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Reproducibility of Forecasting Agricultural Price Fluctuations Several Months Ahead

risk of meteorological disasters. Furthermore, a reliable 
agricultural price forecast can reduce the speculation that 
occurs during crop failures and suppress unnecessary 
soaring of agricultural prices. Therefore, forecasting 
agricultural prices several months ahead can be one of 
the most effective adaptation measures against climate 
change, contributing to food security and social stability.

Wang et al. (2020) reviewed previous studies 
and showed that forecasting of agricultural prices 
has mainly relied on time series analysis, such as the 
autoregressive integrated moving average (ARIMA) 
model (Li et al. 2017) and vector autoregressive (VAR) 
model (Kalliovirta et al. 2019), artificial intelligence (AI) 
forecasting techniques (Jha & Sinha 2014), and hybrid 
forecasting methods, which combine time series analysis 
and the AI technique (Wang et al. 2018). These methods 
predict the future data series based on the assumption 
that the relation between a present point in the data series 

Introduction

In the future global warming scenario, the 
possibility of agricultural damage due to meteorological 
disasters, such as droughts, heat waves, and floods would 
increase (Tigchelaar et al. 2018, Intergovernmental Panel 
on Climate Change 2019, Gaupp et al. 2020). These 
meteorological disasters would affect the supply and 
demand balance in the agricultural market and increase 
the risk of food price hikes that promote global political 
and economic turmoil (Wright 2011). In fact, the global 
food price index in 2021 skyrocketed by 1.3 times 
compared to last year due to the meteorological disasters 
and pest damage, in addition to COVID-19 (Food and 
Agriculture Organization, FAO, 2021). If agricultural 
price hikes could be predicted based on climate forecasts 
several months before the harvest, most farmers would be 
able to change their cropping plan, thereby reducing the 
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and a past point in time will be preserved. Therefore, to 
the best of our knowledge, these methods are unsuitable 
for predicting situations that have never occurred, such 
as simultaneous global crop failures due to climate 
change, and considering trade changes between multiple 
countries is difficult in these methods.

Furthermore, to enhance the reproducibility of 
agricultural price fluctuations, AI techniques and 
regression models must consider socioeconomic factors 
other than supply and demand, such as oil prices, 
exchange rates, speculative money, and regional conflicts 
(Headey & Fan 2008, Wright 2011). At the forecasting 
stage, these exogenous variables become a problem 
because predicting them several months ahead is almost 
impossible. Hence, there is room for using the partial 
equilibrium econometric model (Furuya et al., 2015) 
and the computable general equilibrium (CGE) model 
(Kunimitsu et al. 2020, Wang et al. 2021). These models 
clearly define the influence path of supply and demand 
changes and consider the commodity trade among 
countries. However, many researchers are concerned 
about the accuracy of price forecasts predicted by these 
economic models. Valenzuela et al. (2007) verified the 
reproducibility of the Global Trade Analysis Project 
(GTAP) CGE model in wheat price fluctuations. They 
used the parameters presented by the GTAP8 database 
and found the cross-sectional correlation coefficient 
between estimated and actual fluctuations, measured by 
standard deviation of wheat prices to be 0.28 among the 
13 regions studied. Such reproducibility is thought to be 
practical; however, their analysis was limited to wheat 
prices, and the reproducibility of agricultural prices 
estimated from seasonal climate forecasts several months 
ahead was not analyzed and remains unknown.1

On the other hand, the global climate model (GCM) 
with a fine calculation grid size has been improved to 
forecast extreme climate conditions several months ahead. 
Generally, the GCMs used in long-term predictions are 
not good at forecasting the timing of changes in climatic 
conditions because of the butterfly effects. Nevertheless, 
the GCM for seasonal forecasts was modified to predict 
climatic conditions months ahead by introducing the 
characteristics of ordinal daily weather forecast models in 
the long-term model. Generally, crop forecasting does not 

1	 In the field of meteorology, a climate forecast several months 
ahead is called a “seasonal forecast.” In economics, this term 
is confused with other meanings, such as seasonal index. In 
the latter part of this study, the term “seasonal forecast” is 
used for climate forecast by the global climate model (GCM) 
and the crop yield forecast by the crop model; for price 
forecast, the term “forecast” is used with the phrase “several 
months ahead.”

require timepoint forecasting as much as daily weather 
forecasting (Watson et al. 2015). Considering such 
situations, Iizumi et al. (2018) analyzed the prediction 
accuracy of the crop model in global crop yields estimated 
from the GCM’s climate forecasts 3 and 6 months ahead. 
Their results demonstrated that the yields of major 
crops, estimated from past seasonal climate forecasts of 
the GCMs, were consistently reproduced in the actual 
yields in more than 23% of the world’s areas, although no 
analyses of economic influences were included.

This study aims to show the feasibility of forecasting 
agricultural prices and to evaluate the reproducibility 
of annual agricultural price fluctuations worldwide. 
To forecast agricultural prices, we use crop yields 
forecasted by the crop model based on outputs of GCMs 
and apply the quasi-dynamic large-scale global CGE 
model. The features of this study are threefold. First, 
we apply the large-scale global CGE model to verify 
the reproducibility of the CGE model on four major 
crops—rice, wheat, maize, and soybean—and in as many 
countries as possible worldwide. Second, we introduce 
the quasi-dynamic structure in the global CGE model 
to retroactively estimate the past level of price from the 
recent base year. Third, we use the directional symmetry 
index, such as the quadratic weighted kappa score (QW-κ),  
in addition to error-based metrics, such as correlation 
coefficients (R), to evaluate the reproducibility of price  
fluctuations during extreme weather. Based on the 
analysis, we discuss policy implications for the 
construction of a sustainable food system and propose 
issues for future analysis. Note that the forecast of 
agricultural prices targeted in this paper is not the price 
level itself, but the fluctuation in the target price.

The remainder of this paper is organized as follows. 
In Section 2, the method used, including the crop and 
CGE models, is explained. Section 3 shows evaluation 
on the accuracy of the estimated theoretical price and 
reproducibility of price forecasts 3 and 6 months ahead, 
estimated by the global CGE model with crop model and 
GCMs. Section 4 proposes policy implications of the 
results, and Section 5 summarizes the analytical results 
and presents the conclusions.

Methodology

1. 	 Analytical scheme
The analysis estimates the price of four major crops—

rice, wheat, maize, and soybean—by putting the seasonal 
forecasts of crop yields into the CGE model. Virtually 
forecasted crop prices are estimated at each timepoint 
3 and 6 months ahead of the actual harvest time in the 
past (1993-2015). The crop yields’ seasonal forecasts are 
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estimated by the crop model based on GCMs’ seasonal 
climate forecasts at each timepoint in the past. Hereinafter, 
such forecasts several months ahead of the harvest in the 
past timepoints are referred to as a “reproduced forecast 
value,” and “_ y3” (or “_ y6”) is attached to the variable 
name if the forecast is 3 months (or 6 months) ahead.

Next, the accuracy of the forecast prices is evaluated 
by comparing them with actual price data. Hereinafter, the 
actual price published in FAO statistics is referred to as the 
“actual value” and is distinguished by adding “_FAO” after 
the variable name. Before assessing the reproducibility of 
P_ y3 and P_ y6 that include errors in the crop model and 
the CGE model, traceability of the CGE model is quantified 
by using the actual yield data published in FAO statistics. 
Hereinafter, prices estimated by the quasi-dynamic large-
scale CGE model with the actual yield data are referred 
to as the “theoretical estimation value,” corresponding to 
the perfect crop yield forecast, and “_T” is added after 
the variable name to distinguish them. Traceability of the 
CGE model is assessed by comparing P_T with P_FAO. 
Afterward, reproduced forecast prices, P_ y3 and P_ y6, 
are compared with the actual price, P_FAO, to evaluate 
the accuracy of all models used.

Furthermore, we verify the stability of estimation 
results against possible changes in economic structure 
during simulation periods by performing the same 
simulations with data of two different years from the 
GTAP database and examining the difference. We also 
check the robustness of estimation results by changing 
the simulation period. These results are shown in the 
Appendix.

2. 	 Evaluation index for short-term forecasts
Generally, time series data on crop yields, price, and 

production in each country have trend components due 
to economic growth, population growth, and changes in 
eating habits in addition to other social factors. As this 
study focuses on short-term forecasts (i.e., forecasts 3 
and 6 months ahead) caused by yield changes, the annual 
price changes from trends must be measured. Therefore, 
we use the index of annual change against referenced 
level (ACR), in which the past trend level is calculated as 
the reference level by the moving averages of the previous 
years from t − 1 to t − 3. ACR is computed as follows:

					         	 (1)

where Pt refers to either the actual value, theoretical 
value, or reproduced forecast value for the price as of year 
t. In other words, the denominator on the right-hand side 

of Equation (1) works to remove the trend components 
from chronological price data.

When the annual price fluctuations of P_T and 
P_FAO are compared using the correlation coefficient 
(R) of ACRs in each country, the reference level [i.e., 
the denominator of the right-hand side of Equation (1)] 
of ACRs on P_T and P_FAO are calculated by own each 
price in the previous 3 years. Note that, when reproduced 
forecast prices, P_ y3 and P_ y6, are compared with 
the actual price, P_FAO, the reference level of ACR 
on P_ y3 and P_ y6 is calculated by P_T as  for 
both prices, rather than using the previous P_ y3 or P_ y6 
prices. This is because, at the time of price forecasting, 
the prices in the previous year are known or can be 
estimated more reliably using the unit yield at that time 
than P_ y3 or P_ y6.　　　　 　　　

In the case of actual price forecasts, it is practical to 
use the moving average of P_FAO over the past 3 years 
as the reference level for P_T, P_ y3, and P_ y6, which 
are the prices estimated by the model. This method is 
acceptable when only predictions are targeted, but it 
is problematic when the prediction results need to be 
evaluated. This is because the denominator of ACR for 
the actual price and that for the predicted price are the 
same, and then, the correlation between the two would 
become high. Such a high correlation is fake. Hence, in 
this study, the denominator of the ACR of the predicted 
price is set by the value calculated from P_T, which is the 
value estimated by the model.

In addition to error-based metrics, such as R, the 
concordance rate on the movement direction of the target 
variable as shown by “rising,” “falling,” or “the same as 
status quo” is measured by using the quadratic weighted 
kappa score (QW-κ) (Kundel & Polansky 2003). When 
the ACR of the target variable exceeds the level of mean 
plus standard deviation (μ＋σ) it is regarded as “rising;” 
when the ACR is less than the level of μ − σ, it is regarded 
as “falling;” and when the ACR stays within the range of 
μ ± σ, it is regarded as “the same as the status quo.” If the 
price change follows a normal distribution, 68.27% of the 
data falls within the range of μ ± σ.

3. 	 Seasonal forecasts of crop yield by the crop model
Iizumi et al. (2018) developed the statistical crop 

models for the four major crops used in this study to 
predict annual fluctuations in crop yields in each country:

	                     				    (2)RN

Here i, g, s, and t represent the type of crop, grid division, 
planting time representing the two cropping seasons 
of each crop (major/secondary or winter/spring), and 
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year, respectively; a0, a1, and a2 are coefficients to be 
estimated; ΔT and ΔRN are the annual changes in the 
average temperature and precipitation, respectively; and 
Δy is the fluctuation in yield (unit yield) and the ratio of 
the calculated value as of year t to the actual value (3-year 
average) 1 to 3 years ago:

　　　　　　　　　　　　　　   
                                 				    (3)

The average grid-cell yield change, , over the 
two cropping seasons of each crop was computed using 
the average production in the 1990s during the different 
seasons as weights. For the national yield,  was 
computed by averaging  over each country 
represented by r, using the grid cell harvested area in 
2000 as the weights. The estimation adopted a mosaic 
method that selected a single, best-performing GCM for 
each location and cropping season, based on the skill 
score of receiver operation characteristic curve (ROC 
score) for yield variability. Five GCMs [i.e., APCC by the 
APEC Climate Center, Korea; MSC-CANCM3 by the 
Meteorological Service of Canada; NCEP by the National 
Centers for Environmental Prediction, USA; NASA by 
the National Aeronautics and Space Administration, 
USA; and PNU by the Pusan National University, Korea] 
were selected (Min et al. 2014).

Using the crop model estimation, reliable seasonal 
forecasts, in which the ROC score was statistically 
significant at the 10% level, were obtained for many 
country-level yield fluctuations. The reliable national 
yield variability of seasonal forecasts 3 or 6 months ahead 
was estimated in 63, 71, 84, and 28 countries among 
141 GTAP-based countries for rice, wheat, maize, and 
soybean, respectively. From the estimated yield change 
3 and 6 months ahead (Δŷ3 and Δŷ6, respectively) the 
seasonal forecasts of crop yields 3 and 6 months ahead 
( ŷ3 and ŷ6, respectively) are calculated as follows:

		   			            	 (4)

and

	   		                 		  (5)

4. 	 Quasi-dynamic global CGE model
The price is forecasted by the quasi-dynamic global 

CGE model using the crop yields of major crops. The 
model is based on Lanz & Rutherford’s (2017) global 

CGE model and has a similar structure to the GTAP CGE 
model.

The model is called quasi-dynamic because of the 
following treatments. In general, capital stocks (Kr,t) in 
region r in year t can be defined as follows:

		           				    (6)

where δ is the replacement rate of old capital stocks by 
the newly added investment I and α is the ratio of newly 
added investment to existing capital stocks as Ir,t = αr,tKr,t−1. 
Here αr, t changes every year to meet the macroeconomic 
constraints in which total investment equals total savings. 
Assuming that when the economy improves and the 
sales of firms increase, investment would increase and 
vice versa. In addition, during the period of increase in 
sales, firms would replace existing facilities that have 
not reached the end of their service life but are a little 
old. Meanwhile, during the decrease in sales, firms 
would find it difficult to invest; therefore, they would 
continue to use old facilities without replacement, and the 
replacement rate would be small. As the changes in δ and 
α are canceled out, (1 − δr,t + αr,t) can be a constant rate in 
the long run, although it grows and varies from country 
to country. Moreover, assuming that (1 − δr,t + αr,t) is 
proportional to the growth rate of products’ demand that 
corresponds to the growth forecast of the sales value 
of the company and can grow according to population 
growth, (1 − δr,t + αr,t) = (1 + nr,t ), the following relation 
is derived:2

						      (7)…

where nr,t is the growth rate of population in country r in 
year t and pop is the index of population level (POPT) 
referenced to the initial year t0 as follows:

…  
The capital stock of each industry is then allocated in 
proportion to the changes in productivity of each industry.

Similarly, labor inputs (L) are assumed to increase 
or decrease according to the population growth rate, and 
the following equation is derived:

 			     			   (8)

2	 Here, the population growth is used as a proxy index for the 
growth rate of products’ demand, but instead of the population 
growth, it can be possible to assume that for instance, the 
sales growth matches the growth forecast of the production 
values in each country. Such assumption does not make a big 
difference in the theoretical explanation of this part.
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In contrast, land inputs (LND) are assumed to change 
in proportion to the changes in the cultivated land area 
(LAND) and natural resources, such as forest, mineral, 
and water, are constant:

                        				     (9)

	                                 		   (10)

By assuming such a quasi-dynamic structure, it is 
easy to reproduce the past economic situation from the 
recent year as the initial condition and estimate the future 
situation without consecutively simulating the economic 
situation of each year.

The basic structure of the model is the same as Lanz 
& Rutherford’s. That is, the production part is formulated 
by the nested constant elasticity of substitution (CES) 
function, and the intermediate inputs are composed of 
the imported and domestic goods under a certain degree 
of substitutability according to Armington’s assumption. 
The consumption sector considers the substitutability 
of domestic and imported products and is defined 
by a linear expenditure system (LES)-type function, 
where the total consumption of each good is divided 
into basic and variable consumption. Of these, variable 
consumption is determined according to the price of 
each good. Investment and government consumption 
are represented by a Leontief-type fixed-rate demand 
function. Furthermore, the closure of the model is the 
same as Lanz & Rutherford’s as well as the GTAP CGE 
model.

5. 	 Data for calibrating the CGE model’s parameters
The World Social Accounting Matrix (SAM) of 

the GTAP10 database is used to calibrate the model 
parameters. To check the changes in the economic 
structure, we use SAMs from the years 2004 and 2014. 

The GTAP database consists of 65 industrial sectors and 
151 countries/regions. These 65 sectors are merged into 
15 sectors (Table 1)3 and the 151 countries/regions are 
reduced to 87 countries and one merged region (ROW: 
the rest of the world) (Table 2) to save computational 
time. For the target countries, we select those where 
the domestic production and consumption of each crop 
are relatively large compared with the world average; 
furthermore, we consider the yield estimation feasibility 
of the crop model.

6. 	 Simulation method
Three simulation cases are considered to evaluate 

the accuracy of the global CGE model with seasonal yield 
forecasts, and equilibrium prices are estimated from 1993 
to 2015. The ACRs of crop prices are calculated from 
1995 to 2015. In all cases, the exogenous variables related 
to the production factors are set according to Equations 
(7)-(10).

Based on Szewczyk et al. (2020), crop yields are 
assumed to change the total factor productivity (TFP) in 
the production function, and TFP changes the unit cost of 
the CGE model as follows:

	                 			    (11)

where f shows the types of input factors comprising 
capital stocks (cap), labor (lab), land (lnd), and natural 
resources (res);  is the unit cost at the value-added 
production level in sector i, region r, and year t;  
is the factor price with taxes;  is the cost share of 
each input factor calibrated from the base year data; and 
3	 Maize is classified into “gro” and soybeans is classified into 

“osd,” but, to compare the simulation results with actual 
values, the simulation results of gro and osd are considered to 
represent only maize and only soybean, respectively.

No. Identifier Industrial sectors No. Identifier Industrial sectors
1 pdr Paddy rice 19 omt Meat products
2 wht Wheat 10 vol Vegetable oils and fats
3 gro Other cereal grains 11 pcr Processed rice
4 v_f Vegetables fruit nuts 12 ofd Other food products
5 osd Oil seeds 13 man Manufacture
6 ocr Other crops 14 sev Service
7 oap Animal products 15 trp Transportation
8 oxt Resource & Energy

Among the four major crops, maize is classified into “gro,” including miscellaneous grains, and soybeans is classified into “osd,” 
including rapeseed, based on the original GTAP database.

Table 1.  Industrial sectors analyzed
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By inserting Equation (13) in the CGE model, we obtain 
the reproduced forecasts 3 months ahead for agricultural 
prices, P_ y3.

Case 3 (estimation of the reproduced forecast price 
6 months ahead): This case estimates crop prices using 
the global CGE model based on crop yields’ seasonal 
forecasts 6 months ahead. Similar to Case 2, TFP is set 
with seasonal yield forecasts 6 months ahead ( ŷ6) as 
follows:

       			    (14)

Using Equation (14), we obtain the reproduced 
agricultural price forecasts 6 months ahead, P_ y6.

Substitution elasticities, income elasticities of 
demand, tariff rates, and other tax rates are set to 
be the same as in the GTAP database, except for 
substitution elasticities between export/import and 
domestic production. Generally, the shock from annual 
fluctuations is too short to adjust trading partners; hence, 
the flexibility of demand substitution between domestic 

η represents the substitution elasticity between input 
factors. The following simulation cases are set according 
to the different sources of crop yield changes.

Case 1 (estimation of the theoretical price): This 
case estimates the theoretical price, P_T, considering 
the supply and demand balance for four crops by putting 
actual yields published by FAO, y_FAOi (i∈pdr, wht, gro, 
and osd), into the CGE model. y_FAO can change the TFP 
of each crop in each country as follows:

	   		   (12)

Case 2 (estimation of the reproduced forecast price 3 
months ahead): This case estimates the price of each crop 
in each country using the global CGE model. The crop 
yields are based on seasonal forecasts 3 months ahead 
( ŷ3) predicted by the crop model. TFP values are set as 
follows:

	        			    (13)

No. Identifier Regions No. Identifier Regions No. Identifier Regions
1 ARG1,2,3,4 Argentina 30 GHA Ghana 60 NGA4 Nigeria
2 ARM Armenia 31 GIN Guinea 61 NIC Nicaragua
3 AUS*,1,2,3,4 Australia 32 GRC* Greece 62 NLD*,1,4 Netherlands
4 AUT*,2 Austria 33 GTM Guatemala 63 NPL Nepal
5 AZE Azerbaijan 34 HND Honduras 64 PAK1 Pakistan
6 BEL*,1 Belgium 35 HRV Croatia 65 PAN Panama
7 BGD Bangladesh 36 HUN*,2,3,4 Hungary 66 PER Peru
8 BLR Belarus 37 IDN1 Indonesia 67 PHL Philippines
9 BOL Bolivia 38 IND1,2,3,4 India 68 POL*,2,3,4 Poland

10 BRA1,3,4 Brazil 39 IRL* Ireland 69 PRT* Portugal
11 BWA Botswana 40 IRN Iran 70 PRY1,3,4 Paraguay
12 CAN*,2,3,4 Canada 41 ISR* Israel 71 ROU2,3,4 Romania
13 CHE* Switzerland 42 ITA*,1 Italy 72 RUS1,2,3,4 Russia
14 CHL*,3 Chile 43 JOR Jordan 73 SAU Saudi Arabia
15 CHN1,4 China 44 JPN* Japan 74 SEN Senegal
16 CIV Cote d'Ivoire 45 KAZ2,4 Kazakhstan 75 SVN* Slovenia
17 CMR Cameroon 46 KEN Kenya 76 SWE* Sweden
18 COL* Colombia 47 KGZ Kyrgyzstan 77 TGO Togo
19 CRI* Costa Rica 48 KHM1 Cambodia 78 THA1,3 Thailand
20 DEU*,2,3,4 Germany 49 KOR* Korea 79 TUN Tunisia
21 DNK*,3 Denmark 50 LAO Lao 80 TUR* Turkey
22 DOM Dominica 51 LKA Sri Lanka 81 UKR2,3,4 Ukraine
23 ECU Ecuador 52 LTU*,2 Lithuania 82 URY1,2,4 Uruguay
24 EGY Egypt 53 LVA*,2 Latvia 83 USA*,1,2,3,4 United States of 

America25 ESP*,1 Spain 54 MDG Madagascar
26 EST* Estonia 55 MEX*,2 Mexico 84 VEN Venezuela
27 FRA*,2,3,4 France 56 MNG Mongolia 85 VNM1 Viet Nam

28 GBR*,2,3 United 
Kingdom

57 MWI Malawi 86 ZAF1,3 South Africa
58 MYS Malaysia 87 ZWE Zimbabwe

29 GEO Georgia 59 NAM Namibia 88 XTW1,2,3,4 ROW
Identifiers are the same as GTAP countries/regions. Countries marked with “*” are members of OECD. Major exporters are indicated 
by superscripts “1,” “2,” “3,” and “4” for paddy rice and processed rice, wheat, other cereal grains including maize, and oil seeds 
including soybean, respectively.

Table 2. Countries and regions analyzed
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level. Table 3 also includes the percentage of countries 
where QW-κ is more than 0.2, indicating “minimal 
concordance” (Landis & Koch 1977); the number of 
countries that can obtain price information in both FAO 
statistics and estimated crop yields; and the percentage 
of countries that meet the above criteria against a total 
number of countries.

As shown in Figure 1, first, the actual price 
fluctuated more than the theoretical price. Such tendency 
was measured by the ratio of standard deviations between 
estimated and actual ACRs in Table 3, indicating that 
this ratio was less than 1 for all crops and similar to 
the previous study (Valenzuela et al. 2007). Previous 
studies showed that actual agricultural prices were more 
affected by factors other than supply and demand, such 
as oil prices, exchange rates, and speculative money, 
which could not be considered in the theoretical price 
forecast (Headey & Fan 2008, Ueda & Kunimitsu 
2020). These factors weakened the correlation between 
the actual and theoretical prices calculated by the CGE 
model. Moreover, the price itself changes daily and 
varies greatly depending on the timepoint at which the 
value is adopted in the statistics. As such, variations in 
the actual price include the effects of unexpected factors 
and statistical definition problems other than supply and 
demand conditions.

Second, the cross-sectional R between estimated 
and actual fluctuations were approximately 0.20-0.35 
by crop. As revealed by Valenzuela et al. (2007), the 
usual GTAP CGE model can trace actual wheat prices 
at a similar R of 0.28 between actual price and estimated 
price fluctuations. They analyzed only wheat during 
1990-2001 when crop prices were relatively stable. By 
contrast, our analytical period was 1995-2015, which 
included the global food price hike period in and around 
2007. Considering such situations, the performance of 
our model is not inferior to that of the model used in the 
previous study.

Third, in Figure 1, rice in Japan, wheat in France, and 
maize and soybean in the USA showed great traceability 
of P_T against actual prices. The average R among 
countries in Table 3 ranged from 0.13 to 0.26 by crop and 
the average of these for four crops was 0.19. Excluding 
countries where R was statistically insignificant, the 
regional average of R became over 0.38. Although there 
were differences in the average R among crops, such 
differences were not significant.

Fourth, the percentages of countries where R was 
beyond a statistically significant level ranged from 26.7% 
to 46.6% by crop and was 36.8% for the four crops on 
average. The percentage of countries, where QW-κ 
indicated better than minimal concordance, ranged from 

and trading goods is not fully exhibited. To introduce 
such an inelastic situation for short-term adjustment, the 
transformation elasticities in exports and substitution 
elasticities between domestic and imported goods are set 
to 20% of the GTAP’s original values.4 These rates are the 
smallest numbers that provide a solution for the model.

Moreover, the analysis targets crops that can be  
stored to some extent, so that there can be a time lag 
between the time of harvest and the time when it is 
shipped to the market and reflected in the market price; 
such a time lag may differ by country. Given these 
situations, a 1-year time lag is considered if it is needed, 
when R and QW-κ are calculated between estimated and 
actual prices. In particular, these indices are calculated 
by matching the time points between the two targeted 
prices or shifting the time points by 1 year. Then, the 
larger index between the time-matched index and the 
time-lagged index is adopted. Therefore, we compare 
the index calculated by the theoretical and actual prices 
in year t with that of the theoretical value in year t and 
actual price in t + 1 year and then pick the larger one.

Results

1. 	 Traceability of the global CGE model
Figure 1 shows the ACRs of actual, theoretical, 

and reproduced forecast prices for rice (Japan), wheat 
(France), and maize and soybean (USA). Usually, the 
price in the CGE model is relative to the numeraire 
goods. Therefore, for comparison, the price of each crop 
published in FAO statistics was divided by the gross 
domestic product (GDP) deflator of each country, similar 
to the study by Valenzuela et al. (2007). In this figure, 
the ACRs of the reproduced forecast price 3 or 6 months 
ahead, which will be explained later, were also plotted by 
the broken line.

Table 3 was calculated from the Case 1 simulation 
using 2014 GTAP SAM data. It shows the cross-sectional 
correlation between estimated and actual fluctuations 
measured by the standard deviation of price ACRs; the 
ratio of standard deviations between estimated and actual 
ACRs, similar to Valenzuela et al. (2007); the average 
R of ACRs during 1995-2015 among countries with 
available data; and the percentage of countries where R is 
more than statistically significant at the 10% significance 

4	 Valenzuela et al. (2007) proposed a transmission function 
between export/import and domestic prices to increases the 
price forecast accuracy of the CGE model. However, 
empirical estimations of the transmission function are 
difficult in many countries; therefore, rather than using the 
transmission function, we set the substitution elasticity of 
Armington’s function to be less elastic.
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Fig. 1. �Chronological changes in the prices of each crop regarding the statistical, theoretical, and reproduced forecast 
values
The numbers in the box indicate the correlation coefficient of P_FAO against P_T, P_y3, or P_y6.

 

–
–

Classifications Rice Wheat Maize Soybean 4 Crops
No. of available data 45 58 58 37 49.5
Standard deviation (std) by country

ratio of average std 0.329 0.544 0.623 0.869 0.591
correlation coefficient of std 0.329 0.280 0.198 0.351 0.290

Correlation coefficient (R)
average R 0.132 0.256 0.188 0.196 0.193
average R (only significant) 0.383 0.462 0.475 0.494 0.454
countries where R>=0.29 26.7% 46.6% 36.2% 37.8% 36.8%

QW-κ score
average QW-κ 0.123 0.235 0.178 0.192 0.182
countries where QW-κ>=0.2 26.7% 56.9% 36.2% 35.1% 38.7%

The number of available data represents the number of countries where the data for both P_FAO and P_T are available among 87 
countries, except for the rest of the world. The “standard deviation (std) by country” is calculated from the ACRs of actual (P_FAO) 
and theoretical price (P_T) by country, using the 2014 SAM data; the “ratio of average std” is calculated by dividing the average std 
of P_FAO by the average std of P_T; and “correlation coefficient of std” is the cross-sectional correlation that shows those relations. 
The correlation coefficient (R) and the quadratic weighted kappa score (QW-κ) are calculated for each country based on the ACRs 
of P_FAO and P_T from 1995 to 2015. Average R or QW-κ are calculated from those of each country between the ACRs of P_FAO 
and P_T. The value of “average R (only significant)” in the eighth row is the result of calculating the average value of R only for 
the countries where R is significant at the 10% level under the assumption that the distribution of ACR obeys normal distribution. 
The percentage numbers are the ratios of countries where R is greater than 0.29 or QW-κ is over 0.2. The threshold value of 0.29 
means statistically significant at the 10% level and that of 0.2 on QW-κ indicates “minimal concordance” for “rising,” “falling,” and 
“remaining in status quo” on price change.

Table 3. �Accuracy of agricultural theoretical price fluctuations by the CGE model against actual price data 
(2014 SAM data)
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Development (OECD) marked a higher traceability of 
the CGE model than in non-OECD countries; however, 
the t-statistics on the difference in the average R were 
not so high. In contrast, the results classified into major 
exporters and others showed different tendencies by crop 
in the regional average R.

Regarding the estimated price of wheat by the 
CGE model, the traceability to the actual price was 
significantly higher in the exporting country than in the 
importing country, which is consistent with the results of 
previous studies (Valenzuela et al. 2007); however, rice 
and soybeans tended to be the opposite of wheat. Overall, 
the difference in R between OECD and non-OECD 
countries showed more consistent tendencies in the four 
crops than the difference between major exporters and 
other countries in each agricultural product.

3. 	 Reproducibility of price forecasts months ahead 
by the global CGE model
Table 5 shows the results that compare the actual 

and reproduced forecast prices 3 and 6 months ahead 
that were estimated in Cases 2 and 3. Each value was 
calculated using the ACR index, which indicates the 
annual variation after detrending. In other words, this 
table demonstrates the reproducibility of forecasts several 
months ahead of the actual price changes. The following 
points are evident.

First, the percentages of countries, where R between 
P_FAO and P_ y3 or P_ y6 was statistically significant at 
the 10% level, ranged from 17.0% to 27.8% by crop. These 
percentages were lower than those in Table 3, which shows 
a correlation between P_T and P_FAO. Comparing the 
percentages of countries with significant R of P_ y3, for 
example, Case 2 was lower by 18% [= (1 − 22.0 / 26.7) ×  
100], 52% [= (1 − 22.4 / 46.6) × 100], 53% [= (1 −  

26.7% to 56.9% by crop and that for four crops was 
38.7% on average. Although the QW-κ captured relatively 
extreme price changes, the percentage of reproducible 
countries by QW-κ was only slightly higher than that 
marked by R over the threshold level. Overall, the CGE 
model associated with the crop model could reproduce 
actual price fluctuations in approximately 30% of the 
targeted countries.5

For reference, a similar table was created for the 
production value (Table 4). When compared with the 
price, R and percentage numbers regarding production 
were markedly higher, showing that the CGE model 
could estimate quantitative variables, such as production, 
with higher accuracy than price. However, there were 
some errors between the theoretical and actual values 
even in production because the actual harvested areas 
were different from the theoretical values, which were 
estimated under the optimization behavior of producers.

2. 	 Regional differences in the traceability of the 
global CGE model
Figure 2 shows the differences in the average R 

by classified region. The developed liberal countries 
in the Organization for Economic Co-operation and 

5	 To check the influences of economic structural changes, the 
same simulation as that shown in Table 3 was conducted with 
the 2004 SAM data (Table A1 in Appendix A1). Tables 3 and 
A1 show similar values, indicating the limited influence of 
economic structural changes during 2004-2014. In addition, 
R and QW-κ were calculated by changing the analysis period 
to the 2000s to determine the stability of the estimation 
results (Table A2 in Appendix A2). Almost the same 
tendencies were found between Tables 3 and A2. Thus, 
changes in the analytical period had little influence on the 
estimation results, and the results in Table 3 seemed to be 
robust.

Classifications Rice Wheat Maize Soybean 4 Crops
No. of available data 61 70 79 60 67.5
Standard deviation (std) by country

ratio of average std 0.342 0.522 0.182 0.159 0.301
correlation coefficient of std 0.342 0.227 0.517 0.565 0.413

Correlation coefficient (R)
average R 0.537 0.529 0.585 0.336 0.497
average R (only significant) 0.669 0.686 0.678 0.574 0.652
countries where R>=0.29 80.3% 78.6% 84.8% 61.7% 76.3%

QW-κ score
average QW-κ 0.439 0.432 0.446 0.312 0.407
countries where QW-κ>=0.2 73.8% 77.1% 77.2% 60.0% 72.0%

All values calculated based on ACRs of the statistical production quantities (Q_FAO) and the theoretical production values (Y_T) from 
1995 to 2015, using 2014 SAM data. Other remarks are the same as in Table 3 but regarding production rather than price.

Table 4. �Accuracy of the fluctuations in theoretical agricultural production (Y_T) by the CGE model against actual 
production data (Q_FAO) (2014 SAM data)
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20% of the targeted countries can reproduce the actual 
annual price fluctuations by the CGE model associated 
with the crop model even in the case of forecasting 
several months ahead.

Third, comparing indices for both prices in Table 5,  
the percentage values of R and QW-κ between P_ y3 
and P_FAO were almost the same as those between 
P_ y6 and P_FAO, and were therefore different from 
our intuition. Slight differences in the performance of 
reproduced forecasts between 3 and 6 months ahead were 
also observed in Figure 1, which plots the chronological 
tendencies in ACRs of prices, but these differences were 
not clear.

To observe this tendency in detail, a scatter plot was 

17.0 / 36.2) × 100], and 27% [= (1 − 27.8 / 37.8) × 100], 
for rice, wheat, corn, and soybeans, respectively. In other 
words, replacing crop yields from actual to seasonal 
forecast values reduced the estimation accuracy in 
some countries. As both reproduced forecasts and 
theoretical values were estimated by the CGE model 
with the same structure, the low percentage of countries 
with statistically significant R did not result from the 
CGE model but rather from the low reproducibility of 
meteorological conditions by the GCMs themselves or 
the low reproducibility of the crop model.

Second, regarding QW-κ, the percentage of countries 
with QW-κ over 0.2 was approximately 20%, which is 
similar to the percentage R. Therefore, approximately 

Fig. 2. �Difference in the traceability of regional CGE model to real price measured 
by the correlation coefficient 
Major food-exporting countries are the top 20 countries in 2014 by the export 
value of each crop in the GTAP10 database. t is the t-value, indicating that ***, 
**, and * are significant at the 1%, 5%, and 10% levels, respectively.
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Classifications Rice Wheat Maize Soybean 4 Crops
No. of available data 41 58 53 18 42.5
Countries where R>=0.29

(a) P_y3 : P_FAO 22.0% 22.4% 17.0% 27.8% 22.3%
(b) P_y6 : P_FAO 22.0% 24.1% 22.6% 22.2% 22.7%

            (b) / (a) 1.00 1.08 1.33 0.80 1.02
Countries where QW-κ>=0.2

(c) P_y3 : P_FAO 31.7% 25.9% 18.9% 11.1% 21.9%
(d) P_y6 : P_FAO 26.8% 36.2% 18.9% 27.8% 27.4%

           (d) / (c) 0.85 1.40 1.00 2.50 1.25
Correlation coefficient (R) and quadratic weighted kappa score (QW-κ) are calculated from the ACRs of P_FAO and P_y3 (or P_y6), 
using 2014 SAM data. Other remarks are the same as in Table 3.

Table 5. �Reproducibility of price fluctuations by the CGE model using seasonal yield forecast three and six months 
ahead (2014 SAM data)
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Discussion and policy implications

Based on the analytical results, the following aspects 
can be discussed, and some policy implications can be 
highlighted. First, the reproducibility of the model was 
not high, but we must consider the difficulty in estimating 
functions with detrended fluctuation data used in this 
study. So long as the possibility of price forecasting is 
not zero, these results provide hope for improving the 
GCM, crop, and even economic models. To improve 
the accuracy of these models, data and statistics are 
critical. Changing the measurement unit of statistics in 
agricultural production and economics from the national 
level to a smaller regional unit and making the network 
of meteorological observation data more detailed will 
contribute to the improvement of models in these fields.

Second, the high performance of the CGE model 
may be related to the degree of regulation in each 
country’s market, as the developed liberal countries in 

drawn for each crop, with the R of P_ y3 and P_FAO 
on the horizontal axis and that of P_ y6 and P_FAO on 
the vertical axis (Fig. 3). In Figure 3, the approximate 
line and equations of the approximate line, showing the 
relation between the two kinds of R in each axis, are 
indicated. The vertical index is the same as the horizontal 
index if the slope of the approximate line is 1.

As shown in Figure 3, the slopes of the approximate 
line were less than 1 for all four crops, indicating that 
the values of R on the vertical axis tended to be smaller 
than that on the horizontal axis. When the change rate 
was calculated by (1 − slope) × 100, it was found that 
extending the forecast period by 3 months decreased R 
by 26.2% for rice, 17.6% for wheat, 22.5% for maize, 
and 0.4% for soybean. For soybean, these percentages 
became small due to a small number of available price 
data. On average, for the four crops, the influence of 
the 3-month extension of the forecast period exhibited a 
16.7% decrease in R.

Fig. 3. �Scatter plot of the target countries by two kinds of correlation coefficients 
The horizontal axis shows the correlation coefficient between P_y3 and P_FAO. The vertical axis represents 
the correlation coefficient between P_y6 and P_FAO. The equation in each figure shows the relation of both 
axes; this is represented by the approximate line (broken line).
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the actual price fluctuations of crops, measured by the 
regional average of correlation coefficients during 
1995-2015, ranged from 0.13 to 0.26 by crop. Judging 
by the correlation coefficient above the threshold of 
10% significance level and the QW-κ above the level of 
“minimal concordance,” the CGE model can reproduce 
actual price fluctuations in approximately 30% of the 
targeted countries worldwide. These simulations were 
robust against changes in economic structure during 
2004-2014 and changes in simulation periods.

Second, the traceability of the model, measured 
by correlation coefficients, tended to be higher in the 
developed liberal countries in OECD than the non-OECD 
countries. Although the difference between these groups 
had low statistical significance, the tendency of such 
differences was more consistent among the four crops 
than those between major exporters and other countries 
of each agricultural product mentioned by the previous 
study (Valenzuela et al. 2007).

Third, when these forecasts and estimations 
were compared with actual price fluctuations, the 
reproducibility of the forecasted price fluctuations 3 or 6 
months ahead was found to be lower than the theoretically 
estimated price fluctuations. However, approximately 
20% of the targeted countries were still able to reproduce 
the actual annual price fluctuations using the CGE model 
associated with the results of the crop model.

Fourth, comparing the reproduced forecasts 3 and 
6 months ahead, a 3-month extension of the forecast 
period reduced the reproducibility of agricultural price 
fluctuations by 16.7% in the correlation coefficient.

Overall, the reproducibility of forecasting 
agricultural prices several months ahead is not particularly 
high, with only a small portion of the fluctuations in 
actual statistical data being reproduced. However, some 
of the 88 countries showed high reproducibility of 
forecasts. The existence of such countries demonstrates 
some possibilities in which forecasting prices by the 
CGE model associated with the results of the crop 
model and GCM can be used as a forecasting index in 
the agricultural market as well as a preparation for 
meteorological disasters.

Future studies should i) compare the reproducibility 
of agricultural price forecasts with other macroeconomic 
models and economic forecasting methods, ii) update 
seasonal forecast data for climate prediction and crop 
yield prediction as well as statistical data, and iii) 
evaluate the reproducibility of price forecasts several 
months ahead for crops other than the four discussed in 
this study.

OECD exhibit relatively high correlation between actual 
and theoretical prices. Countries with a dictatorship 
or countries that adopt populism policies may control 
food prices to stabilize domestic political conditions. 
Consequently, their markets are less susceptible to 
supply and demand factors, and real prices may deviate 
from theoretical prices. Nevertheless, for such countries, 
forecasting international agricultural prices can be an 
important policy information to prepare for price controls.

The third important policy implication is the 
handling of price forecast information. A hike in 
agricultural prices will likely cause market disturbances, 
such as buying up products for speculation. In particular, 
if forecast information is restricted to limited people, it 
may encourage speculation. As the models for forecasting 
price changes become more accurate, more people 
would like to monopolize such forecast information for 
commercial purposes. The current forecasting accuracy 
of agricultural prices has not reached the commercial 
level, but it is necessary to establish a system that 
discloses information on price forecasts so that anyone 
can access it.

Fourth, agricultural price forecasts have the potential 
to stabilize the incomes of farmers in developing countries 
that are most vulnerable to meteorological disasters. 
However, regardless of the accuracy of the forecast level, 
the risk of the forecast failure cannot be reduced to zero. 
If farmers in developing countries do not use information 
on price forecasts due to fear of such risks, the problem 
of poverty cannot be addressed. Hence, it is necessary to 
enhance the insurance system for meteorological disasters 
and expand the safety net for risk aversion. Furthermore, 
under future global climate change, providing consistent 
price forecasts in all countries worldwide increases the 
potential for optimizing agricultural production globally.

Summary and conclusions

Global warming will accelerate meteorological 
disasters, such as droughts, heatwaves, and floods, which 
may lead to soaring food prices and induce political and 
economic turmoil worldwide. To avoid such turmoil and 
minimize climate risks, this study attempted to forecast 
agricultural prices several months ahead using the quasi-
dynamic large-scale global CGE model, which comprised 
88 countries/regions and 15 sectors associated with the 
results of the crop model and GCMs. Furthermore, this 
study evaluated the accuracy of the CGE model and the 
reproducibility of forecasted price fluctuations 3 and 6 
months ahead by comparing the annual fluctuations of 
actual and estimated prices.

As a result, first, the accuracy of the model to trace 
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Classifications Rice Wheat Maize Soybean 4 Crops
No. of available data 45 57 58 36 49.0
Standard deviation (std) by country

ratio of average std 0.308 0.495 0.573 0.722 0.525
correlation coefficient of std 0.308 0.316 0.155 0.361 0.285

Correlation coefficient (R)
average R 0.120 0.256 0.185 0.200 0.190
average R (only significant) 0.377 0.491 0.481 0.500 0.462
countries where R>=0.29 24.4% 45.6% 32.8% 38.9% 35.4%

QW-κ score
average QW-κ 0.116 0.236 0.177 0.183 0.178
countries where QW-κ>=0.2 24.4% 50.9% 36.2% 36.1% 36.9%

Same as in Table 3, except for using 2004 SAM data

Classifications Rice Wheat Maize Soybean 4 Crops
No. of available data 45 58 58 37 49.5
Correlation coefficient (R)

average R 0.144 0.274 0.182 0.226 0.207
average R (only significant) 0.466 0.547 0.546 0.551 0.528
countries where R >=0.34 24.4% 41.4% 31.0% 37.8% 33.7%

QW-κ score
average QW-κ 0.130 0.244 0.204 0.257 0.209
countries where QW-κ>=0.2 31.1% 58.6% 39.7% 59.5% 47.2%

The threshold of 0.34 indicates R with a significance level of 10% (number of data = 16 years) and QW-κ = 0.2 represents minimal 
concordance between ACR of P_T and ACR of P_FAO. Other remarks are the same as in Table 3, except for the simulation period.

Table A1. �Accuracy of the fluctuations in theoretical agricultural price (P_T) by the CGE model 
against actual price data (P_FAO), but using 2004 SAM data

Table A2. �Accuracy of the fluctuations in theoretical agricultural price (P_T) by the CGE model against 
actual price data (P_FAO) using 2014 SAM data, with simulation period of 2000-2015




