝑅−1𝑍𝑍 + 𝑉𝑉𝐺𝐺
−1 )  ( 𝛽̂𝛽𝑎̂𝑎 )� (2)

( 𝛽̂𝛽𝑎̂𝑎 )  =   ( 𝑋𝑋
′𝑋𝑋

𝑍𝑍′𝑋𝑋     
𝑋𝑋′𝑍𝑍

𝑍𝑍′𝑍𝑍 + (1 − ℎ2

ℎ2 ) )
−1

 ( 𝑋𝑋
′𝑦𝑦

𝑍𝑍′𝑦𝑦 )� (3)

where 𝑋𝑋′ is the transposed matrix of 𝑋𝑋, 𝑅𝑅  is a variance–
covariance matrix for residual effects, and 𝑉𝑉𝐺𝐺 is the 
variance–covariance matrix for the effect of traits. 
Equation 2 can be transformed into Equation 3, given that  
𝜎𝜎𝑎𝑎2  is the additive genetic variances and 𝜎𝜎𝑒𝑒2 are assumed 
to be ℎ2𝜎𝜎𝑦𝑦2 and (1 − ℎ2) 𝜎𝜎𝑦𝑦

2  using the heritability ((ℎ2)). 
Broad-sense heritability was determined as the average 
of the values obtained via the analysis of variance carried 
out for each test plot (refer to Table 1). The solution 
program was implemented using R version 4.0, developed 
by the R Core Team (2020). The GCA with the lowest 
value was set as the reference, and the remaining values 
were adjusted accordingly. The calculated results were 
then compared with the RSR infection frequency 
observed in the field inoculation test conducted in 2021, 
as described earlier.

4. Genomic data and their analysis
All inbred lines were genotyped with the “Maize 

LD Bead chip” (Illumina Inc., San Diego, USA) 
containing 3,047 single-nucleotide polymorphisms 
(SNPs). Markers with more than 5% missing data were 
removed. “BEAGLE” (Browning et al. 2018), version 5.4, 

Table 1. Scale and outline of the field tests

Experiment 
number

Number of
Broad-sense 

heritability (h2)Hybrids Inbred lines 
crossed for hybrids

Plants in a 
single row Replications

2016-1 5 7 19 4 0.600

2016-2 23 22 19 2 0.517

2016-3 77 41 13 2 0.562

2016-4 61 44 13 2 0.050 †

2017-1 11 13 19 2 0.824

2017-2 20 25 19 2 0.840

2017-3 136 42 13 2 0.082 †

2017-4 58 35 13 2 0.204

2018-1 7 12 19 4 0.749

2018-2 100 32 19 2 0.278

2018-3 44 29 13 2 0.746

2018-4 47 32 13 2 0.652

2019-1 6 7 19 4 0.668

2019-2 17 24 19 2 0.796

2019-3 100 51 19 2 0.697

2019-4 10 13 13 2 0.845

2019-5 29 28 13 2 0.935

Sowing and observation dates were different for each year or environment.
Some common hybrids and inbred lines were used among the test plots.
A total of 650 F1 hybrids were tested, derived from crosses among 106 inbred lines.
† These were excluded from the calculation of the mean as outlier values (Smirnov-Grubbs test P < 0.05). 
The average value of h2 was 0.661.
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was employed to impute all remaining missing marker 
genotypes, which resulted in 2,581 SNPs available for 
further analysis. To see its pattern, the linkage 
disequilibrium (LD) was plotted as measured by r2 with a 
marker distance in Mbp for all 2,581 markers. To 
investigate the genetic distinction of different heterotic 
groups, a principal component analysis using the 2,581 
SNP marker profiles of the inbred lines was adopted. 
These two indicators were calculated using “Tassel” 
version 5.2.87 (Bradbury et al. 2007).

5. Prediction procedures
All validation and prediction were carried out using 

parental inbred lines only; phenotypic data and genotypic 
data were substituted in order to develop the following 
linear model:

y𝑖𝑖 = μ + ∑ β𝑗𝑗X𝑖𝑖𝑖𝑖 + ε𝑖𝑖 � (4)

where y𝑖𝑖 is the BLUP score of inbred 𝑖𝑖  calculated in 
Section 3, μ is the overall mean, β𝑗𝑗 is the genetic effect of 
the marker 𝑗𝑗 (𝑗𝑗 = 1, 2…) ( 𝑗𝑗 (𝑗𝑗 = 1, 2…) = 1, 2…), X𝑖𝑖𝑖𝑖 is the genotype of marker 𝑗𝑗 
for inbred 𝑖𝑖 and is defined by 1 or −1 for contrasting 
homozygous genotypes and 0 for heterozygous, and 𝜀𝜀𝑖𝑖 is 
the error deviation assumed to follow N (0, 𝜎𝜎2). To 
estimate the genetic effect coefficients β𝑗𝑗, the Ridge 
regression method was applied. Following this regression 
method, a prediction model was obtained using the R 
package “glmnet” (Friedman et al. 2010).

6. Cross-validation and prediction
To assess the accuracy of GP, five-fold 

cross-validation was applied on the basis of the method 
described by Zhao et al. (2012). To determine the optimal 
number of markers for prediction, different marker 
patterns, which included 250, 500, 1,000, 2,000, and all 
2,581 markers, were evaluated. A fixed number of 
markers were randomly distributed throughout the entire 
genome, and the dataset derived from the 41 inbred lines 
was randomly divided into five subsets. Four subsets 
were combined to form the training dataset for estimating 
genetic effects, whereas the remaining subset served as 
the validation dataset. To determine the prediction 
accuracy (r), the correlation between the BLUP scores of 
the validation dataset and the calculated scores from the 
predicted genetic effects of the training model was 
employed. The process of randomly locating markers was 
repeated 100 times, the sampling of training and 
validation sets was repeated 1,000 times for each marker 
set, and the mean of both prediction accuracy and 95% 
confidence interval (CI) for each marker set was 
calculated. Moreover, to predict the Pythium RSR 

resistance of an additional 188 untested inbred lines, the 
training model, employing all 41 inbred lines and 2,581 
markers, was applied.

Results and discussion

Table 2 provides details of the 41 inbred lines. The 
breeding values predicted by BLUP were inconsistent 
with the results of the field inoculation test conducted in 
2021, with a correlation coefficient of 0.027 (N = 17, not 
significant). This inconsistency was particularly evident 
in the case of ‘Na50,’ a representative parental inbred line 
of susceptible F1 hybrids that exhibited resistance itself, 
consistent with our previous studies (Mitsuhashi & 
Tamaki 2022). Therefore, it can be confirmed that 
the results of field inoculation tests carried out on 
inbred lines cannot be considered phenotypic values for 
GP of Pythium RSR. Instead, the BLUP values are 
more appropriate.

Labor and field capacity are limiting factors in the 
maize breeding system. Nonetheless, larger population 
sizes are well-known to lead to higher genetic gains in 
GP (Lorenz et al. 2011). Thus, to design breeding schemes 
that enhance efficiency while reducing labor 
requirements, significant efforts have been made. Tecnow 
et al. (2013) suggested that small training datasets, 
combining dent and flint inbred lines, can achieve 
adequate prediction accuracy for Northern corn leaf 
blight resistance. The population composition within our 
training dataset, which depicts a distinct separation 
between dent and flint inbred lines, is illustrated in 
Figure 1. This confirms the previous study and is 
considered appropriate for achieving high prediction 
accuracy even with a small population size.

LD (r2) between markers for the 41 maize inbred 
lines within a distance of less than 0.24 Mbp exceeded 
0.30. At approximately 0.60 Mbp, it gradually decreased 
to approximately 0.20. Beyond 1.0 Mbp, LD continued to 
decrease slightly; however, at approximately 2.0 Mbp, it 
remained above 0.10 (Fig. 2). In Technow et al. (2013), the 
LD continued to decrease at above 1.0 Mbp but remained 
greater than 0.10 over the entire range of distances (about 
5.0 Mbp) considered. Calus and Veerkamp (2007) and 
Calus et al. (2008) indicated that for effective selection in 
GP, the average LD between adjacent markers should 
be ≥ 0.125. Our findings confirm these observations and 
demonstrate the feasibility of GP using a small training 
population that is derived from dent and flint inbred lines.

During the repetition of randomly locating each 
marker set 100 times and performing sampling and 
validation 1,000 times for each marker set, outliers of 
prediction accuracy (r) were excluded using the 
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Table 2. Elite inbred lines and their resistance for Pythium root and stalk rot (RSR)

Inbred name Group BLUP scores Observed values in the field Predicted values in the model Developed by

CHU44 F   9.06 10.00   8.84 CAES, Nagano Pref. †
JC-028 D   7.36 4.55   7.51 CAES, Nagano Pref.
CHU68 F   9.60 4.55   9.72 CAES, Nagano Pref.
JC-037 D   4.46 0.00   5.47 CAES, Nagano Pref.
JC-038 D 10.66 -   9.32 CAES, Nagano Pref.
Mi47 F   9.01 0.00   8.47 KARC, NARO ‡
Mi91 D 10.18 -   9.98 KARC, NARO
Mi103 F   9.47 0.00   8.95 KARC, NARO
Mi111 F   3.52 0.00   4.24 KARC, NARO
Mi115 F   7.61 -   8.73 KARC, NARO
N09-07 F   2.55 -   3.25 ILGS, NARO §
N10-01 D   7.17 -   7.22 ILGS, NARO
N10-02 D   4.43 9.55   4.58 ILGS, NARO
N10-08 F   5.95 -   5.99 ILGS, NARO
N10-12 F   0.00 -   1.86 ILGS, NARO
N11-02 F   6.41 -   6.79 ILGS, NARO
N12-01 D   5.25 -   5.36 ILGS, NARO
N12-02 F 10.97 - 11.08 ILGS, NARO
N12-05 F   7.99 34.85   8.26 ILGS, NARO
N12-07 F   6.10 -   6.69 ILGS, NARO
N13-01 D   5.60 -   5.85 ILGS, NARO
N13-05 F 19.72 - 18.76 ILGS, NARO
N13-06 F 20.62 - 19.66 ILGS, NARO
N13-08 F 11.26 - 10.58 ILGS, NARO
N14-01 D   7.29 -   7.21 ILGS, NARO
N14-02 D   3.75 -   4.22 ILGS, NARO
N15-01 D   3.96 -   4.40 ILGS, NARO
N16-03 D   6.85 -   6.50 ILGS, NARO
N16-07 F 10.83 - 11.02 ILGS, NARO
Na50 F 23.22 0.00 21.25 ILGS, NARO
Na65 D   8.64 27.78   8.19 ILGS, NARO
Na71 D   2.91 0.00   3.22 ILGS, NARO
Na83 F 17.28 - 16.24 ILGS, NARO
Na98 D   2.72 0.00   3.56 ILGS, NARO
Na100 D 13.13 - 11.89 ILGS, NARO
Na102 D   0.39 5.00   1.22 ILGS, NARO
Na106 F 17.18 6.25 16.28 ILGS, NARO
Na109 D   7.11 -   7.16 ILGS, NARO
Na111 F   6.38 0.00   6.90 ILGS, NARO
Na112 F   8.62 0.00   9.07 ILGS, NARO
Na113 F 18.64 - 18.34 ILGS, NARO

BLUP scores were the general combining ability (GCA) of each inbred for Pythium RSR (Mitsuhashi & Tamaki 2022). Observed 
values in the field were RSR infection frequency of field inoculation test in 2021. The correlation coefficient between BLUP scores 
and observed values was 0.027 (N = 17, not significant). Predicted values were in the training model using all 2,581 SNPs. 

D: dent, F: flint.
† Chushin Agricultural Experiment Station, Nagano Pref.
‡ Kyushu Okinawa Agricultural Research Center, NARO
§ Institute of Livestock and Grassland Science, NARO

CHU is the registered inbred lines. JC is promising inbred lines.
Mi and Na are the registered or promising inbred lines. N is the superior inbred line before Na was named.
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Fig. 1. �The plot of principal component (PC) 1 and PC 2 scores based on 2,581 SNP markers of all the 229 inbred lines used 
in this study �  
* represents the crosses which is derived from different two groups.

Fig. 2. �Linkage disequilibrium (LD: r2) decay plot of 2,581 markers as a function of physical distance (Mbp) for 
the 41 maize inbred lines used in this study
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Smirnov–Grubbs test (P < 0.05) for each of the marker 
sets. As the number of markers increased, the average 
prediction accuracy between populations improved. 
Nevertheless, when the number of markers exceeded 
1,000 (r = 0.680, 95% CI: 0.666-0.693), the rate of 
improvement declined, reaching a plateau at 2,000 
markers (r = 0.693, 95% CI: 0.680-0.706). The prediction 
accuracy using all 2,581 markers was 0.695 (95% CI: 
0.682-0.708; Table 3, Fig. 3). Tecnow et al. (2013) reported 
that the prediction accuracies are 0.576-0.589 (N = 50) 
and 0.690-0.706 (N = 75) in Northern corn leaf blight. 
Crossa et al. (2014) showed that the prediction accuracies 
are 0.588-0.790 in flowering, 0.513-0.572 in 
anthesis-silking interval, and 0.415-0.525 in grain yield 
(N = 284). Given the use of a smaller training population 
(N = 41), it can be confirmed that the GP model present in 
this study achieves sufficient prediction accuracy 
compared with previous studies.

Rashid et al. (2020) employed approximately 
300,000 SNPs for conducting GWAS on resistance to 
maize Northern corn leaf blight, whereas Liu et al. (2021) 
utilized over 200,000 SNPs for resistance to Fusarium 
ear rot. Nevertheless, GP should be performed using 
lower-density markers if achieving cost-effectiveness is 
the aim (Heffner et al. 2010). In our study, the prediction 
accuracy enhanced as the number of markers increased, 
but it approached a plateau when the number of markers 
exceeded 1,000. This observation confirms a previous 

study by Zhao et al. (2012), in which prediction accuracy 
plateaus at approximately 800 SNPs. These results 
indicate that by using a small population size and a 
moderate number of markers, GP for Pythium RSR 
resistance can be achieved.

The predicted GCA values for the highest and lowest 
five inbred lines (dent, flint or European flint, and their 
crosses) among the 188 untested inbred lines, in terms of 
resistance to Pythium RSR, based on the prediction 
model utilized in this study is presented in Table 4. 
Supplementary Table 1 shows the complete values. The 
lowest predicted RSR values for both dent and flint 
inbred lines were similar (4.70 and 4.62), whereas the 

Fig. 3. �Transition of the prediction accuracy (r) of genomic predictions across populations revealed by five-fold 
cross-validation for Pythium root and stalk rot (RSR)�  
The process of randomly locating markers was repeated 100 times, and the sampling of training and validation 
sets was repeated 1,000 times for each marker set. Error bars represent 95% confidence intervals.

0.631

0.658

0.680
0.693 0.695

0.600

0.620

0.640

0.660

0.680

0.700

0.720

0 500 1,000 1,500 2,000 2,500

Pr
ed

ic
tio

n 
ac

cu
ra

cy
 (r

)

The number of markers

Table 3. �Prediction accuracy (r) of genomic 
predictions across populations according to 
the number of each marker revealed by 
five-fold cross-validation for Pythium root 
and stalk rot (RSR)

The number of 
markers

Prediction 
accuracy (r)

95% confidence 
interval

   250 0.631 0.616-0.645

   500 0.658 0.644-0.672

1,000 0.680 0.666-0.693

2,000 0.693 0.680-0.706

2,581 0.695 0.682-0.708

The process of randomly locating markers was repeated 100 
times, and the sampling of training and validation sets was 
repeated 1,000 times for each marker set. 
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highest values varied (10.24 and 13.82). Inbred lines 
derived from dent and flint crosses exhibited intermediate 
values. This finding confirms the results of the PCA 
(Fig. 1). Some of the flint inbred lines are predominantly 

derived from regions with colder climates, such as 
Hokkaido or Northern Europe. Breeding for RSR 
resistance, which is more prevalent in hot and humid 
conditions, presents difficulties in such regions. These 

Table 4. �Predicted general combining ability (GCA) for each of the highest and lowest five (dent, 
flint, European flint, and their crosses) of 188 inbred lines in the resistance of Pythium 
root and stalk rot (RSR) based on the prediction model used in this study

Inbred name Group Predicted GCA values Developed by

Na60 D 4.70 ILGS, NARO §

Na78 D 4.78 ILGS, NARO

Ho57 D 5.08 HARC, NARO ¶

Na54 D 5.44 ILGS, NARO

Na29 D 5.46 ILGS, NARO

Na84 F 4.62 ILGS, NARO

IM-459 F 6.79 KARC, NARO ‡

Ho99 EF 7.30 HARC, NARO

J1608 F 7.61 CAES, Nagano Pref. †

TI-083 EF 7.96 HARC, NARO

IM-254 D*F 7.27 KARC, NARO

TI-133 D*EF 7.64 HARC, NARO

TI-114 D*EF 7.69 HARC, NARO

To113 D*EF 7.70 TAES, Hokkaido Govt. ||

TI-145 D*EF 7.79 HARC, NARO

JC-036 D 9.71 CAES, Nagano Pref. 

J1407 D 9.75 CAES, Nagano Pref. 

JC-046 D 9.83 CAES, Nagano Pref. 

J1383 D 9.99 CAES, Nagano Pref. 

J1539 D 10.24 CAES, Nagano Pref. 

Na85 F 12.73 ILGS, NARO

IM-430 F 13.00 KARC, NARO

Na28 F 13.32 ILGS, NARO

Na95 F 13.46 ILGS, NARO

Na89 F 13.82 ILGS, NARO

To90 D*EF 9.30 TAES, Hokkaido Govt.

TI-108 D*EF 9.46 HARC, NARO

To38 D*EF 9.55 TAES, Hokkaido Govt.

J1707 D*F 9.80 CAES, Nagano Pref. 

Na94 D*F 11.17 ILGS, NARO

The prediction model was derived from the training data sets of the 41 elite inbred lines and 2,581 SNPs.

D: dent, F: flint, EF: European flint. * is derived from crosses between different two groups.

† Chushin Agricultural Experiment Station, Nagano Pref.
‡ Kyushu Okinawa Agricultural Research Center, NARO
§ Institute of Livestock and Grassland Science, NARO
¶ Hokkaido Agricultural Research Center, NARO
|| Tokachi Agricultural Experiment Station, Hokkaido Govt.

Na, Ho, J, JC, and To are the registered or promising inbred lines.
IM and TI are the superior inbred lines before Mi and Ho were named.
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results likely reflect the different selection pressures on 
dent and flint lines. None of the five dent, flint, or crossed 
inbred lines with the lowest RSR scores have been 
utilized in recent breeding programs because of their 
age (developed from the 1990s to early 2000s). These 
results suggest that such old germplasms can be 
potentially used as valuable materials for developing 
Pythium RSR-resistant hybrids. 

The geographic diversity of Japan, which spans 
from Hokkaido in the north to Kyushu in the south, shows 
different challenges for breeding and selecting maize 
inbred lines appropriate for each region. Pythium RSR 
outbreak does not frequently take place in Hokkaido 
because Pythium spp. thrives at higher temperatures 
(Kageyama 2014). Likewise, Kyushu experiences 
different cropping systems from Kanto (Nasushiobara). 
Nevertheless, under specific conditions such as adequate 
temperature and heavy rainfall during the dough ripening 
stage, large Pythium RSR outbreaks can occur even in 
these regions (Deep & Lipps 1996, Reyes-Tena et al. 
2018, Yenar et al. 1997). Accurately predicting Pythium 
RSR resistance using GP can assist in making preliminary 
selections solely on the basis of genotypic data from the 
constructed model.

To conclude, this study is the first to predict maize 
Pythium RSR resistance using GP in the Japanese public 
sector. The GP model presented in this study achieved 
adequate prediction accuracy, even though a smaller 
training population (N = 41) and lower-density markers 
(approximately 1,000 SNPs) were employed. The results 
have significant implications, particularly in regions with 
limited labor and field resources. Nevertheless, the 
reliability of the predicted data through field tests that 
involve actual F1 hybrids derived from the 188 untested 
inbred lines used in this study should be validated. These 
findings offer new possibilities for breeding maize with 
Pythium RSR resistance in Japan.
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Supplementary Table 1. �Predicted general combining ability (GCA) for 188 inbred lines in 
the resistance of Pythium root and stalk rot (RSR) based on the 
prediction model used in this study

Inbred name Group Predicted GCA values Developed by

J1330 D 8.99 CAES, Nagano Pref. †

J1350 D 5.55 CAES, Nagano Pref. 

J1383 D 9.99 CAES, Nagano Pref. 

J1407 D 9.75 CAES, Nagano Pref. 

J1417 D 6.95 CAES, Nagano Pref. 

J1539 D 10.24 CAES, Nagano Pref. 

J1605 D 7.90 CAES, Nagano Pref. 

J1608 F 7.61 CAES, Nagano Pref. 

J1559 D 8.13 CAES, Nagano Pref. 

J1693 F 10.12 CAES, Nagano Pref. 

J1707 D*F 9.80 CAES, Nagano Pref. 

J1706 D 7.92 CAES, Nagano Pref. 

JC-002 D 7.00 CAES, Nagano Pref. 

J1698 D 7.78 CAES, Nagano Pref. 

J1785 F 10.20 CAES, Nagano Pref. 

JC-009 F 12.46 CAES, Nagano Pref. 

JC-014 D 6.61 CAES, Nagano Pref. 

JC-026 F 9.88 CAES, Nagano Pref. 

JC-036 D 9.71 CAES, Nagano Pref. 

JC-053 F 8.50 CAES, Nagano Pref. 

JC-050 D 7.38 CAES, Nagano Pref. 

JC-046 D 9.83 CAES, Nagano Pref. 

JC-054 D 7.76 CAES, Nagano Pref. 

JC-064 D 7.64 CAES, Nagano Pref. 

JC-034 F 8.75 CAES, Nagano Pref. 

(Continued on next page)
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Supplementary Table 1. �Predicted general combining ability (GCA) for 188 inbred lines 
in the resistance of Pythium root and stalk rot (RSR) based on 
the prediction model used in this study (Continued 1)

IM-239 D*F 8.45 KARC, NARO ‡

IM-248 F 12.41 KARC, NARO

IM-252 F 9.59 KARC, NARO

IM-254 D*F 7.27 KARC, NARO

IM-270 D*F 8.91 KARC, NARO

IM-308 D*F 8.07 KARC, NARO

IM-347 D*F 9.08 KARC, NARO

IM-390 D 5.96 KARC, NARO

IM-402 F 8.91 KARC, NARO

IM-403 F 9.05 KARC, NARO

IM-419 D*F 9.09 KARC, NARO

IM-421 D 7.47 KARC, NARO

IM-422 D 8.13 KARC, NARO

IM-423 D 7.17 KARC, NARO

IM-424 D 8.49 KARC, NARO

IM-426 D 8.73 KARC, NARO

IM-427 D 8.44 KARC, NARO

IM-429 D 7.02 KARC, NARO

IM-430 F 13.00 KARC, NARO

IM-431 F 9.86 KARC, NARO

IM-435 D 6.95 KARC, NARO

IM-436 D 7.10 KARC, NARO

IM-437 D 6.88 KARC, NARO

IM-450 D 7.17 KARC, NARO

IM-452 F 10.25 KARC, NARO

IM-453 F 10.20 KARC, NARO

IM-454 F 9.75 KARC, NARO

IM-455 D 9.13 KARC, NARO

IM-458 F 8.15 KARC, NARO

IM-459 F 6.79 KARC, NARO

IM-460 F 10.55 KARC, NARO

IM-461 F 11.10 KARC, NARO

IM-464 F 10.05 KARC, NARO

IM-465 D 7.92 KARC, NARO

IM-466 D 7.40 KARC, NARO

IM-467 D 7.40 KARC, NARO

IM-468 F 9.77 KARC, NARO

IM-469 F 9.19 KARC, NARO

IM-470 F 8.62 KARC, NARO

IM-472 F 12.22 KARC, NARO

IM-475 D 8.26 KARC, NARO

IM-477 D 7.75 KARC, NARO

Mi83 D 7.63 KARC, NARO

Mi102 F 9.57 KARC, NARO

Mi105 F 10.53 KARC, NARO

(Continued on next page)
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Supplementary Table 1. �Predicted general combining ability (GCA) for 188 inbred lines 
in the resistance of Pythium root and stalk rot (RSR) based on 
the prediction model used in this study (Continued 2)

Mi107 F 8.12 KARC, NARO

N14-04 F 10.00 ILGS, NARO §

N17-F04 F 9.73 ILGS, NARO

Na2 F 12.48 ILGS, NARO

Na4 F 11.94 ILGS, NARO

Na5 F 11.11 ILGS, NARO

Na6 D 7.86 ILGS, NARO

Na7 D 6.58 ILGS, NARO

Na8 D 7.98 ILGS, NARO

Na9 D 6.10 ILGS, NARO

Na13 D 8.46 ILGS, NARO

Na15 D 7.27 ILGS, NARO

Na17 D 7.94 ILGS, NARO

Na18 D 7.79 ILGS, NARO

Na23 D 7.01 ILGS, NARO

Na25 D 7.99 ILGS, NARO

Na26 F 11.66 ILGS, NARO

Na27 F 10.90 ILGS, NARO

Na28 F 13.32 ILGS, NARO

Na29 D 5.46 ILGS, NARO

Na30 F 11.16 ILGS, NARO

Na32 D 6.89 ILGS, NARO

Na34 D 6.88 ILGS, NARO

Na36 D 6.01 ILGS, NARO

Na38 D 7.59 ILGS, NARO

Na41 D 6.56 ILGS, NARO

Na42 D 5.84 ILGS, NARO

Na43 D 9.51 ILGS, NARO

Na45 D 9.30 ILGS, NARO

Na49 D 5.57 ILGS, NARO

Na51 F 11.30 ILGS, NARO

Na53 D 6.56 ILGS, NARO

Na54 D 5.44 ILGS, NARO

Na55 D 6.69 ILGS, NARO

Na56 D 5.73 ILGS, NARO

Na57 D*F 8.55 ILGS, NARO

Na58 D 7.59 ILGS, NARO

Na60 D 4.70 ILGS, NARO

Na61 D 6.43 ILGS, NARO

Na62 D 6.77 ILGS, NARO

Na64 D 6.73 ILGS, NARO

Na66 F 11.13 ILGS, NARO

Na69 D 8.14 ILGS, NARO

Na70 D 6.75 ILGS, NARO

Na72 D*F 8.31 ILGS, NARO

(Continued on next page)
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Supplementary Table 1. �Predicted general combining ability (GCA) for 188 inbred lines 
in the resistance of Pythium root and stalk rot (RSR) based on 
the prediction model used in this study (Continued 3)

Na74 D 7.75 ILGS, NARO

Na76 F 10.77 ILGS, NARO

Na77 D 7.24 ILGS, NARO

Na78 D 4.78 ILGS, NARO

Na79 F 9.02 ILGS, NARO

Na80 F 11.81 ILGS, NARO

Na81 D 6.16 ILGS, NARO

Na82 D*F 9.29 ILGS, NARO

Na84 F 4.62 ILGS, NARO

Na85 F 12.73 ILGS, NARO

Na86 D 6.82 ILGS, NARO

Na87 D 8.86 ILGS, NARO

Na88 F 9.40 ILGS, NARO

Na89 F 13.82 ILGS, NARO

Na92 F 9.23 ILGS, NARO

Na93 F 11.57 ILGS, NARO

Na94 D*F 11.17 ILGS, NARO

Na95 F 13.46 ILGS, NARO

Na97 F 9.53 ILGS, NARO

Ho49 EF 8.73 HARC, NARO ¶

Ho52 D 6.33 HARC, NARO

Ho57 D 5.08 HARC, NARO

Ho68 D 7.61 HARC, NARO

Ho87 EF 9.64 HARC, NARO

Ho90 EF 8.64 HARC, NARO

Ho96 EF 9.18 HARC, NARO

Ho99 EF 7.30 HARC, NARO

Ho104 D 7.80 HARC, NARO

Ho106 D 8.09 HARC, NARO

Ho119 EF 9.46 HARC, NARO

Ho120 EF 8.70 HARC, NARO

Ho121 EF 9.65 HARC, NARO

Ho124 EF 9.60 HARC, NARO

Ho126 EF 8.94 HARC, NARO

Ho127 EF 9.53 HARC, NARO

Ho129 EF 8.96 HARC, NARO

Ho130 EF 9.38 HARC, NARO

Ho131 EF 7.98 HARC, NARO

TI-044 D*EF 8.36 HARC, NARO

TI-045 EF 8.77 HARC, NARO

TI-061 D*EF 8.85 HARC, NARO

TI-064 EF 9.39 HARC, NARO

TI-081 D*EF 8.78 HARC, NARO

TI-083 EF 7.96 HARC, NARO

TI-086 D*EF 8.06 HARC, NARO

(Continued on next page)
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Supplementary Table 1. �Predicted general combining ability (GCA) for 188 inbred lines 
in the resistance of Pythium root and stalk rot (RSR) based on 
the prediction model used in this study (Continued 4)

TI-091 EF 8.47 HARC, NARO

TI-092 EF 8.88 HARC, NARO

TI-094 EF 9.20 HARC, NARO

TI-095 D*EF 8.76 HARC, NARO

TI-096 D*EF 8.62 HARC, NARO

TI-097 D*EF 8.19 HARC, NARO

TI-098 D*EF 7.92 HARC, NARO

TI-105 EF 10.04 HARC, NARO

TI-106 EF 9.15 HARC, NARO

TI-107 D*EF 7.84 HARC, NARO

TI-108 D*EF 9.46 HARC, NARO

TI-111 D*EF 8.87 HARC, NARO

TI-114 D*EF 7.69 HARC, NARO

TI-118 D*EF 9.11 HARC, NARO

TI-123 D 7.97 HARC, NARO

TI-126 D*EF 8.70 HARC, NARO

TI-130 D*EF 9.04 HARC, NARO

TI-131 D*EF 8.81 HARC, NARO

TI-132 D*EF 8.46 HARC, NARO

TI-133 D*EF 7.64 HARC, NARO

TI-136 D*EF 9.08 HARC, NARO

TI-137 EF 8.78 HARC, NARO

TI-145 D*EF 7.79 HARC, NARO

To15 D*EF 8.75 TAES, Hokkaido Govt. ||

To38 D*EF 9.55 TAES, Hokkaido Govt.

To85 D*EF 8.50 TAES, Hokkaido Govt.

To90 D*EF 9.30 TAES, Hokkaido Govt.

To113 D*EF 7.70 TAES, Hokkaido Govt.

The prediction model was derived from the training data sets of the 41 elite inbred lines and 2,581 SNPs.

D: dent, F: flint, EF:  European flint. * is derived from crosses between two groups.
† Chushin Agricultural Experiment Station, Nagano Pref.
‡ Kyushu Okinawa Agricultural Research Center, NARO
§ Institute of Livestock and Grassland Science, NARO
¶ Hokkaido Agricultural Research Center, NARO
|| Tokachi Agricultural Experiment Station, Hokkaido Govt.

J, JC Mi, Na, Ho, and To are the registered or promising inbred lines.
IM, N, and TI are the superior inbred lines before Mi, Na, and Ho were named.


