Impact of Fertilizer Price and Subsidy on the Global Wheat Market

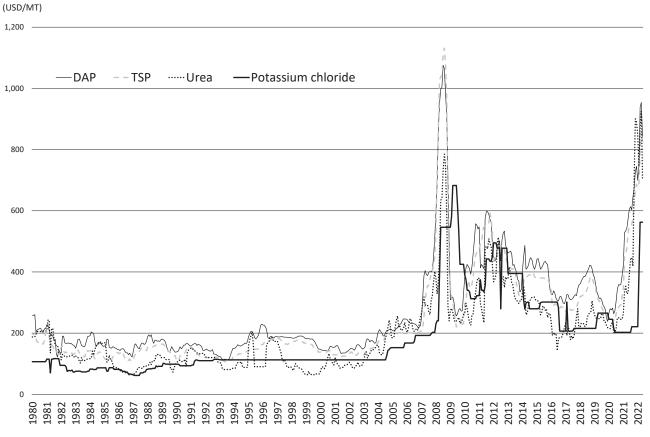
Tatsuji KOIZUMI*

Policy Research Institute, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan

Abstract

This study examined how an increase in fertilizer prices will affect the global wheat market and how fertilizer subsidy program will mitigate that impact by developing a partial equilibrium model. All scenarios demonstrated that increasing fertilizer prices drove global wheat prices higher and increased price volatility from a three-year average for 2019-2021 to 2040. Among the countries covered by this model, India and Ukraine are the most vulnerable wheat-producing countries affected by fertilizer price increases. The simulation scenario showed that a fertilizer subsidy program in India will contribute to stabilizing wheat price in the long term, considering the current fertilizer price increase trend. This study concludes that Ukraine will be the most vulnerable country affected by input price change, as well as India. Therefore, to prevent international wheat price increase and volatility, international cooperation is urgently required for Ukraine in mitigating the fertilizer price increase, as well as other input price increases.

Discipline: Social Science Additional key words: India, nitrogen, Ukraine, wheat price stability


Introduction

Fertilizers are one of the major input elements in growing agricultural crops. They accounted for approximately 60% of the registered yield increase in the last 50 years (Stewart et al. 2005). Among fertilizers, the three primary macronutrients (nitrogen (N), phosphorus (P), and potassium (K)) are the important elements in growing crops. Fertilizer prices have been increasing since June 2020. A combination of factors contributed to the increase in fertilizer prices. Natural gas, used as both feedstock and energy source in the production of ammonia, accounts for 70% - 80% of ammonia production costs (Hebebrand & Laborde 2022). Natural gas prices surged, especially in Europe. Simultaneously, fertilizer users are recovering from the COVID-19 pandemic. Furthermore, the world's largest fertilizer exporter, Russia, restricted fertilizer supply to international markets soon after its aggression of Ukraine. The prices of diammonium phosphate (DAP), triple superphosphate (TSP), urea, and potassium chloride peaked in April

2022, and these prices have decreased since then and are still at a historically high level (Fig. 1).

Adams et al. (1977) demonstrated that a 20% reduction in fertilizer supplies decreases the value of agricultural production by 4%. Burrell (1989) found that an increase in fertilizer prices meant a decrease in fertilizer use in the case of the UK. Brunelle et al. (2015) found that the supply-side response to increasing fertilizer prices could lower crop yields. Furthermore, they concluded that higher food prices induced a higher demand for fertilizers. In Japan, decreasing fertilizer price to rice producer price ratio contributed to increasing fertilizer use and rice yield (Hayami 1973). Increasing fertilizer use, derived from a decreasing fertilizer price to agricultural price ratio, contributed to an increase in agricultural output in Japan (Yamaguchi 1983). On the basis of these previous studies, it is hypothesized that increasing the fertilizer price to agricultural producer price ratio can decrease fertilizer use and the increasing producer price of agricultural products can increase fertilizer use. These fertilizer applications will have an

^{*}Corresponding author: tatsuji_koizumi410@maff.go.jp Received 21 February 2023; accepted 3 August 2023.

Fig. 1. Fertilizer prices

Source: World Bank (2022)

Note: DAP: diammonium phosphate, TSP: triple superphosphate

impact on crop yield and its market.

The volatility of wheat prices is increasing¹ and has a strong impact on global food security. For wheat and corn, fertilizer prices alone account for over one-third of the total operating costs and 15% - 20% of the total costs (Heady & Fan 2008). It is expected that the increasing fertilizer prices will increase production costs and will decrease producer margins. It is concerning that these price increases can have a negative impact on the wheat yield and harvested areas in many countries without adequate policy measures to mitigate the fertilizer price increase. In other circumstances, Wijetunga & Saito (2017) concluded that fertilizer subsidy reduction reduced rice productivity in the case of Sri Lanka. It is also expected that fertilizer prices.

This study targets the fertilizer subsidy program in India, and most of its subsidies are used for wheat production. Consequently, this study targets the global wheat market, which is influenced by the fertilizer price increase. Koizumi (2019) examined how agricultural investments will affect wheat price volatility under climate change. However, it did not cover fertilizer use and other input prices. Therefore, this study included them and examined how increasing fertilizer prices will affect global wheat markets and their price volatility by factoring in future climate change and how fertilizer subsidies will mitigate the impact on global wheat markets. A partial equilibrium model (the Wheat Economy Climate Change (WECC) model) was developed, in addition to incorporating exogenous fertilizer prices and other input elements into the model.

¹ The coefficient of variation (CV) of international wheat prices was 0.1664 from 1985 to 1995, 0.2425 from 1996 to 2005, 0.2645 from 2006 to 2015, and 0.3583 from January 2016 to July 2022. Calculated from monthly wheat price (Wheat, No. 1 Hard Red Winter, ordinary protein, Kansas City) from World Bank (2022).

Method and data

1. Structure of the developed WECC model and data for regression

The WECC model covers the wheat markets in 11 countries and 2 regions. The base year range is 2019-2021 (a three-year average for 2019-2021, hereinafter 2019/21). Each country's market consists of production,

consumption, exports, imports, and ending stocks until 2040 (Fig. 2). The equations for the developed WECC model are shown in the Appendix. The historical yield, planted area, harvested area, and production data for wheat² were derived from Production, Supply, and Distribution (PS&D) (USDA-FAS 2022). Wheat producer prices and competitive agricultural producer prices were derived from FAOSTAT (FAO 2022). Fertilizer use for

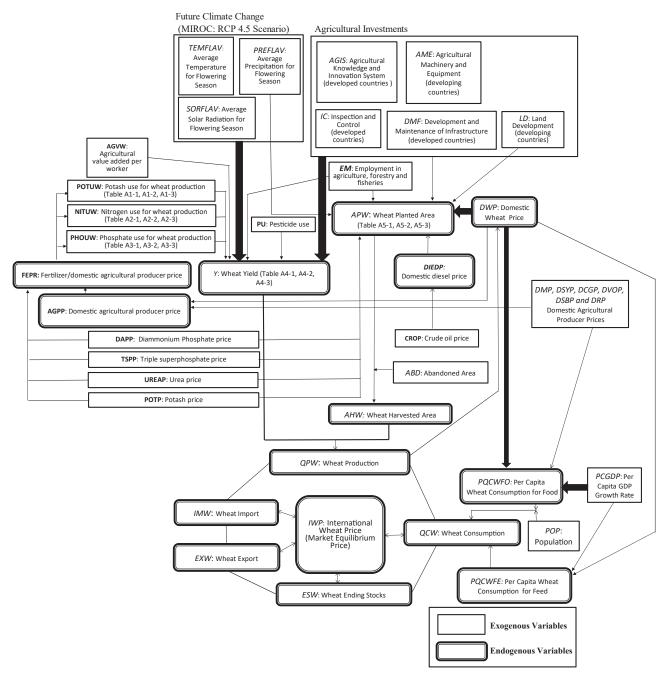


Fig. 2. Structure of the developed WECC (Wheat Economy Climate Change) model

² The results of unit root tests (ADF test) confirmed that the time-series data of dependent variables and explanatory variables used in this study are stationary series.

wheat production and pesticide use data were derived from FAOSTAT (FAO 2022), and fertilizer prices were derived from the World Bank (2022). Domestic diesel prices were derived from OECD-FAO (2022). These data were used for regression in the time-series analysis.

2. Baseline assumptions and scenarios

Baseline projection adopted a set of assumptions for the general economy, agricultural policies, and technological changes without any policy shocks during the projection period.³ The exogenous variables for per capita GDP growth rate, population, and international commodity prices are listed in Appendix Tables A6-1 and 6-2.⁴ This study assumed that current agricultural and trade policies will continue and abandoned areas will become zero in all countries throughout the projection period.

The fertilizer uses (nitrogen, phosphate, and potash) in the model in the selected countries were derived from FAOSTAT (FAO 2022), and the wheat use to total fertilizer use ratio of nitrogen, phosphate, and potash in each country was derived from the International Fertilizer Association. These ratios ranged between 2.5% and 43.6% in 2018 (Table 1). This study hypothesized that these wheat use ratios of 2018 will be constant from 2022 to 2040. This study applied the fertilizer price projections, derived from the World Bank Commodities Price Forecast (2021 October) (World Bank 2021), to the baseline assumption from 2022 to 2035. This study assumed that the average changing rate of fertilizer price from 2030 to 2035 will continue to be the same after 2036. Therefore, the prices of DAP, potassium chloride, and urea will decrease by 1.2%, 1.4%, and 1.3% per annum from 2019/21 to 2040, respectively, and TSP's price will increase by 1.3% per annum (Table 2). The nitrogen, phosphate, and potash subsidies in India decreased by 0.9%, 2.3%, and 6.6%, respectively, from 2015 to 2020 (Table 3). This study applied these changing rates (from 2015 to 2020) to the fertilizer subsidy rate of change in India from 2022 to 2040 as a baseline assumption. This study also assumed that pesticide use and domestic diesel prices will be constant from 2022 to 2040. This study applied that the current growth rate of agricultural knowledge and innovation systems, and development and maintenance of infrastructure⁵ from 2006 to 2021 will continue during the outlook period (2019/21-2040)⁶ (Appendix Table A6-3).

This study applied alternative scenarios to the baseline outlook. For scenario 1, this study assumed that the fertilizer prices (DAP, potassium chloride, TSP, and urea) will increase from 2022 to 2024. These price projections were derived from the World Bank Commodities Price Forecast (April 2022), and these prices will increase by 47.3%-160.4% from 2022 to 2024, compared to the baseline assumption. This study applied the annual growth rate of these prices from the baseline assumptions after 2025. The average fertilizer prices will increase between 61.4% and 132.4%, compared to the baseline from 2022 to 2040. This study used the Indian fertilizer subsidy program as an alternative scenario. Among models covering countries and regions, the fertilizer subsidy program is currently applied only to India. India is one of the largest wheat producers, but the yield is lower than the yields of other main producers.⁷ Therefore, it is expected that maintaining the fertilizer subsidy program will increase and stabilize the wheat yield in India and the global wheat supply. For scenario 2, this study also assumed that fertilizer subsidies in India will be constant after 2022, under the fertilizer price increase projection in scenario 1. For scenario 3, this study applied these changing rates (2012-2020) of Indian fertilizer subsidies to the changing rates from 2022 to 2040, under the fertilizer price increase assumption in scenario 1.

³ The climate variables (temperatures, precipitation, and amount of solar radiation) for both the baseline projection and scenarios come from the climate change projections of Model for Interdisciplinary Research on Climate (MIROC), a global climate model under the RCP 4.5 scenario. Spatially averaged climate variables for each country are computed similarly to the historical climate data used for regression. For detailed climate variables, refer to Koizumi (2019).

⁴ Population data for all countries were obtained from the 2022 revision (medium variant) of World Population Prospects, United Nations (2022). Per capita real GDP was also treated as an exogenous variable, and GDP growth rate assumptions were based on the World Economic Outlook 2022 (IMF 2022). These GDP growth rates are available up to 2027. This study assumed that the average per capita GDP growth rate from 2022 to 2027 in each country and region will continue to be the same rate in 2028-2040. Competing commodity prices were derived from the OECD-FAO Agricultural Outlook 2022-2031 (OECD-FAO 2022).

⁵ These are derived from OECD (2022).

⁶ This study also assumed that the current growth rate of land development and agricultural machinery and equipment from 1990 to 2007 in Egypt and Pakistan (the rest of the world) will continue during the outlook period. These data were derived from FAOSTAT (FAO 2022).

⁷ The wheat yield in India was 3.5 MT/ha and the yields in France, Germany, and China were 7.2, 7.4, and 5.7 MT/ha, respectively, in 2019/21 (Table 4).

				(ton)	A name 1 anoverth
Countries/Region	Fertilizer use	Wheat use rate (2018)	2019/21	2040	Annual growth rate (2019/21-2040
Argentina	Nitrogen use	36.2%	484,991	684,387	2.0%
	Phosphate (P ₂ O ₅) use	27.1%	220,250	299,685	1.8%
	Potash (K ₂ O) use	_	_	_	_
Australia	Nitrogen use	33.8%	452,339	618,000	1.9%
	Phosphate (P ₂ O ₅) use	28.3%	271,441	289,508	0.4%
	Potash (K ₂ O) use	14.0%	40,228	43,373	0.4%
Canada	Nitrogen use	33.0%	932,415	536,823	-3.2%
	Phosphate (P_2O_5) use	28.0%	318,640	469,632	2.3%
	Potash (K ₂ O) use	19.0%	115,045	160,704	2.0%
China	Nitrogen use	15.9%	4,191,803	4,787,923	0.8%
	Phosphate (P_2O_5) use	15.9%	1,597,736	1,775,887	0.6%
	Potash (K ₂ O) use	12.7%	1,280,087	1,708,228	1.7%
Egypt	Nitrogen use	21.5%	267,304	293,370	0.5%
	Phosphate (P_2O_5) use	13.8%	30,789	34,334	0.6%
	Potash (K ₂ O) use	18.3%	22,879	23,774	0.2%
France	Nitrogen use	38.5%	790,116	996,927	1.4%
	Phosphate (P_2O_5) use	23.3%	99,533	123,231	1.3%
	Potash (K ₂ O) use	18.7%	85,160	135,696	2.8%
Germany	Nitrogen use	31.6%	416,076	348,887	-1.0%
	Phosphate (P_2O_5) use	17.6%	38,755	38,428	0.0%
	Potash (K ₂ O) use	11.6%	50,083	45,164	-0.6%
Rest of EU	Nitrogen use	18.7%	1,208,047	1,369,425	0.7%
	Phosphate (P_2O_5) use	20.7%	418,399	469,559	0.7%
	Potash (K ₂ O) use	17.7%	361,406	483,050	1.7%
India	Nitrogen use	20.0%	3,936,127	3,662,843	-0.4%
	Phosphate (P_2O_5) use	15.2%	1,250,245	2,727,293	4.7%
	Potash (K ₂ O) use	6.8%	196,042	233,832	1.0%
Russia	Nitrogen use	43.6%	795,270	859,960	0.5%
	Phosphate (P_2O_5) use	35.2%	226,512	255,516	0.7%
	Potash (K ₂ O) use	21.7%	97,581	98,025	0.0%
Ukraine	Nitrogen use	34.0%	540,434	587,618	0.5%
	Phosphate (P_2O_5) use	25.9%	103,700	198,803	3.9%
	Potash (K_2O) use	24.7%	79,833	180,805	4.9%
USA	Nitrogen use	12.7%	1,482,928	1,670,965	0.7%
	Phosphate (P_2O_5) use	11.2%	444,602	515,591	0.9%
	Potash (K_2O) use	2.5%	107,658	116,622	0.5%

Table 1. Nitrogen, phosphate, and potash uses for wheat production (baseline projection)

Source: Wheat use rates were derived from IFA (2022), and 2019/21 data were derived from FAOSTAT (FAO 2022). Note: There are no data for potash use in Argentina.

								()	USD/mt)	
Scenario/Baseline	Fertilizer	2019/21	2022	2023	2024	2025	2030	2035	2040	Annual growth rate from 2019/21 to 2040
Baseline	DAP	406.6	587.0	433.0	378.0	325.0	335.0	380.0	326.3	-1.2%
	Potassium chloride	365.9	318.0	264.0	262.0	259.0	244.0	253.0	279.3	-1.4%
	TSP	227.8	509.0	385.0	340.0	297.0	302.0	337.0	289.4	1.3%
	Urea	319.2	367.0	288.0	260.0	259.0	256.0	278.0	251.3	-1.3%
Scenario 1	DAP	406.6	900.0	800.0	650.0	558.9	576.1	653.4	561.1	1.7%
	Potassium chloride	365.9	520.0	470.0	453.0	447.8	421.9	437.4	483.0	1.5%
	TSP	227.8	750.0	650.0	550.0	480.4	488.5	545.1	468.1	3.9%
	Urea	319.2	850.0	750.0	600.0	597.7	590.8	641.5	579.9	3.2%

Table 2. Fertilizer prices from 2019/21 to 2040 (baseline projection)

Source: 2019/21 data were derived from World Bank (2022).

Note: The fertilizer prices after 2022 in baseline projection were derived from World Bank (2021). These prices from 2022 to 2024 in scenario 1 were derived from World Bank (2022), and these prices after 2025 in scenario 1 were derived from the changing rates of World Bank (2021).

Table 3. Fertilizer subsidies in India

									(RP/kg)		
Fertilizer	2012	2013	2014	2015	2016	2017	2018	2019	2020	Annual growth rate from 2015 to 2020	Annual growth rate from 2012 to 2020
Nitrogen	24.000	20.875	20.875	20.875	15.854	18.989	18.901	18.901	18.789	-0.9%	-3.3%
Phosphate	21.804	18.679	18.679	18.679	13.241	11.997	15.216	15.216	14.888	-2.3%	-6.7%
Potash	24.000	18.833	15.500	15.500	15.470	12.395	11.124	11.124	10.116	-6.6%	-9.9%

Source: Ministry of Chemicals and Fertilizers in India (2022)

Results

Under the baseline assumptions, fertilizer use in the main wheat producing countries is projected to change from -3.2 to 4.9% from 2019/21 to 2040 (Table 1). Global wheat production and consumption are expected to increase at a rate of 1.0% per annum from 2019/2021 to 2040 (Table 4). World wheat exports and imports are expected to increase at rates of 1.3% and 1.5% per annum, respectively, during the same period (Table 4). The international wheat price is projected to increase from 249.5 USD/t during 2019/21 to 452.8 USD/t in 2040. The CV of international wheat price from 2019/21 to 2040 is 0.3975. The average international wheat price from 2019/21 to 2040 is 385.1603.

Projections were made using various fertilizer price scenarios in selected countries for comparison against the baseline projection. Under scenario 1, fertilizer prices to wheat producer prices will increase from 2022 to 2040 as a result of the fertilizer price increase. Fertilizer use in all countries and regions is projected to decrease by 0.04%-29.2% compared to the baseline outlook from 2022 to 2040 (Table 5). Among them, the decreasing rate of fertilizer use in Ukraine will be larger than that in other countries. The Ukrainian wheat yield is expected to decrease by 3.5%, but its harvested area and production are predicted to increase by 2.4% and 1.9%, respectively, compared to the baseline outlook average from 2022 to 2040 (Table 6). The nitrogen, phosphate, and potash use in India are expected to decrease by 21.7%, 9.4%, and 6.7%, respectively (Table 5), and the Indian wheat yield and production are expected to decrease by 4.2% and 9.5%, respectively. Global wheat production and consumption are expected to decrease by 1.6%, and global wheat exports and imports are expected to decrease by 0.7%. Consequently, the international wheat price is expected to increase by 114.2% (Table 7).

Under scenario 2, fertilizer prices to wheat producer prices will increase from 2022 to 2040 as a result of the fertilizer price increase. The nitrogen, phosphate, and potash use in India are expected to decrease by 21.2%, 8.2%, and 4.5%, respectively (Table 5), and the Indian wheat yield and production are expected to decrease by 3.9% and 8.4%, respectively, compared to the baseline

		Yield (M7	7/ha)	H	arvested area (1,000 ha)	Production (1,000 MT)			
Countries/ Region	2019/21	2040 (projection)	Annual growth rate (2019/21-2040)	2019/21	2040 (projection)	Annual growth rate (2019/21-2040)	2019/21	2040 (projection)	Annual growth rate (2019/21-2040)	
World	_	_	_	219,512	248,394	0.7%	772,117	916,512	1.0%	
Argentina	3.0	3.0	-0.02%	6,558	6,630	0.1%	19,847	20,085	0.1%	
Australia	2.3	2.2	-0.1%	11,921	13,755	0.8%	28,027	30,873	0.6%	
Canada	3.1	3.9	1.5%	9,640	10,131	0.3%	29,835	39,989	1.7%	
China	5.7	5.7	-0.001%	23,559	25,528	0.5%	134,932	146,188	0.5%	
Egypt	6.4	7.1	0.6%	1,387	1,802	1.6%	8,890	12,763	2.2%	
EU	_	_	—	23,856	22,012	-0.5%	134,637	131,053	-0.2%	
France	7.2	7.4	0.2%	4,667	4,103	-0.8%	33,376	30,347	-0.6%	
Germany	7.4	7.1	-0.3%	2,930	2,334	-1.3%	21,816	16,605	-1.6%	
Other EU	4.9	5.4	0.6%	16,260	15,576	-0.3%	79,446	84,101	0.3%	
India	3.5	3.6	0.2%	30,600	34,765	0.8%	107,015	126,102	1.0%	
Russia	2.8	3.1	0.6%	27,875	31,702	0.8%	78,040	97,734	1.3%	
Ukraine	4.1	3.8	-0.4%	7,092	7,328	0.2%	29,199	27,976	-0.3%	
USA	3.3	3.6	0.6%	15,020	17,645	1.0%	49,041	64,250	1.6%	

 Table 4. World wheat markets (baseline projection)

	Co	onsumption (1	,000 MT)		Exports (1,00	0 MT)	Imports (1,000 MT)			
Countries/ Region	2019/21	2040 (projection)	Annual growth rate (2019/21-2040)	2019/21	2040 (projection)	Annual growth rate (2019/21-2040)	2019/21	2040 (projection)	Annual growth rate (2019/21-2040)	
World	767,218	908,181	1.0%	199,126	247,962	1.3%	193,412	247,962	1.5%	
Argentina	6,350	7,566	1.0%	13,605	12,491	-0.5%	5	17	7.6%	
Australia	8,167	9,295	0.8%	20,161	21,597	0.4%	431	441	0.1%	
Canada	9,461	10,315	0.5%	21,857	29,553	1.8%	609	578	-0.3%	
China	141,333	153,609	0.5%	887	957	0.4%	8,565	10,923	1.4%	
Egypt	20,467	25,169	1.2%	661	1,469	4.8%	12,153	13,998	0.8%	
EU	107,250	100,721	-0.4%	33,009	34,786	0.3%	5,143	4,734	-0.5%	
India	101,844	114,615	0.7%	3,701	11,550	6.9%	21	19	-0.5%	
Indonesia	10,400	12,652	1.2%	345	475	1.9%	10,745	13,136	1.2%	
Russia	41,417	43,010	0.2%	35,528	54,220	2.5%	342	168	-4.1%	
Ukraine	9,000	8,299	-0.5%	18,889	19,646	0.2%	119	64	-3.5%	
USA	30,482	31,861	0.3%	25,080	32,666	1.6%	2,713	2,519	-0.4%	

outlook average from 2022 to 2040 (Table 6). The changing rates of fertilizer use, yield, and production in India under scenario 2 are lower than those under scenario 1 because of the fertilizer subsidy in India. Global wheat production and consumption are expected to decrease by 1.6%, and global wheat exports and imports are expected to decrease by 0.5%. As a result, the international wheat price is expected to increase by 109.0% (Table 7).

Under scenario 3, the nitrogen, phosphate, and potash use in India are expected to decrease by 22.7%, 10.8%, and 7.2%, respectively (Table 5), and the Indian wheat yield and production are expected to decrease by

4.6% and 10.2%, respectively, compared to the baseline outlook average from 2022 to 2040 (Table 6). The decreasing rates of fertilizer use, yield, and production in scenario 3 are greater than those in scenarios 1 and 2. Global wheat production and consumption are expected to decrease by 1.6%, and global wheat exports and imports are expected to decrease by 0.9%. Consequently, the international wheat price is expected to increase by 117.7% (Table 7).

The parameters of potash use for wheat, deciding wheat yield in India and Ukraine, are lower than those in Russia and Canada. However, the parameters of nitrogen use for wheat production, deciding wheat yield in India

Countries/Region	Fertilizer use	Changing rate between Scenario 1 and Baseline projection	Changing rate between Scenario 2 and Baseline projection	Changing rate between Scenario 3 and Baseline projection	
Argentina	Nitrogen use	-12.0%	-12.0%	-12.0%	
	Phosphate (P ₂ O ₅) use	-1.1%	-1.0%	-1.1%	
Australia	Nitrogen use	-0.5%	-0.5%	-0.5%	
	Phosphate (P ₂ O ₅) use	-0.8%	-0.8%	-0.8%	
	Potash (K ₂ O) use	-0.2%	-0.3%	-0.2%	
Canada	Nitrogen use	-6.6%	-6.6%	-6.6%	
	Phosphate (P_2O_5) use	-1.8%	-1.9%	-1.7%	
	Potash (K ₂ O) use	-2.5%	-2.6%	-2.4%	
China	Nitrogen use	-9.6%	-9.6%	-9.7%	
	Phosphate (P_2O_5) use	-0.7%	-0.8%	-0.7%	
	Potash (K ₂ O) use	-4.7%	-4.7%	-4.6%	
Egypt	Nitrogen use	-6.2%	-6.2%	-6.2%	
	Phosphate (P_2O_5) use	-2.9%	-3.0%	-2.9%	
	Potash (K ₂ O) use	-1.8%	-1.9%	-1.8%	
France	Nitrogen use	-4.7%	-4.8%	-4.7%	
	Phosphate (P_2O_5) use	-0.7%	-0.8%	-0.6%	
	Potash (K ₂ O) use	-2.7%	-2.5%	-2.9%	
Gernany	Nitrogen use	-5.3%	-5.4%	-5.2%	
	Phosphate (P_2O_5) use	-1.5%	-1.6%	-1.5%	
	Potash (K ₂ O) use	-0.9%	-1.1%	-0.8%	
Rest of EU	Nitrogen use	-0.7%	-0.7%	-0.6%	
	Phosphate (P_2O_5) use	-0.2%	-0.2%	-0.2%	
	Potash (K ₂ O) use	-0.6%	-0.6%	-0.6%	
India	Nitrogen use	-21.7%	-21.2%	-22.7%	
	Phosphate (P_2O_5) use	-9.4%	-8.2%	-10.8%	
	Potash (K ₂ O) use	-6.7%	-4.5%	-7.2%	
Russia	Nitrogen use	-4.6%	-4.7%	-4.5%	
	Phosphate (P_2O_5) use	-1.2%	-1.3%	-1.2%	
	Potash (K ₂ O) use	-1.8%	-2.0%	-1.7%	
Ukraine	Nitrogen use	-29.2%	-29.3%	-29.2%	
	Phosphate (P_2O_5) use	-1.7%	-1.7%	-1.6%	
	Potash (K_2O) use	-4.5%	-4.7%	-4.4%	
USA	Nitrogen use	-1.0%	-1.0%	-0.9%	
	Phosphate (P_2O_5) use	-0.2%	-0.2%	-0.2%	
	Potash (K_2O) use	-0.04%	-0.03%	-0.05%	

Table 5. Scenario impact on fertilizer use for wheat (2022-2040)

and Ukraine, are much larger than those in other countries. In addition, the parameter of phosphate use for wheat production, deciding wheat yield in Ukraine, is greater than those in other countries.⁸ Fertilizer use for wheat production has a negative correlation to the changing rate of domestic fertilizer price to domestic

wheat producer price ratio.⁹ The domestic urea, phosphate, and potassium price to domestic wheat price ratios are projected to increase, and these increasing ratios can drive decreased use of nitrogen, phosphate, and potash for wheat production in Ukraine and India. Among all scenarios, the decreasing rates of fertilizer use for

⁸ Refer to Appendix Tables A4-2 and A4-3.

⁹ Refer to Appendix Tables A1-1, A1-2, A1-3, A2-1, A2-2, A2-3, A3-1, A3-2, and A3-3.

Countries/Region	Scenario 1 2022-2040	Scenario 2 2022-2040	Scenario 3 2022-2040
Yield			
Argentina	-0.2%	-0.2%	-0.2%
Australia	0.0%	0.0%	0.0%
Canada	-1.9%	-1.9%	-1.9%
China	-0.7%	-0.7%	-0.7%
Egypt	-0.9%	-0.9%	-0.9%
France	-0.4%	-0.4%	-0.3%
Germany	-0.5%	-0.5%	-0.4%
Other EU	-0.2%	-0.2%	-0.2%
India	-4.2%	-3.9%	-4.6%
Russia	-1.1%	-1.1%	-1.0%
Ukraine	-3.5%	-3.5%	-3.5%
USA	0.0%	0.0%	0.0%
Rest of the World	0.8%	0.7%	0.8%
Area Harvested			
Argentina	53.5%	53.2%	53.7%
Australia	-1.4%	-1.5%	-1.3%
Canada	-1.8%	-2.0%	-1.7%
China	-1.1%	-1.2%	-1.0%
Egypt	-10.7%	-10.8%	-10.7%
France	3.5%	3.4%	3.6%
Germany	-0.6%	-0.8%	-0.5%
Other EU	-4.8%	-4.9%	-4.7%
India	-5.5%	-4.7%	-5.9%
Russia	-14.0%	-14.1%	-14.0%
Ukraine	2.4%	2.2%	2.6%
USA	7.6%	7.4%	7.7%
Rest of the World	1.9%	1.8%	2.0%
Production			
World	-1.6%	-1.6%	-1.6%
Argentina	53.2%	52.9%	53.4%
Australia	-1.4%	-1.5%	-1.3%
Canada	-3.9%	-4.1%	-3.7%
China	-1.7%	-1.8%	-1.6%
Egypt	-11.5%	-11.6%	-11.4%
EU	-2.4%	-2.5%	-2.3%
France	3.2%	3.1%	3.3%
Germany	-0.9%	-1.1%	-0.8%
Other EU	-5.0%	-5.1%	-4.9%
India	-9.5%	-8.4%	-10.2%
Russia	-14.8%	-15.0%	-14.7%
Ukraine	1.9%	1.7%	2.1%
USA	7.6%	7.4%	7.7%
Rest of the World	2.9%	2.7%	3.0%

 Table 6. Average changing rate of wheat production between scenarios and baseline from 2022 to 2040

Table 7. Average changing rate of global wheat market between scenarios and baseline from 2022 to 2040

	Changing rate between Scenario1 and Baseline projection from 2022 to 2040	Changing rate between Scenario 2 and Baseline projection from 2022 to 2040	Changing rate between Scenario 3 and Baseline projection from 2022 to 2040
World			
Production	-1.6%	-1.6%	-1.6%
Consumption	-1.6%	-1.6%	-1.6%
Exports	-0.7%	-0.5%	-0.9%
Imports	-0.7%	-0.5%	-0.9%
International wheat price	114.2%	109.0%	117.7%

Table 8. Scenario impact on international wheat price (2019/21-2040)

Scenario/Baseline	Coefficient of variation (CV)	Standard Deviation	Average
Baseline	0.3975	153.1202	385.1603
Scenario 1	1.0931	1,049.6084	960.2177
Scenario 2	1.0578	983.9689	930.1956
Scenario 3	1.1156	1,094.3354	980.9760

wheat production and yield in India and Ukraine are greater than those in other countries in all scenarios from 2022 to 2040 (Table 5). Therefore, India and Ukraine are the most vulnerable wheat producing countries to be affected by the fertilizer price increase, among the countries covered in this model.

Among scenarios, the average changing rates of wheat production in India divided by the average changing rate of international wheat price are 0.0832 in scenario 1, 0.0771 in scenario 2, and 0.0867 in scenario 3.10 The ratio of the average changing rate of wheat production to average changing rate of international wheat price is the highest in scenario 3. As a result, the deceasing wheat production in India contributes to increasing international wheat price due to its decreasing fertilizer subsidy. Therefore, it shows that maintaining fertilizer subsidy can contribute in preventing international wheat price increase. The CVs of the international wheat prices from 2019/21-2040 to 2040 in all scenarios are higher than those in the baseline projection (0.3975) (Table 8). As a result, the CV is calculated as 1.0931 (scenario 1), 1.0578 (scenario 2), and 1.1156 (scenario 3) as shown in Table 8. The CV from scenario 3 is the highest of all scenarios.

Conclusion

This study examined how increasing fertilizer prices will affect global wheat markets and their price volatility and how fertilizer subsidies will mitigate the impact on global wheat market.

This study showed that increasing fertilizer prices led to decreasing fertilizer use for wheat production and wheat yield by increasing fertilizer price to wheat producer price ratio. The study demonstrated that increasing fertilizer prices could lead to a decrease in wheat production. These fertilizer price increases can affect the wheat markets through the changing rates of fertilizer use for wheat production, wheat yield, and planted areas. All scenarios showed that increasing fertilizer prices drove international wheat prices higher and led to price volatility. In scenario 2, constant fertilizer subsidies in India could mitigate the increase in international wheat prices and their volatility by mitigating the decreasing fertilizer use for wheat production, wheat yield, production, and exports. By contrast, in the case of scenario 3, further reduction of fertilizer subsidies in India could drive a further increase in international wheat prices and volatility. The simulation results suggest that the fertilizer subsidy program in India will contribute to price stability in the mid-long term by considering the fertilizer price increasing trend. The fertilizer subsidy program is an effective policy measure to mitigate the impact of the fertilizer price increases.

Among all scenarios, the decreasing rates of fertilizer use for wheat production and yield in India and Ukraine were larger than those in other countries from 2022 to 2040. In the case of scenario 2, the decreasing

¹⁰ 9.5/114.2 in scenario 1, 8.4/109 in scenario 2, and 10.2/117.7 in scenario 3.

rates of nitrogen and potash use in Ukraine were greater than that in India and other countries, when the Indian fertilizer subsidy was constant from 2022 to 2040. In other scenarios, the decreasing rates of phosphate and potash use in India were greater than that in Ukraine and other countries. According to this study, the wheat yields in India and Ukraine are more sensitive to increasing fertilizer prices than those in other countries. Therefore, India and Ukraine are the most vulnerable wheat producing countries affected by the fertilizer price increase among the main wheat producing countries studied in this model. India has a fertilizer support program. However, Ukraine did not have one. This study concludes that Ukraine will be the most vulnerable country affected by the chemical fertilizer price change, as well as India. Therefore, to prevent international wheat price increase and volatility, international cooperation is urgently required for Ukraine to support in mitigating the fertilizer price increase, as well as other input price increases, lack of agricultural labor, and investments. The CV and standard deviation from each scenario tend to have higher value than baseline values. This study may require considering other methods of analysis for price volatility. This is a future direction of this study.

Acknowledgements

The author wishes to thank Dr. Motoki Nishimori, a staff member of the Institute for Agro-Environmental Sciences, NARO, Japan, for providing the historical and forecast climate data.

The author appreciates contributions from Dr. Tadashi Yoshihashi, Dr. Ai Leon, Dr. Fujio Nagumo, Dr. Jun Furuya, and Dr. Eiichi Kusano of the Japan International Research Center for Agricultural Sciences (JIRCAS) for providing the fertilizer data and technical inputs. The author also appreciates the crucial and valuable comments from anonymous reviewers.

References

- Adams, R. M. et al. (1977) Effects of energy cost increases and regional allocation policies on agricultural production. *Am. J. Agric. Econ.*, **76**, 444-455.
- Brunelle, T. et al. (2015) Evaluating the impact of rising fertilizer prices on crop yields. *Agric. Econ.*, **46**, 653-666.
- Burrell, A. (1989) The demand for fertilizer in the United States. J. Agric. Econ., 40, 1-20.

- Food and Agricultural Organization (FAO) (2022) FAOSTAT. http://faostat.fao.org/. Accessed on 3 July 2022.
- Hayami, Y. (1973) *Growth process of Japanese agriculture*. Soubunsya, Tokyo, pp. 101-115 [In Japanese].
- Headey, D. & Fan, S. (2008) Anatomy of a crisis: the causes and consequences of surging food prices. *Agric. Econ.*, 39, 375-391.
- Hebebrand, C. & Laborde, D. (2022) Higher fertilizer prices contribute to rising global food security concerns. https://www.ifpri.org/blog/high-fertilizer-prices contributerising-global-food-security-concerns. Accessed on 1 July 2022.
- International Fertilizer Association (IFA) (2022) IFASTAT. https://www.ifastat.org/. Accessed on 11 July 2022.
- International Monetary Fund (IMF) (2022) World economic outlook database. IMF.
- Koizumi, T. (2019) Impact of agricultural investments on world wheat market under climate change: effects of agricultural knowledge and innovation system, and development and maintenance of infrastructure. *Jpn. Agric. Res. Q.*, 53, 109-125.
- Ministry of Chemical and Fertilizer in India (2022) P and K fertilizers. https://fert.nic.in/p-and-k-fertilizers. Accessed on 12 August 2022.
- Organization for Economic Co-operation and Development (OECD) (2022) General Service support estimates. https:// stats.oecd.org/glossary/detail.asp?ID=1100. Accessed on 2 July 2022.
- Organization for Economic Co-operation and Development (OECD)-FAO (2022) OECD-FAO Agricultural Outlook 2022-2031. https://www.fao.org/publications/oecd-faoagricultural-outlook/2022-2031/en/. Accessed on 18 July 2022.
- Stewart, W. M. et al. (2005) The contribution of commercial fertilizer nutrients to food production. *Agron. J.*, **97**, 1-6.
- United Nations (2022) World population prospects, 2022 revision. http://esa.un.org/unpd/wpp/. Accessed on 1 June 2022.
- United States Department of Agriculture & Foreign Agricultural Service (USDA-FAS, 2022) PS&D. https:// apps.fas.usda.gov/psdonline/app/index.html#/app/home. Accessed on 8 July 2022.
- Wijetunga, C. S. & Saito, K. (2017) Evaluating the fertilizer subsidy reforms in the rice production sector in Sri Lanka: A simulation analysis. *Adv. Manag. Appl. Econ.*, 7, 31-51.
- World Bank (2021) Commodity markets outlook, urbanization and commodity demand. https://openknowledge. worldbank.org/bitstream/handle/10986/36350/CMO-October-2021. Accessed on 20 June 2022.
- World Bank (2022) Commodity markets outlook, the impact of the war in Ukraine on commodity markets. https:// openknowledge.worldbank.org/bitstream/handle/10986/ 37223/CMO-April-2022.pdf. Accessed on 18 June 2022.
- Yamaguchi, M. (1983) Fertilizer use and agricultural development in Japan. J. Econ. Bus. Admin., 148, 72-91.

Appendix. Equations for the developed WECC model

1. Phosphate use for wheat equations depends on domestic wheat producer price, the changing rate of domestic DAP price to domestic wheat producer price ratio, domestic TSP price to domestic wheat producer price ratio, and GDP in the following equation.

$$\begin{array}{ll} \ln (PHOUW_{t,c} / PHOUW_{t-l,c}) = \mbox{al } \ln ((DAPP_{t,c} / DWP_{t,c}) / ((DAPP_{t-l,c} / DWP_{t-l,c})) + \mbox{a2 } \ln ((TSPP_{t,c} / DWP_{t,c}) / ((TSPP_{t-l,c} / DWP_{t,c})) + \mbox{a3 } \ln (DWP_{t,c} / DWP_{t-l,c}) + \mbox{a4 } \ln (GDP_{t,c} / GDP_{t-l,c}) & 1 \end{array}$$

where *PHOUW* denotes phosphate use for wheat, *DAPP* denotes domestic diammonium phosphate price, *TSPP* denotes domestic triple superphosphate price, *DWP* is the domestic wheat producer price, *GDP* is the real price base of GDP, t is time, c is countries/region, and al-a4 are parameters (Tables A1-1, A1-2, and A1-3).

2. Nitrogen use for wheat equations depends on domestic wheat producer price, the changing rate of domestic urea price to domestic wheat producer price ratio, and GDP as follows:

$$\ln (NITUW_{t,c} / NITUW_{t-l,c}) = a5 \ln ((UREP_{t,c} / DWP_{t,c}) / ((UREP_{t-l,c} / DWP_{t-l,c})) + a6 \ln (DWP_{t,c} / DWP_{t-l,c}) + a7 \ln (GDP_{t,c} / GDP_{t-l,c})$$

$$2)$$

where *NITUW* denotes nitrogen use for wheat production, *UREP* denotes domestic urea price, and a5-7 are parameters (Tables A2-1, A2-2, and A2-3).

3. Potash use for wheat equations depends on domestic wheat producer price, the changing rate of domestic potassium chloride price to domestic wheat producer price ratio, and GDP.

$$\ln (POTUW_{t,c} / POTUW_{t-l,c}) = a8 \ln ((POTP_{t,c} / DWP_{t,c}) / ((POTP_{t-l,c} / DWP_{t-l,c})) + a9 \ln (DWP_{t,c} / DWP_{t-l,c}) + a10 \ln (GDP_{t,c} / GDP_{t-l,c})$$

$$3)$$

where *POTUW* denotes potash use for wheat production, *POTP* denotes domestic potassium chloride price, and a8-a10 are parameters (A3-1, A3-2, and A3-3).

4. Domestic DAP, TSP, urea, and potassium chloride prices are derived from the difference between international prices and fertilizer subsidies as follows:

$$DAPP_{t,c} = IDAPP_{t,c} - FESUBDAP_{t,c}$$
(4)

$$TSPP_{t, c} = ITSP_{t, c} - FESUBTSP_{t, c}$$
5)

$$UREP_{t,c} = IUREP_{t,c} - FESUBUR_{t,c}$$

$$6)$$

$$POTP_{t,c} = IPOTP_{t,c} - FESUBPO_{t,c}$$

$$7)$$

where *IDAPP* is the international DAP price and *FESUBDAP* is the subsidy for DAP. *ITSP* is the international TSP price, and *FESUBTSP* is the subsidy for TSP. *IUREP* is the international urea price, and *FESUBUR* is the subsidy for urea. *IPOTP* is the international potassium chloride price, and *FESUBPO* is the subsidy for potassium chloride.

5. The wheat yield equation depends on the annual flowering season averages of temperature, precipitation, amount of solar radiation, lagging agricultural investments, fertilizer uses, employment in agriculture, and pesticide use as follows:

$$\ln (Y_{t,c} / Y_{t-l,c}) = a11 \ln (TEMFLAV_{t,c} / TEMFLAV_{t-l,c}) + a12 \ln (PREFLAV_{t,c} / PREFLAV_{t,c}) + a13 \ln (SORFLAV_{t,c} / SORFLAV_{t-l,c}) + a14 \ln (AGIS_{t-l,c} / AGIS_{t-2,c}) + a15 \ln (DMF_{t-l,c} / DMF_{t-2,c}) + a16 \ln (LD_{t-l,c} / LD_{t-2,c}) + a17 \ln (AME_{t-l,c} / AME_{t-2,c}) + a18 \ln (NITUW_{t,c} / NITUW_{t-l,c}) + a19 \ln (PHOUW_{t,c} / PHOUW_{t-l,c}) + a20 \ln (POTUW_{t,c} / POTUW_{t-l,c}) + a21 \ln (PESTU_{t,c} / PESTU_{t-l,c}) + a22 \ln (AGL_{t,c} / AGL_{t-l,c})$$

where Y is wheat yield, TEMFLAV is the average temperature of the flowering season, PREFLAV is the average precipitation of the flowering season, SORFLAV is the average of the amount of solar radiation of the flowering season, AGIS is the investment amount of agricultural knowledge and innovation systems, DMF is the development and maintenance of infrastructure, LD denotes agricultural land development, AME denotes agricultural machinery/equipment, NITUW denotes the use of nitrogen for wheat production, PHOUW denotes the use of phosphate for wheat production, PESTU denotes the use of pesticides, AGL denotes employment in agriculture, and all-a22 are parameters (A4-1, A4-2, and A4-3).

6. The wheat planted area equation depends on the domestic producer prices of wheat, competitive commodity prices, precipitation, lagging agricultural investments, domestic fertilizer prices, employment in agriculture, and domestic diesel prices as follows:

$$\begin{split} &\ln (APW_{t,c} / APW_{t-l,c}) = a23 \ln (DWP_{t,c} / DWP_{t-l,c}) + \\ &a24 \ln (PRCAV_{t,c} / PRCAV_{t-l,c}) + a25 \ln(DMP_{t,c} / DMP_{t-l,c}) + \\ &a24 \ln (PRCAV_{t,c} / PRCAV_{t-l,c}) + a25 \ln(DMP_{t,c} / DMP_{t-l,c}) + \\ &DMP_{t-l,c}) + a26 \ln (DSYP_{t,c} / DSYP_{t-l,c}) + a27 \ln (DCGP_{t,c} / DCGP_{t-l,c}) + \\ &a29 \ln (DSBP_{t,c} / DSBP_{t-l,c}) + a30 \ln (DRP_{t,c} / DRP_{t-l,c}) + \\ &a31 \ln (AGIS_{t-l,c} / AGIS_{t-2,c}) + a32 \ln (DMF_{t-l,c} / DMF_{t-2,c}) + \\ &a31 \ln (AGIS_{t-l,c} / LD_{t-2,c}) + a34 \ln (AME_{t-l,c} / MME_{t-2,c}) + \\ &a35 \ln (UREP_{t,c} / UREP_{t-1,c}) + \\ &a38 \ln (POTP_{t,c} / POTP_{t-l,c}) + \\ &a39 \ln (DIEDP_{t,c} / MAPP_{t-1,c}) + \\ &a39 \ln (DIEDP_{t,c} / 9) \\ \end{split}$$

where *APW* is the wheat planted area, *PRCAV* is the average precipitation, *DMP* is domestic corn producer price, *DSYP* is domestic soybean producer price, *DCGP* is domestic coarse grain producer price, *DVOP* is domestic vegetable oil producer price, *DSBP* is domestic white sugar producer price, *DRP* is domestic rice producer price, *DIEDP* denotes domestic diesel price, and a23-a40 are parameters (A5-1, A5-2, and A5-3).

7. The wheat harvested area is derived from the difference between the planted and abandoned areas. Furthermore, wheat production is calculated by multiplying the harvested area and wheat yield as follows:

$$AHW_{t,c} = APW_{t,c} - ABD_{t,c}$$
¹⁰

$$QPW_{tc} = AHW_{tc} * Y_{tc}$$
 11)

where *AHW* is the harvested area and *ABD* is the abandoned area. The abandoned area is an exogenous variable, and it will be utilized for simulation for future studies. *QPW* denotes wheat production.

8. The model determines the production, consumption, exports, imports, and ending stocks for each simulation year. The wheat market clearing price is obtained from the following equilibrium conditions by using the *Gauss–Seidel algorithm*: Wheat, No. 1 Hard Red Winter, ordinary protein, Kansas City, which refers to the international wheat market clearing price.

$$\Sigma IMW_{tc} = \Sigma EXW_{tc}$$
 12)

where *IMW* denotes wheat imports and *EXW* denotes wheat exports.

				•		•				
	France (EU)	t-statistic (Year for dummy)	Germany (EU)	t-statistic (Year for dummy)	Poland (EU)	t-statistic (Year for dummy)	China	t-statistic (Year for dummy)	India	t-statistic (Year for dummy)
a1, Domestic diammonium phosphate price /domestic wheat producer price (t/t-1)	_	_	-0.3877	-0.9870	-	_	-	_	-0.1771	-1.4362
a2, Domestic triple superphosphate price /domestic wheat producer price (t/t-1)	-0.3090	-2.2385	-0.3277	-1.4232	-0.3386	-1.5215	-0.0902	-2.3789	_	-
a3, Domestic wheat producer price (t/t-1)	_	_	_	_	0.3569	1.6741	0.0781	1.6198	0.0781	1.6198
a4, GDP growth rate (t/t-1)	-	_	-	-	-	_	_	_	0.3514	3.9673
Time trend (t/t-1)	0.3928	3.2298	-1.2418	-3.8069	0.5933	1.2057	0.3251	5.1055	0.1409	1.3315
Constant	12.2189	57.5598	17.3438	16.3775	10.8908	7.6078	14.6578	57.0349	13.3218	42.3062
Dummy 1	0.3636	2.1392 (1998)	0.1986	1.6926 (2014)	-0.5683	-4.3836 (1991)	0.2042	2.0690 (1997)	-0.2284	-2.2874 (1993)
Dummy 2	-0.3713	-2.0161 (2010)	-	-	0.3106	2.8909 (2007)	-0.2094	-2.0000 (2000)	0.3617	3.4194 (2011)
Dummy 3	-0.6023	-3.4245 (2011)	-	-	-0.2170	-2.1703 (2014)	-0.2299	-2.2829 (2001)	-	-
Sample	1992-2020		1991-2020		1991-2020		1990-2016		1990-2016	
R-squared	0.9355		0.9023		0.8855		0.9172		0.9172	
Adjusted R-square	0.8996		0.8584		0.8155		0.8924		0.8924	
Durbin-Watson stat	1.6470		1.8113		1.8739		1.1990		1.1990	

Table A1-1. Estimation of parameters (phosphate use for wheat (1))

Note: Dummy variables apply to extraordinary political events, conflicts, sudden strikes on harbors and railways and others, speculative movements, and other technical and political factors, except for fundamental factors for deciding explained variables.

Table A1-2. Estimation of parameters (phosphate use for wheat (2))

	USA	t-statistic (Year for dummy)	Russia	t-statistic (Year for dummy)	Ukraine	t-statistic (Year for dummy)	Canada	t-statistic (Year for dummy)	
a1, Domestic diammonium phosphate price /domestic wheat producer price (t/t-1)	-0.1099	-0.8925	-0.1539	-0.1559	_	_	_	_	
a2, Domestic triple superphosphate price /domestic wheat producer price (t/t-1)	-	_	-	_	-0.1244	-1.4299	-0.1775	-4.3192	
a3, Domestic wheat producer price (t/t-1)	0.0003	0.7817	0.0695	3.0686	_	_	0.0166	1.3077	
a4, GDP growth rate (t/t-1)	_	_	_	-	0.2859	0.9717	0.1138	5.3483	
Time trend (t/t-1)	0.0787	2.2891	0.3887	1.6012	-0.3162	-1.6585	-0.2317	-2.1089	
Constant	13.2602	171.2808	13.7218	30.2544	8.6566	20.4864	11.0811	29.5607	
Dummy 1	-0.0771	-0.3621 (2002)	0.3960	2.5781 (2017)	0.8307	2.9969 (1997)	-0.2990	-1.9913 (1999)	
Dummy 2	-0.2904	-5.9998 (2008)	0.3896	2.5036 (2018)	-0.9753	-3.9108 (2002)	0.2921	2.1350 (2005)	
Dummy 3	_	_	_	-	-0.8671	-3.1876 (2007)	-0.5400	-3.8781 (2010)	
Sample	19	91-2020	19	92-2019	19	94-2019	19	92-2020	
R-squared	().8864	0	0.9183	0).9365	().8818	
Adjusted R-square	().8266	(0.8702	0.8867		0.7635		
Durbin-Watson stat	2	2.1749	1	1.8599		1.8326		2.1135	

	Australia	t-statistic (Year for dummy)	Argentina	t-statistic (Year for dummy)	Egypt	t-statistic	Pakistan (The rest of the world)	t-statistic (Year for dummy)
a1, Domestic diammonium phosphate price /domestic wheat producer price (t/t-1)	-0.3159	-1.5787	-	_	-			_
a2, Domestic triple superphosphate price /domestic wheat producer price (t/t-1)	_	-	-0.2820	-1.4511	-0.4033	-1.8128	-0.1591	-3.2235
a3, Domestic wheat producer price (t/t-1)	-	_	0.0249	1.1996	_	_	0.1265	1.5533
a4, GDP growth rate (t/t-1)	-	_	_	_	-	_	0.6849	4.7909
Time trend (t/t-1)	0.2597	6.5854	0.8596	15.8932	0.3402	6.5637	0.1100	2.9117
Constant	12.8605	160.0229	9.4092	34.6868	5.0477	11.4507	11.5896	86.5086
Dummy 1	-0.2017	-3.8270 (1993)	-0.5915	-2.8841 (2002)	-	_	-0.1552	-1.8121 (1994)
Dummy 2	-0.3247	-5.8694 (2009)	-0.6594	-3.9876 (2009)	-	_	-0.2208	-2.6548 (1996)
Dummy 3	-	_	-0.3950	-2.2687 (2015)	-	_	0.1737	2.1161 (2005)
Sample	19	93-2020	19	91-2020	1992	2-2020	19	91-2020
R-squared	().9254	(0.9643	0.9	9066	0.9626	
Adjusted R-square	().8940	().9456	0.8	3692	0	0.9457
Durbin-Watson stat	2	2.0014	1	.7704	2.2	2865	2.1764	

				•		0				
	France (EU)	t-statistic (Year for dummy)	Germany (EU)	t-statistic (Year for dummy)	Poland (EU)	t-statistic (Year for dummy)	China	t-statistic (Year for dummy)	India	t-statistic (Year for dummy)
a5, Domestic urea price / domestic wheat producer price (t/t-1)	-0.3446	-2.0619	-0.1357	-1.6841	-0.0059	-0.9133	-0.2100	-2.1971	-0.0710	-1.5803
a6, Domestic wheat producer price (t/t-1)	_	_	0.0240	1.4291	0.0429	1.6737	0.1715	2.3299	0.1120	2.3928
a7, GDP growth rate (t/t-1)	-	_	0.1227	1.0900	0.2600	1.5986	_	_	0.1549	4.3616
Time trend (t/t-1)	-0.0441	-1.8898	-0.5107	-3.2437	0.2310	1.4330	0.1130	2.9593	0.1234	3.5565
Constant	3.4432	195.9788	16.7145	32.7737	12.5854	24.3873	14.8789	130.4486	14.3554	132.9611
Dummy 1	-0.1697	-2.9085 (1992)	0.1222	2.2029 (2000)	0.1554	1.9805 (1997)	-0.1658	-3.3863 (1993)	0.0795	0.0797 (1998)
Dummy 2	-0.1600	-2.7834 (1993)	-0.3494	-2.1577 (2016)	0.1183	1.5734 (2007)	-0.1759	-3.7698 (1994)	-0.0741	-1.6633 (2002)
Dummy 3	0.1190	2.2769 (2007)	-0.1229	-2.7834 (1993)	-	-	_	_	-	_
Sample	19	91-2020	199	92-2020	19	92-2020	19	91-2020	19	91-2019
R-squared	(0.7155	0	0.8402	(0.8297	0.9534		(0.9871
Adjusted R-square	(0.6072	0	0.7646	(0.7730	0.9324		(0.9810
Durbin-Watson stat	1	.5263	2		1	.5196	2.0103		1	.9845

Table A2-1. Estimation of parameters (nitrogen use for wheat (1))

 Table A2-2. Estimation of parameters (nitrogen use for wheat (2))

	USA	t-statistic (Year for dummy)	Russia	t-statistic (Year for dummy)	Ukraine	t-statistic (Year for dummy)	Canada	t-statistic
a5, Domestic urea price / domestic wheat producer price (t/t-1)	-0.0548	-1.0896	-0.3215	-1.1870	-0.1585	-2.4797	-0.0895	-1.8180
a6, Domestic wheat producer price (t/t-1)	0.0706	3.4623	0.5826	2.4698	_	_	0.0808	0.9453
a7, GDP growth rate (t/t-1)	_	_	_	_	0.3744	1.6779	0.4877	2.1320
Time trend (t/t-1)	0.0566	2.7214	0.2045	1.6904	0.2187	1.9075	-0.0542	-1.5151
Constant	14.1075	309.4500	13.3942	42.7389	11.8067	56.1674	12.8496	60.3820
Dummy 1	-0.1134	-3.8304 (2008)	-0.3243	-2.5987 (2004)	-0.4930	-2.0310 (2003)	_	_
Dummy 2	_	_	-0.3174	-2.4774 (2007)	0.4903	1.8200 (2009)	_	_
Dummy 3	_	_	-0.2934	-2.2305 (2013)	0.4113	1.8216 (2016)	_	_
Sample	19	90-2020	19	93-2019	19	93-2019	1992	2-2020
R-squared	(0.8333	().8451	0	.8946	0.8	8672
Adjusted R-square	(.7727	(0.7483	0	.8388	0.8141	
Durbin-Watson stat	1	.9327	1	1.6611	1	.5524	2.0897	

Table A2-3. Estimation of parameters (nitrogen use for wheat (3))

	Australia	t-statistic (Year for dummy)	Argentina	t-statistic (Year for dummy)	Egypt	t-statistic (Year for dummy)	Pakistan (The rest of the world)	t-statistic	
a5, Domestic urea price / domestic wheat producer price (t/t-1)	-0.3301	-3.4849	-0.0349	-1.0190	-0.1147	-1.2057	-0.1396	-1.6671	
a6, Domestic wheat producer price (t/t-1)	-	-	0.2893	1.7848	0.1080	1.3517	0.0428	1.6453	
a7, GDP growth rate (t/t-1)	0.3288	3.0634	-	-	-	-	_	-	
Time trend (t/t-1)	0.2828	4.5539	0.8313	5.5777	0.3408	7.7179	0.2243	7.2482	
Constant	11.7409	160.0338	8.5969	10.0955	11.8069	201.6629	13.3328	176.0526	
Dummy 1	-0.1960	-2.0771 (1994)	0.3406	2.0252 (1996)	-0.2253	-4.0129 (1994)	_	-	
Dummy 2	-0.1974	-2.1835 (1995)	-0.2952	-1.9068 (2015)	-0.0902	-1.7541 (2007)	_	-	
Dummy 3	-0.2613	-2.9194 (2003)	-	-	-	-	_	-	
Sample	19	92-2019	19	95-2016	19	93-2000	1992	2-2020	
R-squared	0.9422		(0.9289	0	0.9207	0.9647		
Adjusted R-square	().9179	(0.9122	0	0.8874	0.9	9573	
Durbin-Watson stat	1	.7630	1	.2178	1	1.9268 1.7450		7450	

	France (EU)	t-statistic (Year for dummy)	Germany (EU)	t-statistic (Year for dummy)	Poland (EU)	t-statistic (Year for dummy)	China	t-statistic (Year for dummy)
a8, Domestic potassium chloride price /domestic wheat producer price (t/t-1)	-0.1358	-3.0667	-0.1786	-1.5755	-0.0485	-2.2305	-0.0861	-1.1980
a9, Domestic wheat producer price (t/t-1)	0.1022	1.6270	0.0272	1.5572	-			_
a10, GDP growth rate (t/t-1)	0.2362	1.6763	-	-	0.1054	0.9818	0.9818 -	
Time trend (t/t-1)	0.2362	1.6763	-0.7365	-7.7033	1.5148	7.5608	0.1433	1.2277
Constant	12.4141	56.9933	15.9718	42.6063	7.5947	11.5635	11.7619	30.4219
Dummy 1	-0.2861	-1.4178 (1992)	-0.1534	-2.3364 (2005)	-0.1971	-2.0888 (1992)	0.3941	2.4282 (2007)
Dummy 2	-0.2904	-1.2903 (2020)	-0.9439	-14.2714 (2008)	-0.2298	-2.7941 (2004)	_	_
Dummy 3	_	-	-0.1534	-2.3929 (2011)	-	-	_	_
Sample	199	92-2020	19	91-2020	19	92-2020	19	91-2020
R-squared	0	.9469	().9681	().9284	(0.9631
Adjusted R-square	0	.9292	(0.9560	().8946	0.9491	
Durbin-Watson stat	2	.1078	1	.5176	1	1.7742	1.4107	

Table A3-1. Estimation of parameters (potash use for wheat (1))

 Table A3-2. Estimation of parameters (potash use for wheat (2))

	India	t-statistic (Year for dummy)	USA	t-statistic (Year for dummy)	Russia	t-statistic (Year for dummy)	Ukraine	t-statistic (Year for dummy)
a8, Domestic potassium chloride price /domestic wheat producer price (t/t-1)	-0.1526	-1.3488	-0.0145	-1.2213	-0.1872 -1.3522		-0.2408	-1.9364
a9, Domestic wheat producer price (t/t-1)	-	-	-	-	_	_	-	-
a10, GDP growth rate (t/t-1)	0.1258	0.9070	-	_	0.1278	0.9637	0.1803	1.1866
Time trend (t/t-1)	0.4256	2.6743	0.0415	0.9663	-0.3704	-2.5093	1.2221	7.8692
Constant	11.7110	25.4366	11.7315	82.6247	12.0581	67.1882	6.4423	17.1270
Dummy 1	0.4543	3.4348 (2010)	-0.4515	-9.0216 (2008)	-0.5001	-2.6725 (1996)	2.0578	8.9825 (1997)
Dummy 2	_	_	-	_	-0.5673	-3.0138 (1998)	0.8772	4.2481 (1998)
Dummy 3	_	_	-	_	0.5768	3.0954 (2019)	-0.4298	-2.4593 (2003)
Sample	19	92-2020	19	91-2020	19	93-2019	19	97-2019
R-squared	(0.9364	().9019	0.8464 0.9).9739	
Adjusted R-square	(0.9110	().8645	0.7651 0.9558).9558	
Durbin-Watson stat	1	.6785	2	2.4016	1.9899 1.7828		1.7828	

Table A3-3. Estimation of parameters (potash use for wheat (3))

	Canada	t-statistic (Year for dummy)	Australia	t-statistic (Year for dummy)	Egypt	t-statistic	Pakistan (The rest of the world)	t-statistic (Year for dummy)
a8, Domestic potassium chloride price /domestic wheat producer price (t/t-1)	-0.1491	-1.4094	-0.0243	-2.8705	-0.0671	4.8811	-0.1591	-2.1378
a9, Domestic wheat producer price (t/t-1)	-	_	-	-	-	_	0.0494	0.9845
a10, GDP growth rate (t/t-1)	-	_	0.0249	0.9278	0.6931	3.1388	0.1355	1.2814
Time trend (t/t-1)	0.1636	1.0323	0.2875	5.4078	0.1380	1.1243	-0.0137	-0.9054
Constant	9.4667	18.5018	10.1217	79.4898	8.0174	34.1439	8.8563	18.6586
Dummy 1	-0.8711	-5.9815 (2006)	0.2356	2.7172 (1994)	-	-	-1.0398	-4.0369 (1996)
Dummy 2	0.0202	1.1345 (2015)	-0.2395	-2.7495 (2003)	-	-	-0.6573	-2.5246 (2001)
Dummy 3	_	_	_	_	_	_	0.6808	2.5119 (2007)
Sample	19	83-2020	19	92-2020	199	1-2020	19	92-2020
R-squared	(0.8710	().8599	0.	0.8706).8049
Adjusted R-square	(0.7824	().8038	0.	0.8294 0.7269).7269
Durbin-Watson stat	2	2.3581	2	2.0168	2.	2.1558 1.5890		1.5890

	France (EU)	t-statistic (Year for dummy)	Germany (EU)	t-statistic	Poland (EU)	t-statistic (Year for dummy)	China	t-statistic (Year for dummy)
a11, Average temperature of flowering season (t/t-1)	-0.1235	-1.5077	-0.1245	-1.6700	0.1506	1.5250	-0.1852	-1.1876
a12, Average precipitation of flowering season (t/t-1)	0.1244	1.1905	0.0227	1.7411	0.1673	2.9484	0.1490	2.0994
a13, Average amount of solar radiation of flowering season (t/t-1)	0.1021	2.5539	0.7768	1.2840	0.5502	1.6272	0.1865	2.0187
a14, Agricultural knowledge and innovation system (t-1/t-2)	0.2618	1.6493	-	-	0.5492	2.7276	0.0216	1.0583
a15, Development and maintenance of infrastructure (t-1/t-2)	0.0557	1.0487	-	-	-	-	0.0573	1.2563
a16, Land Development (t-1/t-2)	-	-	-	-	-	-	-	-
a17, Agricultural machinery and equipment (t-1/t-2)	-	-	-	-	-	-	-	-
a18, Nitrogen use for wheat production (t/t-1)	0.0657	2.4493	0.1117	1.3952	0.1396	1.6921	0.0472	1.2374
a19, Phosphate use for wheat production (t/t-1)	0.0975	1.1778	0.0849	1.0316	0.0415	1.8604	0.1605	1.3353
a20, Potash use for wheat production (t/t-1)	0.0219	1.5018	0.0831	1.1374	0.1436	3.7412	0.1181	2.3868
a21, Pesticide use for wheat production (t/t-1)	-	-	-	-	-	-	-	-
a22, Employment in agriculture (t/t-1)	-	-	-	-	0.4311	1.8960	-	-
Time trend (t/t-1)	-0.3584	-2.4789	0.0768	1.8246	0.1153	1.3063	-0.0092	-1.5536
Constant	11.6542	38.5041	0.4030	3.7341	10.3060	10.1927	1.0032	5.8164
Dummy 1	-0.1410	-1.9499 (1997)	-	-	0.1216	1.9312 (2014)	-0.1160	-2.8424 (2003)
Dummy 2	0.1825	2.2673(2002)	-	-	-0.6805	-1.1681(2018)	-0.0347	-1.0593 (2011)
Dummy 3	-	-	-	-	-	-	0.0846	2.3815 (2019)
Sample	198	37-2020	1982	-2008	199	01-2019	9 1998-2019	
R-squared	0	.7902	0.9	602	0.9027		0	.9817
Adjusted R-square	0	.7357	0.9	391	0	.8184	0	.9616
Durbin-Watson stat	1	.9379	2.2	.704	2.4625		1	.5582

Table A4-1. Estimation of parameters (yield (1))

Table A4-2. Estimation of parameters (yield (2))

	India	t-statistic	USA	t-statistic (Year for dummy)	Russia	t-statistic (Year for dummy)	Ukraine	t-statistic
all, Average temperature of flowering season (t/t-1)	-0.1245	-1.6700	-0.4956	-1.4533	-0.7413	-1.6171	-0.2506	-1.7114
a12, Average precipitation of flowering season (t/t-1)	0.0227	1.7411	0.0412	1.3811	-0.1080	-1.3187	-0.2013	-1.2449
a13, Average amount of solar radiation of flowering season (t/t-1)	0.7768	1.2840	1.1075	1.0793	0.2910	1.5532	-0.0891	-2.7438
a14, Agricultural knowledge and innovation system (t-1/t-2)	-	-	0.3687	1.8864	0.4003	1.3750	0.1296	1.1268
a15, Development and maintenance of infrastructure (t-1/t-2)	-	-	-	-	0.2260	3.2531	0.0334	1.5009
a16, Land Development (t-1/t-2)	0.9143	2.2763	-	-	-	-	-	-
a17, Agricultural machinery and equipment (t-1/t-2)	_	-	-	-	-	-	-	-
a18, Nitrogen use for wheat production (t/t-1)	0.2117	1.3952	0.0364	1.4791	0.1145	1.4305	0.1884	1.3540
a19, Phosphate use for wheat production (t/t-1)	0.0849	1.0316	0.1550	1.7521	0.0617	1.0164	0.1985	1.5613
a20, Potash use for wheat production (t/t-1)	0.0831	1.1374	0.0609	1.4366	0.2245	1.7624	0.1508	1.7270
a21, Pesticide use for wheat production (t/t-1)	_	-	-	-	-	-	-	-
a22, Employment in agriculture (t/t-1)	_	-	0.3648	1.0107	0.6640	2.2744	0.8558	1.6474
Time trend (t/t-1)	0.0768	1.8246	0.0746	1.5308	-0.0088	-0.7495	-0.8264	-1.5188
Constant	0.4030	3.7341	0.6850	1.8528	1.1531	1.4852	4.6710	2.8305
Dummy 1	_	-	-0.0549	-2.0667 (1996)	-0.1786	-1.9858 (2003)	-	-
Dummy 2	_	-	-0.1796	-2.4368 (2002)	-	-	-	-
Dummy 3	-	-	0.1136	1.7255 (2016)	-	-	-	-
Sample	1982	-2019	19	91-2019	199	97-2019	2001	-2017
R-squared	0.9602		0	.8832	0.9345		0.9	0173
Adjusted R-square	0.9	391	0.7484		0	.8559	0.7354	
Durbin-Watson stat	2.2	704	1.8819		1.9245		2.3118	

Table A4-3. Estimation of parameters (yield (3))

	Canada	t-statistic (Year for dummy)	Australia	t-statistic (Year for dummy)	Argentina	t-statistic (Year for dummy)	Egypt	t-statistic (Year for dummy)	Pakistan (The rest of the world)	t-statistic (Year for dummy)
all, Average temperature of flowering season (t/t-1)	-0.3254	-1.8784	-0.2409	-1.3580	0.1306	0.8858	0.3797	3.1135	-0.1866	-1.1841
a12, Average precipitation of flowering season (t/t-1)	0.0072	0.9853	0.1754	2.7038	0.1545	1.3502	-0.0089	-1.0101	0.0766	3.7721
a13, Average amount of solar radiation of flowering season (t/t-1)	-0.5876	-1.4973	0.1524	2.1764	-0.2411	-1.0111	0.0059	0.9601	1.1169	2.0829
a14, Agricultural knowledge and innovation system (t-1/t-2)	0.0684	0.9529	0.0900	1.6079	0.0552	0.9567	-	-	-	-
a15, Development and maintenance of infrastructure (t-1/t-2)	0.1349	1.2847	-	-	0.0157	1.2895	-	-	-	-
a16, Land Development (t-1/t-2)	-	-	-	-	-	-	0.6834	2.9749	-	-
a17, Agricultural machinery and equipment (t-1/t-2)	-	-	-	-	-	-	0.1276	1.6589	-	-
a18, Nitrogen use for wheat production (t/t-1)	0.1443	1.5979	0.1510	1.8372	0.1791	0.9808	0.0956	1.5515	0.1297	1.5003
a19, Phosphate use for wheat production (t/t-1)	0.1574	0.9383	0.1084	1.2929	0.1027	1.8712	0.0202	0.9889	0.0842	1.5858
a20, Potash use for wheat production (t/t-1)	0.1978	1.7408	0.0179	0.9832	-	-	0.1144	0.9685	0.0668	3.1402
a21, Pesticide use for wheat production (t/t-1)	-	-	-	-	-	-	-	-	-	-
a22, Employment in agriculture (t/t-1)	0.8220	2.1995	0.6784	1.0983	0.0774	1.0670	0.1565	1.8945	-	-
Time trend (t/t-1)	0.5263	2.0617	-0.0344	-0.9530	0.1721	1.2428	-0.3147	-3.4634	0.5153	1.2634
Constant	2.1144	1.0585	0.1785	1.1314	-0.7966	-1.3696	1.1565	15.2572	-0.5813	-1.3669
Dummy 1	-0.1168	-1.9193(2002)	0.5297	2.7215(1995)	-0.0236	-1.0434(2005)	-0.1286	-5.5484(2000)	0.1104	3.4505 (2000)
Dummy 2	0.1167	1.5419 (2016)	-0.5833	-3.3723(2002)	-0.2955	-1.6534(2008)	-0.1317	-5.7848(2010)	-	-
Dummy 3	-	-	-0.5523	-3.4696(2006)	-0.2751	-1.6178(2012)	-0.0270	-1.1604(2014)	-	-
Sample	199	01-2019	199	91-2019	200	01-2019	199	01-2019	199	1-2019
R-squared	0	.9172	0	.9023	0	.8529	0	.9619	0	.9830
Adjusted R-square	0	.8552	0	.7896	0.6747		0.9175		-0.9645	
Durbin-Watson stat	1	.9485	2	.5075	1	.9026	2	.2164	2	.4438

Table A5-1. Estimation of parameters (planted area (1))

		•				<i>,,</i>			
	France (EU)	t-statistic (Year for dummy)	Germany (EU)	t-statistic (Year for dummy)	Poland (EU)	t-statistic	China	t-statistic (Year for dummy)	
a23, Domestic wheat producer price (t/t-1)	0.3263	9.3488	0.3985	2.4402	0.1355	1.2250	0.1504	3.6642	
a24, Average precipitation (t/t-1)	0.5139	7.9154	-0.0504	-1.5976	0.6666	1.8369	0.2677	2.6238	
a25, Domestic maize producer price (t/t-1)	-0.2333	-7.8241	-0.0448	-1.3087	-0.0323	-1.7451	-0.1101	-1.5882	
a26, Domestic soybeans producer price (t/t-1)	-	-	_	-	-	-	-	-	
a27, Domestic coarse grain producer price (t/t-1)	-	-	-0.3394	-0.8505	-	-	-	-	
a28, Domestic vegetable oil producer price (t/t-1)	-	-	-0.0134	-1.2646	-	-	-	-	
a29, Domestic white sugar producer price (t/t-1)	-	-	-0.0196	-0.9443	-0.1603	-3.5538	-	-	
a30, Domestic rice producer price (t/t-1)	-	-	_	-	-	-	-0.2120	-1.3991	
a31, Agricultural knowledge and innovation system (t-1/t-2)	-	-	0.1671	1.2910	0.8562	2.0333	0.3589	5.0272	
a32, Development and maintenance of infrastructure (t-1/t-2)	0.6525	8.1952	-	-	0.2747	1.9746	-	-	
a33, Land development (t-1/t-2)	-	-	-	-	-	-	-	-	
a34, Agricultural machinery and equipment (t-1/t-2)	-	-	-	-	-	-	-	-	
a35, Domestic urea price (t/t-1)	-0.0498	-8.8202	-0.0784	-1.2011	-0.0843	-1.4777	-0.0226	-3.7733	
a36, Domestic DAP price (t/t-1)	-0.0108	-7.1660	_	-	-0.0584	-1.4101	-0.0172	-1.8312	
a37, Domestic TSP price (t/t-1)	-	-	-0.0295	-1.0194	-	-	-	-	
a38, Domestic potash price (t/t-1)	-0.0398	-8.4754	-0.0605	-0.9715	-0.1710	-1.2168	-0.0802	-3.142	
a39, Domestic diesel price (t/t-1)	-0.3575	-4.6294	-	-	-0.7834	-2.4956	-0.0240	-1.7349	
a40, Employment in agriculture (t/t-1)	0.2994	3.0800	0.4307	0.9938	0.6347	1.5750	-	-	
Time trend (t/t-1)	2.1621	7.6887	0.3298	1.5235	-1.4246	-1.7962	-0.7394	-4.5360	
Constant	7.4935	8.042	13.8492	25.289	18.8103	7.8191	11.9739	28.5124	
Dummy 1	-0.0049	-1.2923(2014)	-0.0929	-2.1730(2019)	-	-	-0.1296	-4.5171(2004,	
Dummy 2	-0.0091	-0.9803(2018)	-0.2870	-5.6538(2020)	-	-	0.0219	1.1548(2009)	
Dummy 3	-	-	_	-	-	-	-	-	
Sample	200	01-2019	199	92-2020	2000	2000-2019		00-2019	
R-squared	0	.9989	0	.9591 0.9920			0.9724		
Adjusted R-square	0	.9818	8 0.9045		0.9747		0.9079		
Durbin-Watson stat	2	.6469	2	.1645	2.0)597	2	.5959	

Table A5-2. Estimation of parameters (planted area (2))

	India	t-statistic	USA	t-statistic (Year for dummy)	Russia	t-statistic (Year for dummy)	Ukraine	t-statistic (Year for dummy)
a23, Domestic wheat producer price (t/t-1)	0.0406	0.7977	0.1730	5.0995	0.4343	4.5497	0.3227	11.3577
a24, Average precipitation (t/t-1)	0.0527	1.5012	0.4190	2.8295	0.2792	1.4002	-0.1846	-11.6979
a25, Domestic maize producer price (t/t-1)	_	-	-0.3171	-2.5870	-0.4110	-6.2700	-0.9451	-2.3515
a26, Domestic soybeans producer price (t/t-1)	_	-	-	-	-	-	-	-
a27, Domestic coarse grain producer price (t/t-1)	-	-	-0.0239	-1.0122	-0.1797	-2.3895	-0.1399	-2.2216
a28, Domestic vegetable oil producer price (t/t-1)	-	-	-	-	-	-	-	-
a29, Domestic white sugar producer price (t/t-1)	-	-	-	-	-	-	-	-
a30, Domestic rice producer price (t/t-1)	-0.0685	-1.5290	-	-	-	-	-	-
a31, Agricultural knowledge and innovation system (t-1/t-2)	-	-	1.0254	0.9244	0.2888	5.4935	0.6516	7.1290
a32, Development and maintenance of infrastructure (t-1/t-2)	-	-	0.0281	0.7353	0.0684	2.9082	0.4711	18.9089
a33, Land development (t-1/t-2)	0.8588	0.9740	-	-	-	-	-	-
a34, Agricultural machinery and equipment (t-1/t-2)	-	-	-	-	-	-	0.0067	1.1433
a35, Domestic urea price (t/t-1)	-0.0196	-1.6117	-	-	-0.1425	-5.6965	-0.1390	-1.5230
a36, Domestic DAP price (t/t-1)	-0.0808	-0.7692	-0.0237	-0.9347	-	-	-0.3769	-1.2710
a37, Domestic TSP price (t/t-1)	-	-	-	-	-0.1531	-3.1631	-	-
a38, Domestic potash price (t/t-1)	-0.0413	-1.3722	-0.0374	-0.9363	-0.0630	-1.9523	-0.4372	-6.7484
a39, Domestic diesel price (t/t-1)	-	-	-0.0393	-1.2297	-0.3006	-5.1097	-0.9311	-5.3727
a40, Employment in agriculture (t/t-1)	-	-	1.0254	0.9244	0.7016	2.2365	0.9400	11.5171
Time trend (t/t-1)	0.1167	1.1912	-0.7846	-2.7178	0.5136	1.6158	-0.2612	-1.5635
Constant	9.7915	41.447	12.1593	14.145	9.1074	11.1783	11.8023	10.0041
Dummy 1	-	-	-0.1456	-3.0890(2019)	-0.0329	-1.4155(2013)	-0.4606	-12.4243(2014)
Dummy 2	-	-	-		-	-	_	-
Dummy 3	-	-	-	-	-	-	-	-
Sample	1992	2-2018	20	01-2019	200	00-2019	20	01-2019
R-squared	0.9	470	0	.9857	0	.9949	C	.9994
Adjusted R-square		082		.9142		.9677		.9905
Durbin-Watson stat	2.0	209	1	.8226	2	.2312	2	.2186

Table A5-3. Estimation of parameters (planted area (3))

	Canada	t-statistic (Year for dummy)	Australia	t-statistic	Argentina	t-statistic (Year for dummy)	Egypt	t-statistic	Pakistan (The rest of the world)	t-statistic
a23, Domestic wheat producer price (t/t-1)	0.1771	1.8318	0.0140	1.7315	0.2170	2.9539	0.2526	1.8483	0.1015	2.0981
a24, Average precipitation (t/t-1)	0.0525	1.2286	0.3961	2.7866	0.8257	1.2855	0.1034	0.9456	0.0077	1.2332
a25, Domestic maize producer price (t/t-1)	-	-	-	-	-	-	-	-	-	-
a26, Domestic soybeans producer price (t/t-1)	-	-	-	-	-0.6401	-1.4088	-	_	-	-
a27, Domestic coarse grain producer price (t/t-1)	-	-	-0.0251	-1.3346	-0.2085	-1.0986	-	-	-	-
a28, Domestic vegetable oil producer price (t/t-1)	-0.1350	-1.2537	-	-	-	-	-	_	-	-
a29, Domestic white sugar producer price (t/t-1)	-	-	-	-	-	-	-	-	-	-
a30, Domestic rice producer price (t/t-1)	-	-	-	-	-	-	-	-	-	-
a31, Agricultural knowledge and innovation system (t-1/t-2)	0.1317	1.1392	0.2952	3.2883	-	-	-	_	-	-
a32, Development and maintenance of infrastructure (t-1/t-2)	0.1271	1.6312	-	-	-	-	-	-	-	-
a33, Land development (t-1/t-2)	-	-	-	-	-	-	0.4696	0.8886	-	-
a34, Agricultural machinery and equipment (t-1/t-2)	-	-	-	-	-	-	-	-	-	-
a35, Domestic urea price (t/t-1)	-0.0351	-1.3870	-0.0530	-0.8999	-0.0928	-3.2863	0.2052	1.6402	-0.0225	-1.5992
a36, Domestic DAP price (t/t-1)	-0.3398	-3.4026	-	-	-	-	-0.2282	-0.7497	-	-
a37, Domestic TSP price (t/t-1)	-0.0859	-1.0497	-0.1420	-0.9307	-0.0924	-1.4449	-0.1939	-0.1585	-0.0280	-2.5821
a38, Domestic potash price (t/t-1)	-0.0900	-0.9799	-0.0212	-1.4526	-	-	-0.0376	-1.3682	-0.0230	-0.9071
a39, Domestic diesel price (t/t-1)	-	-	-0.1692	-1.2482	-	-	-	-	-	-
a40, Employment in agriculture (t/t-1)	0.6866	1.3040	-	-	0.3331	2.4826	0.2240	1.5087	0.2725	0.8002
Time trend (t/t-1)	0.0567	1.6067	-0.4127	-3.2767	1.6420	2.3818	0.1542	1.6725	0.0193	0.9411
Constant	9.0546	9.1022	11.1862	24.891	8.2303	16.0406	6.2082	10.221	9.0461	21.4967
Dummy 1	0.0982	1.1851(1992)	-	-	-0.0822	-1.4543 (2005)	-	-	-	-
Dummy 2	-0.2707	-3.3110(2002)	_	-	-	-	-	_	-	-
Dummy 3	0.2182	2.0285(2008)	-	-	-	-	-	-	-	-
Sample	199	2-2019	2001	-2020	200	02-2019	1993	3-2016	1991	-2014
R-squared		.9531		9262		0.9316		3894		3902
Adjusted R-square		.8735		3441		0.7094		7881		703
Durbin-Watson stat	1	.8044	2.4	4816	1	.9062	2.7	7776	2.4	713

Countries/Region	Annual changing rate (2022-40)				
Countries/Region	Per Capita GDP	Population			
EU	5.0%	-0.1%			
China	7.5%	-0.2%			
India	8.7%	0.7%			
United States	4.6%	0.4%			
Russia	0.4%	-0.3%			
Ukraine	6.3%	-1.0%			
Canada	4.8%	0.7%			
Australia	3.8%	0.8%			
Argentina	3.8%	0.5%			
Indonesia	6.9%	0.6%			
Egypt	5.7%	1.5%			

Table A6-1. Exogenous variables (1)

Sources: IMF (2022) and United Nations (2022)

Table Ao-2. Exogenous variables (2	6-2. Exogenous variables	(2)
------------------------------------	--------------------------	-----

	(USD/ton)		
	2019/21	2040	
International corn price	164	196.7	
International coarse grain price	179	198.3	
International rice price	375	415.5	
International soybean price	402	446.1	
International vegetable oil price	768	902.0	
International white sugar price	430	452.6	

Source: OECD-FAO (2022)

	Table A6-3.	Exogenous	variables ((3))
--	-------------	-----------	-------------	-----	---

	Countries/Region	Annual changing rate (2022-2040)
Agricultural knowledge and	Australia	1.8%
innovation system	Canada	-0.5%
	United States	3.1%
	European Union	2.0%
	Argentina	-0.3%
	China (People's Republic of)	5.4%
	India	2.9%
	Russia	1.3%
	Ukraine	3.1%
Development and maintenance of	Australia	0.4%
infrastructure	Canada	-2.6%
	United States	5.9%
	European Union	-4.3%
	Argentina	-1.4%
	China (People's Republic of)	7.1%
	India	6.1%
	Russia	0.9%
	Ukraine	-2.5%

Source: OECD (2022)