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Abstract
The reach time equation, a sigmoidal equation with the same number of parameters as the logistic 
equation, is derived by adding a concentration factor to the physically theoretical Arrhenius equation 
and assuming a normally distributed factor. Because this equation provides a good description of the 
time distribution to germination, it may be applicable as an equation for the time distribution reaching a 
certain stage in a population. Moreover, as derived from the Arrhenius equation, this equation can also 
be used to evaluate the effect of temperature. Using this equation, the skewness in the time distribution 
reaching a certain stage became proportional to the variation coefficient of the concentration factor, 
indicating that a high variation coefficient for the amount of relevant substrates, such as nutrients and 
enzymes, caused the skewness in the distribution. Given the theoretical implications of the parameters 
obtained by fitting this equation, it is predicted that the growth and development of living organisms, 
including inorganic changes can be theoretically analyzed by fitting and analyzing the parameter values. 
In addition, owing to the small number of parameters, it will also be useful for simple fitting as a 
sigmoidal curve.
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Introduction

Temporal trends in the rate at which individuals 
reach a certain stage can be described in terms of the 
cumulative distribution of the rate at which they reach 
that stage over time. Sigmoidal growth curves are used 
to describe cumulative distributions such as seed 
germination rates (Hara 1999, 2001, 2005) and nutrient 
supply from controlled-release fertilizers (Hara 2000, 
2001). The logistic equation is a typical growth equation, 
which describes a growth curve describing a 
symmetrical distribution without skewness before and 
after the median in the original frequency distribution of 
the cumulative distribution. The Gompertz equation 
describes an asymmetric distribution, and the Richards 
equation encompasses both distribution types and can 
describe a range of different distributions (Hara 1999, 

2001). These equations are theoretical in describing the 
following characteristics regarding the size of an 
individual or population of a given organism. The initial 
growth stage is approximately exponential, then assumes 
a linear pattern approaching saturation, and eventually 
plateaus on reaching maturity (Wikipedia 2023b). 
However, these equations are not theoretical in 
describing the cumulative distribution of the rate of 
individuals reaching a certain stage in a population, such 
as seed germination or nutrient supply from controlled-
release fertilizers, and are often used as they provide a 
good fit.

Shibuya & Hayashi (1984) proposed a theoretical 
equation based on a model with several f luctuation 
events before germination occurred. However, although 
this equation is simple with a small number of 
parameters, it is limited because the parameter, the 
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number of fluctuations, is limited to integers, making 
it difficult to represent small differences in the 
distribution. Therefore, in this study, the author proposed 
new equations derived from a different model.

The effect of temperature on the time taken to reach 
a certain stage can be described using the physically 
theoretical Arrhenius equation (Wikipedia 2023a). For 
example, the time from sowing to germination or the 
time taken for nutrients to be supplied from controlled-
release fertilizers after application has been evaluated 
for the degree of temperature effect using the parameter 
activation energy, which is obtained by fitting the 
Arrhenius equation for the change in a representative 
population value, such as the median, with respect to 
temperature (Hara 2000, 2001, 2005). There have been a 
few cases in which the effect of temperature has been 
examined for the entire distribution, although the 
distribution is not necessarily the same even if the 
median and other representative values are the same.

In this study, a new theoretical equation was 
derived to describe the time distribution required to 
reach a certain stage based on the Arrhenius equation, 
which has a theoretical basis in physics. In contrast to 
the previously applied growth equations, this equation is 
theoretical, and thus, it is possible to obtain values for 
theoretical parameters. Moreover, it is practical because 
it can represent a skewed distribution based on a small 
number of parameters. This study describes the utility 
and potential applications of this equation using seed 
germination data.

Theory

1. Derivation of the reach time equation
The Arrhenius equation, which has a physics basis, 

is as follows (Wikipedia 2023a):

= ( / / ),       	 Eq. 1

where A is the frequency factor, E is the activation energy, 
and R is the gas constant.

When limited to elementary reactions, the rate 
constant (k) can be obtained by removing the effect of 
the reactant concentration (c; hereafter referred to as the 
concentration factor) from the rate of the reaction (r) as 
follows (Wikipedia 2023c):

=          	 Eq. 2

As the rate is the reciprocal of time, the time 
required for a reaction can be obtained as follows:

= 1⁄ 	 Eq. 3

From Eq. 2 and Eq. 3, the following equation is obtained:

= 1 ( )⁄ 	 Eq. 4

Substituting Eq. 1 into Eq. 4 yields the following equation:

= ( / / ) / ( ) 	 Eq. 5

In a reaction system comprising several reactions, 
the time required to complete the entire reaction sequence 
is the sum of the times required for each reaction. If the 
reaction system has the slowest reaction (rate-limiting 
reaction), the proportion of time for the rate-limiting 
reaction in the sum will be higher, and the effect of 
temperature in the sum reflects the effect of temperature 
on the rate-limiting reaction. Accordingly, even for a 
system consisting of several reactions, Eq. 5 is expected 
to hold if it could be regarded as a single reaction.

Thus, it is possible to consider applying this idea to 
more complex reactions such as those involved in seed 
germination. Even in the case of uniform seeds, not all 
seeds germinate simultaneously, with some seeds 
germinating early and others late. The number of seeds 
germinating with respect to the time elapsed since 
sowing varies with the germination curve characterized 
by a period of high germination in the center and lower 
rates at either tail of the curve.

If Eq. 5 follows this characterization, then the right-
hand side should be correspondingly distributed because 
t on the left-hand side is distributed in the seed 
population. On the right side, the gas constant (R) is 
constant, activation energy (E) and frequency factor (A) 
are specific to the type of reaction and are considered to 
be constant, and the absolute temperature (T ; hereafter 
simply referred to as the temperature) does not differ 
among the populations. However, when germination is 
considered as a reaction system, the concentration factor 
(c) of the reactants can represent the amounts of 
reactants, such as nutrients and enzymes, and these 
amounts are predicted to vary within the population.

Accordingly, given the variable nature of the 
concentration factor (c), it is assumed to be normally 
distributed (mean μc, standard deviation σc). Eq. 5 shows 
that the smaller the value of c, the larger the value of t 
and the slower the germination. This indicates that when 
seeds with a large concentration factor (c) germinate, the 
germination rate (y), which is the percentage of 
germinated seeds in the population, is still small, which 
can be expressed as follows:
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= (100% , , ),       	 Eq. 6

where CNI represents the inverse function of the normal 
cumulative distribution function, which provides the 
value of c when the cumulative probability is 100% − y 
in a normal distribution with a mean value μc and a 
standard deviation value σc. Whereas this cannot be 
expressed using a simple formula, it can be calculated using 
a spreadsheet function (e.g., norm.inv of Microsoft Excel).

The frequency factor (A) is considered to take a 
value specific to the reaction, but the details are 
unknown and there are few opportunities to use it. Thus, 
instead of using Eq 6, the distribution of A·c (mean μ, 
standard deviation σ) was used as follows:

= (100% , , )       	 Eq. 7

Substituting Eq. 7 into Eq. 5 yields Eq. 8 as follows:

= ( / / ) / (100% , , )     	 Eq. 8

Solving for y yields the following equation:

= 100% − [ ( / / ) / , , ],     	 Eq. 9

where CN represents the normal cumulative distribution 
function, which provides the cumulative probability for 
a given value [exp  ( / / )/ ]  in a normal distribution 
with mean μ and standard deviation σ. As with Eq. 6, 
this cannot be expressed in a simple formula but can be 
calculated using a spreadsheet function (e.g., norm.dist 
of Microsoft Excel).

Whereas Eq. 9 can be applied when the final rate is 
100%, and there are cases in which the final rate is not 
100% owing to factors such as premature mortality. To 
account for this outcome, the final rate (F) was inserted 
as follows:

= {100% − [ ( / / ) / , , ]}    	 Eq. 10

This equation is derived by assuming that the 
concentration factor c is normally distributed; however, 
different equations can be derived using distributions 
other than a normal distribution. Thus, various 
distributions can be introduced instead of the normal 
distributions. Since it is not essential that the distribution 
be normal, Eq. 10 can be referred to as the equation 
describing the cumulative distribution of reach times, or 
more concisely, the “reach time equation,” without 
including the “normal distribution.”

The reach time equation describes the cumulative 
distribution of the time required to reach a certain stage 

in a population, as well as the temporal trend of the 
frequency (or percentage) of reaching a certain stage in a 
population. It shows the relationship between the time (t) 
and reach rate (y), and requires the following five 
parameters: the final rate (F), activation energy (E), 
temperature (T), mean (μ) and standard deviation (σ) of 
the distribution of A·c.

As with the Arrhenius equation, in this reach time 
equation, a single reaction is assumed. If it is desirable 
to assume multiple rate-limiting reactions, as in the case 
of germination at low temperatures as shown in Hara 
(2005), the right hand side of Eq. 8 should be summed 
over the number of reactions. For example, if two rate-
limiting reactions α and β are assumed, the equation 
takes the following form:

= ( / / ) / (100% / , , ) +
( / / ) / (100% / , , )  	Eq. 11

In this case, because the germination rate (y) is 
diff icult to determine analytically, it should be 
calculated numerically.

2. Parameter reduction of the reach time equation
Because the shape of the cumulative frequency 

distribution is the same regardless of the scale of the 
time axis, the following equation holds:

[ ( / / )/ , , =]
[1/ , / ( / / ), / ( / / )] 	Eq. 12

If temperature (T) is not used as a parameter, Eq. 15 can 
be derived from Eq. 10 by substituting Eqs. 13 and 14, 
as follows:

= / ( / / )        	 Eq. 13

= / ( / / )        	 Eq. 14

= [100% − (1/ , , )],      	 Eq. 15

for which three parameters are required (F, p, and q).
Accordingly, when the distinction is necessary, 

Eq. 10 is referred to as the five-parameter-type reach 
time equation and Eq. 15 as the three-parameter-type 
reach time equation.

3. Differentiation of the reach time equation
As previously mentioned, although it is impossible 

to describe a normal cumulative distribution with a 
simple formula, a normal distribution can be described 
using a formula. When A·c is normally distributed with 
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the mean (μ) and standard deviation (σ), the probability 
density [ f (A·c)] is expressed as follows:

( ) = 1
√

�− ( )2

2 �       	 Eq. 16

The derivative (dy/dt) of the germination rate (y) with 
time (t) was obtained using Eq. 10 as follows:

= ( / / )
√ 2 ∙ �− [ ( / / )/ ]2

2 �    	 Eq. 17

This provides the distribution (y) of individuals (e.g., 
seeds) reaching a certain stage (e.g., germination) at time 
(t) and temperature (T), and the number of parameters 
required is five (F, E, T, μ, and σ). To differentiate 
between Eqs. 10 and 17, the former is referred to as an 
integral-type reach time equation and the latter will be 
described as a differential-type reach time equation.

As in the case of the integral type, if the 
temperature (T) is not used as a parameter, Eq. 18 can be 
derived from Eq. 17 by substituting into with Eqs. 13 
and 14 as follows: 

=
√ 2 ∙ �− [1/ − ]2

2・ 2 �,       	 Eq. 18

for which three parameters are required (F, p, and q).
Thus, when the distinction is necessary, Eq. 17 will 

be referred to as the five-parameter-type differential 
type of the reach time equation, and Eq. 18 is referred to 
as the three-parameter-type differential type. 
Accordingly, along with Eqs. 10 and 15, four types of 
reach time equations are available: (integral type/
differential type) × (5-parameter type/3-parameter type).

As previously mentioned, the reach time equation is 
a theoretical equation based on the Arrhenius equation, 
which has a temperature parameter and can be readily 
calculated using spreadsheet functions, the differential 
type of which can be described using a formula. 
Furthermore, if the temperature parameter is not 
required, the number of parameters can be reduced to 
three, which is the same as the number of parameters 
used for the logistic equation, a growth equation that has 
been used to describe the curve of the germination rate 
over time. Before the present study, there had been no 
simple theoretical equations applicable to express the 
distribution of reach times (or trends in the number or 
percentage reached over time) of a population, and it is 
thus anticipated that this equation will find practical 
application in describing and theoretically analyzing 
such reach times.

4. Characteristics of the curve described by the reach 
time equation

As previously mentioned, when using a growth 
equation, such as the logistic or Richards equation, it is 
impossible to theoretically describe the cumulative 
distribution of individuals that have reached a certain 
stage in a population. However, the reach time equation 
is based on the assumption that the concentration factor 
in the Arrhenius equation is normally distributed. By 
including time (t) in the reciprocal, the reach time 
equation can be used to describe skewed distribution. 
Similar to the logistic equation, the three-parameter type 
of reach time equation (Eq. 15) does not include the 
temperature (T). The four-parameter Richards equation 
also excludes the temperature parameter (T) and can be 
used to describe a skewed distribution. Consequently, 
the reach time and Richards equations were contrasted 
as follows.

To gain a better understanding of the characteristics 
of the time distribution in a population, such as 
germination, Hara (1999, 2001) derived four population 
parameters: percentage at infinity (Vi), median of time 
(Me), quartile deviation of time (Qu), and quartile 
skewness of time (Sq). Notably, in the first of these 
papers, Hara (1999, 2001) defined skewness as Sk but 
subsequently changed it to Sq in the second publication, 
as it is mathematically general. Vi has the same meaning 
as the final rate (F) in the reach time equation, and 
thus for convenience, let Vi = F = 100%. The other 
parameters of the Richards equation can be reversibly 
transformed to yield three other population parameters 
(Me, Qu, and Sq). Accordingly, one relational equation 
can be obtained by obtaining Me, Qu, and Sq for the 
three-parameter type of the reach time equation with 
one fewer parameter than the Richards equation.

The mean (μ) is the median, the surrounding 
distributions of which are symmetrical, as A·c is 
normally distributed, as in Eq. 7. When the order in 
which the parameters are sorted from smallest to largest 
in the distribution of each parameter is indicated by a 
subscript for each parameter as a percentage of the total 
number, the following definition can be made: the first, 
second (median), and third quartiles of A·c are A·c25% = 
μ − h, A·c50% = μ, and A·c75% = μ + h, respectively. 
Frequency factor (A) is considered dependent on the 
reaction system and does not vary with germination 
time, whereas concentration factor (c) may be related to 
factors of interest, such as the amount of nutrients or 
enzymes that would affect the reaction. The larger the 
factor (c) and A·c, the faster the expected rate of 
germination. Thus, the germination time for seeds of 
A·c75%, A·c50%, and A·c25% would be t25%, t50%, and t75%, 
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respectively, derived as follows:

25% = ( / / ) / ( ⋅ 75%

=
)

( / / ) / ( +ℎ) 	Eq. 19

50% = ( / / ) / ( ⋅ 50%

=
)

( / / ) /     	Eq. 20

75% = ( / / ) / ( ⋅ 25%

=
)

( / / ) / ( ℎ) 	Eq. 21

As A·c is normally distributed, it can be calculated as 
follows:

ℎ = 75% = (75%, , )
= (75%, 0, 1)   	Eq. 22

The population parameters for germination time (Hara 
2001) were obtained as follows:

= 50% = ( / / ) / 	 Eq. 23

= ( 75% 25%) / 2
= ( / / ) ∙ (75%,0,1)

2−[ (75%,0,1) ]2   	Eq. 24

= ( 75%− 50% )−( 50%− 25% )

75%− 25%
=ℎ/

= (75%, 0, 1) / ≅ 0.675 ⋅ /  	Eq. 25

Accordingly, whereas Me and Qu are affected by 
temperature, Sq is unaffected and proportional to the 
variation coefficient (CV = σ/μ) of A·c. The actual 
distribution of cumulative relative frequencies for 
different variation coefficients is shown in Figure 1, 
showing that the distributions before and after the median, 
fixed at 1.0 for clarity, are closer to symmetry for smaller 
variation coefficients, and the tail of the distribution 
after the median extends for larger variation coefficients.

Furthermore, from Eqs. 23, 24, and 25, the 
following equation is obtained:

/ =  / (1− 2),       	 Eq. 26

which shows that a single relational equation holds 
among Me, Qu, and Sq, regardless of the temperature 
and other parameters.

This relationship is consistent with the fact that the 
number of parameters in the three-parameter type of 
reach time equation (Eq. 15) without the temperature 
parameter is one less than that in the Richards equation. 
This relationship may indicate a characteristic of the 
distribution of reach time to a certain stage, attributable 

to the distribution of A·c, and of the reach time equation.

Materials and methods

1. Fitting the reach time equation to the trend in 
germination rate

There are two situations in which the reach time 
equation can be applied. The first involves an analysis 
that excludes the effect of temperature, using the three-
parameter-type reach time equation (Eq. 15 for the 
integral type or Eq. 18 for the differential type), 
whereas the second involves an analysis that includes 
the effect of temperature, using the five-parameter-
type equation (Eq. 10 for the integral type or Eq. 17 for 
the differential type).

Analysis excluding the effect of temperature is 
comparable to cases in which the logistic and Richards 
equations have been used, and because it is important to 
simply fit with a small number of parameters, it is 
realistic to use a simpler type of reach time equation. To 
verify this assumption, the three-parameter-type reach 
time equation (Eq. 15) was fitted to the data of trends in 
the rate of rice seed germination under the 32 conditions 
[16 temperatures × 2 seed lots (Lot +N, −N)] as used by 
Hara (2005).

With respect to analyses in which the effects of 
temperature are considered, simplicity and good fit are 
important. In this regard, Hara (2005) reported that it is 
desirable to assume two rate-limiting reactions in the 
temperature range 10°C-20°C. Thus, to verify this case, 
the five-parameter-type reach time equations for the two 

Fig. 1. �Effects of the variation coefficient of A·c on 
the shape of the reach time equation curve
Assuming that A·c is normally distributed 
with a mean of 1 and different variation 
coefficients, the curve was calculated from 
the reach time equation.
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reactions (Eq. 11) were fitted to the aforementioned data.
For comparison, fitting was also performed using 

the Richards equation.
In this study, all fittings were performed using a 

spreadsheet software (Excel, Microsoft Corp.).

2. Relationships obtained from the reach time 
equation for the trend in germination rate

Using the reach time equation, the relationship in 
Eq. 26 is obtained. It was examined whether this 
relationship actually holds for the distribution of 
germination time, an example of the time distribution 
required to reach a certain stage. Specifically, three 
population parameters (Me, Qu, and Sq) were calculated 
by fitting the Richards equation to the distribution of 
rice germination time under the aforementioned 32 
conditions (Hara 2005) and scatter plots of Qu/Me and 
Sq were drawn.

3. Skewness of germination time distribution in plant 
species

The skewness in the distribution of the reach time 
is proportional to the coefficient variation of A·c 
(Eq. 25). To aid interpretation, the coefficient variation 
(σ/μ) of A·c was obtained by applying the three-
parameter-type reach time equation (Eq. 15) on the 
germination rate trends of two weed species (Digitaria 
adscendens: mehishiba in Japanese and Chenopodium 
album: shiroza in Japanese) and paddy rice (Oryza 
sativa). For the two weed species, the trends in 
germination rate at 25°C were obtained from Shibuya & 
Hayashi (1984), whereas similar data for paddy rice were 
obtained from Hara (2005) for one arbitrarily selected 
case (Lot +N at 16.5°C).

Results

1. Fitting the reach time equation to the trend in 
germination rate

The fit was good when the three-parameter-type 
reach time equation was fitted under each assessed 
condition. For example, eight results for half of the 
population (Lot +N) are shown in Figure 2(a). The 
average error for all the measurement points was 1.6% of 
the number of seeds used. In this case, 96 parameters 
were used in the fitting (= 3 parameters × 32 conditions).

When the serial five-parameter type of two reach time 
equations for two reactions were fitted under all the 
conditions, the fit was sufficient, for which eight results for 
half of the population (Lot +N) are shown in Figure 2(b) 
as an example. The average error for all measurement 
points was 4.1%, and the number of parameters used was 

12 {= [1 (E) + 2 (μ, σ) × 2 seed lots] × 2 reactions + 1 (F) × 
2 seed lots}.

For comparison, when the Richards equation was 
applied to the same germination rate data under each 
condition, the average error for all measurement points was 
1.3% and 128 parameters were used (= 4 parameters × 
32 conditions). When the serial equation comprising two 
Richards equations for two reactions was fitted under all 
conditions, the average error for all measurement points 
was 4.1% and the number of parameters used was 16 {= 
[1 (E) + 3 parameters × 2 seed lots] × 2 reactions + 1 
parameter × 2 seed lots}.

Compared to the Richards equation, fitting using the 
reach time equation did not contribute to any appreciable 
increase in the average error, even when using a smaller 
number of parameters. This indicates that the use of 
reach time equation is relevant and practical.

2. Relationships obtained from the reach time 
equation for the trend in germination rate

Plots of Qu/Me and Sq for 32 conditions (= 16 
temperatures × 2 seed lots) reveal a wide distribution of 
data points above and below the fitted curve, indicating 
the relationship in Eq. 26 (Fig. 3).

Hara (1999) reported the number of measurements 
required to obtain a 10% variance coefficient at a 95% 
confidence level for population parameters, namely, 0.1 
for Me, 4 for Qu, and more than 1,000 for Sk [= (Me − 
mode)/Qu]. It is anticipated that in common Sk, Sq, 
proposed as an alternative to Sk (Hara 2000), will be 
more prone to variation, although this is not shown here.

As these parameters were measured only a once for 
each condition, it is anticipated that Qu, and particularly 
Sq, will contain large errors, possibly resulting in data 
points being distributed at a distance from the curve. 
The fact that the curve passes through the midpoint of 
the scatter area of the plot may not rule out conformation 
to the relationship, but rather indicates the possibility of 
conformation as the plots should show equal amounts of 
up and down scatter despite the errors.

3. Skewness of germination time distribution in plant 
species

The reach time equation was showed a good fit for 
trends in the germination rates of D. adscendens, C. 
album, and O. sativa, with mean errors of 0.87%, 0.73%, 
and 1.96%, respectively (Fig. 4). The variation 
coefficients (σ/μ) of A·c obtained from the fitted 
equations for D. adscendens, C. album, and O. sativa 
were 0.51, 0.31, and 0.14, respectively, whereas the 
corresponding values of Sq, which is proportional to σ/μ 
(Eq. 25), were 0.34, 0.21, and 0.095. Compared with that 
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Fig. 2. �Fitting of the reach time equation to the trend in germination rate, without/with 
inclusion of the temperature parameter
For trends in the germination rate of rice seeds at different temperatures for the same 
seed population, the measured values are shown as symbols, and the calculated values 
are shown as curves. Data were fitted with a different reach time equation (three-
parameter type without the temperature parameter) at different temperatures (a) or 
fitted using a serial equation comprising two reach time equations (five-parameter type 
with the temperature parameter) for the two reactions at all temperatures (b).

Fig. 3. �Relationship established using the reach time equation
For the relationship between [quartile deviation (Qu)/
median (Me)] and quartile skewness (Sq), the results 
of the distribution of germination times obtained for 
each of the 16 temperature conditions for the two rice 
seed populations (denoted by different symbols) and 
the relationship established using the reach time 
equation (denoted by a curve) are shown.

Qu /Me = Sq / (1 – Sq 2 ) 

Qu /Me 

 S
q 
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of O. sativa, the shape of the germination time 
distribution was more backward-skewed for the two 
weed species.

The observed variation in A·c can be attributed to 
variations in either the frequency factor (A) or 
concentration factor (c). The value of the former should 
be specific to the type of germination response, whereas 
the latter should represent the concentration or amount 
of nutrients, enzymes, and other substances associated 
with germination. It is reasonable to assume that the 
reactions contributing to germination are similar, even 
among different species, whereas the concentration of 
factors associated with germination is generally 
population-specific. Accordingly, it can be assumed that 
the variation in A·c is more likely to be attributable to 
the variation in the concentration factor (c) than to that 
in the frequency factor (A). Thus, the skewness of the 
germination time distribution, associated with the 
variation coefficients of A·c obtained from the fitted 
reach time equations, can be ascribed to the variations in 
the respective concentration factors.

As a cultivated crop, rice has a higher seed weight 
(ca. 24 mg in Hara & Toriyama (1998)) than the smaller-
seeded weed species (ca. 0.7 mg for D. adscendens and 
C. album in Ito (1993)). Consequently, the variation 
coefficients of the concentration factors associated with 
rice populations may be relatively small, whereas those 
associated with weed populations may be relatively 
large. This may account for the large coefficient of 
variations obtained for the two weed species and the 
relatively small value obtained for paddy rice, although 
other possibilities should not be excluded.

Discussion

The reach time equation is derived from the 
theoretical Arrhenius equation, and is based on the 
reasonable assumption that the concentration factor is 
normally distributed. Hence, the reach time equation can 
also be considered theoretical.

Because the Arrhenius equation incorporates a 
temperature parameter, the derived reach time equation 
similarly contains a temperature parameter and can be 
used in analyses including the effect of temperature. If 
this temperature parameter is not required, the number 
of equation parameters can be reduced from five to 
three, the same as the number of parameters in the 
logistic equation, and one less than that in the Richards 
equation, which can be used to represent a skewed 
distribution. The reach time equation has the advantage 
in that skewed distribution can be represented by as few 
as three parameters.

When the equation proposed by Shibuya & Hayashi 
(1984) is supplemented with the parameter of the final 
rate, the number of parameters is three, as in the reach 
time equation. However, the former equation cannot 
describe small differences in the shape of the 
distributions owing to the number of fluctuations, which 
is the parameter determining the shape of the 
distribution, the values of which must be integers for 
factorial calculations. Thus, the reach time equation can 
be applied more readily than the equation described by 
Shibuya & Hayashi (1984).

In both these equations, the shape of the distribution 
is such that the anterior portion of the curve is 
contracted, the posterior portion is extended, and tails 
off along the time axis relative to the median of the 
distribution, which tends to ref lect the distribution 
patterns of empirically observed population processes. 
Shibuya & Hayashi (1984) explained this as an increase 
in the number of fluctuations until something occurred. 
The reach time equation indicates that the pattern is 
attributable to variation in the concentration factor. 
Essentially, in the case of germination, it is considered 
that the variation in the concentration factor is a 
consequence of variations occurring before sowing, 

Fig. 4. �Fitting of reach time equations for the trends 
in germination rate of different plant species
For the germination time of each plant species, 
the measured values are shown as symbols 
and the calculated values are shown as a curve 
fitted with a different reach time equation. 
The quartile skewness (Sq) of the curves and 
the variation coefficient (CV) of A·c for 
germination were calculated as follows: 
Digitaria adscendens, Sq = 0.341, CV = 0.506, 
Chenopodium album, Sq = 0.212, CV = 0.314, 
and Oryza sativa, Sq = 0.0953, CV = 0.141.
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although it could include the variation occurring during 
the period from sowing to germination. Thus, the shape 
of the distribution can be assumed to reflect the variation 
(or f luctuations) occurring before seeding and up to 
germination. This is interesting because it explains the 
tailing-off of the distribution curve with increasing time. 
This could also explain why the time distribution to 
reach a certain stage is often fitted using the logistic 
equation, although the distribution is inherently skewed. 
This could be because they are often assessed using 
highly uniform populations that are unlikely to produce 
a skewed distribution. Consequently, in such cases, it is 
preferable to use the reach time equation, which can be 
explained theoretically.

The skewness of the distribution is associated with 
the variability of the concentration factor, and the degree 
of skewness depends exclusively on, and is proportional 
to the variation coefficient of the concentration factor 
(Eq. 25). Moreover, this indicates that the shape of the 
distribution of the reach times is determined solely by 
the variation coefficient of the concentration factor in 
the population. It is not only qualitatively understandable 
that skewness increases with a variation in 
concentration, but also possible to estimate the skewness 
of the distribution from the variation coefficient of the 
concentration factor and, conversely, the variation 
coefficient from the skewness, although in this case, 
sufficient data are required.

For example of applying reach time analysis, in this 
study, the variation coefficient of the concentration 
factor associated with germination was estimated from 
the distribution of the germination times of crops and 
weeds (Fig. 4). However, it is not yet clear whether this 
actually corresponds to the variation coefficient in the 
amounts of substrates or enzymes in the seeds or the 
weight of the seeds, and even if it does, what it is useful 
for. Nevertheless, it would be interesting to obtain 
parameters representing such population characteristics, 
and it is anticipated that this approach will be useful in 
analyzing the reach time characteristics of populations. 
Although seed germination data were used for trial 
assessment in this study, only the Arrhenius equation 
was used to derive the reach time equation, with the 
requirement of a normal distribution. Thus, analyses 
using this equation would not simply be limited to 
germination, but could be used more generally to include 
the reach time of other growth stages, including the 
reach time of any stage for inanimate objects such as 
nutrients supplied from fertilizers and machinery 
failure. Not only for homogeneous populations, but also 
for the population which similar but different 
populations are combined, the overall characteristics can 

be captured by treating the synthesized population as a 
single broad population. For example, the reach time 
concept could be applied to collectively determine the 
supply of nutrients from organic matter with varying 
degrees of decomposition. Furthermore, there may be 
cases in which it is desirable to use a distribution other 
than a normal distribution. In this regard, although it is 
not entirely clear which types of phenomena could be 
used, it is hoped that in the future, this method will be 
more widely assessed for its applicability in analyzing a 
diverse range of phenomena.

Conclusion

Based on the theoretical Arrhenius equation, 
assuming a normal distribution, the reach time equation 
describes the time distribution required to reach a 
certain growth stage. Because it is a theoretical equation, 
it can be used for populations from a theoretical 
perspective, including for simple fitting, as it is based on 
the same or fewer parameters as substitutively used for 
growth equations. The equation reveals that skewness, 
which determines the shape of the distribution, is 
dependent on the variation in the concentration factor, 
and is specifically proportional to its variation 
coefficient. The equation is anticipated to be of practical 
utility in analyzing a diverse range of population 
processes, including germination, and encompassing 
other growth stages and inorganic changes.
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