Fourier analysis, which in this paper denotes the analysis of real-valued finite-length discrete-time time series data using the discrete Fourier transform or based on the Fourier series expansion formula, is widely used in hydrology and hydrogeology to decompose observation time series data containing tidal and other components. For example, Fourier analysis has been used to describe the frequency composition of data, investigate the factors causing fluctuations, detect specific frequencies such as those of major tidal components, and extract or isolate them.

As rivers are absent in hydraulically permeable geologic settings, groundwater is often a major source of water for domestic and agricultural use on oceanic coral or limestone islands. Many such islands belong to developing countries, such as most of those that comprise the Small Island Developing States (White & Falkland 2010, Chattopadhyay & Singh 2013, Ishida et al. 2015, Werner et al. 2017, Dahan 2018, Yoshimoto et al. 2020). To sustainably develop agriculture and improve the living environment in these areas, strategies integrated with an appropriate plan for the development and management of groundwater resources based on the understanding of the properties of groundwater and aquifers are required.

Shirahata et al. (2019a, 2019b) used tidal response methods to estimate the hydraulic parameters of aquifers beneath an island where appropriate groundwater development for agricultural use was desired. Accurate aquifer parameters are needed to construct and develop a groundwater numerical model used for predictions regarding limited groundwater resources in a freshwater lens on the island (Shirahata et al. 2019a, 2019b). In their tidal response methods, Fourier analysis of groundwater-level time series data enabled the isolation of known major tidal components and the determination of the amplitudes and initial phases of the sinusoidal components of specific tidal periods. These amplitudes and initial phases were used in the calculation of aquifer hydraulic parameters.

Fourier analysis, which in this paper denotes the analysis of real-valued finite-length discrete-time time series data using the discrete Fourier transform or based on the Fourier series expansion formula, is widely used in hydrology and hydrogeology to decompose observation time series data containing tidal and other components. For example, Fourier analysis has been used to describe the frequency composition of data, investigate the factors causing fluctuations, detect specific frequencies such as those of major tidal components, and extract or isolate them.
sinusoidal tidal components (Lanyon et al. 1982, Koizumi 1991, Ishitobi et al. 1993, Evans 2004, Möller et al. 2007, Alcolea et al. 2009, Aichi et al. 2011, Rahi & Halihan 2013, Acworth et al. 2015, Dong et al. 2015, Burgess et al. 2017, Fuentes-Arreazola et al. 2018, Shirahata et al. 2018). For this last purpose, Fourier analysis has the advantage of being simply performed using standard spreadsheet software with built-in functions (Whitford et al. 2001, Shirahata et al. 2018). Such software is available to people who do not have specialized software or programming expertise, such as a local administrative officer in charge of the development and management of limited groundwater resources on a remote island.

In the Fourier analyses of Shirahata et al. (2019a, 2019b), the analyzed time series lengths were selected so that the output amplitude and initial phase of the desired isolated tidal component would have only small errors, following the recommendation of Shirahata et al. (2017). Shirahata et al. (2017) investigated tentatively selected four time series lengths (708 h, 3,279 h, 4,380 h, and 8,856 h) and examined the errors in the Fourier analysis outputs, which were the amplitudes and initial phases of major tidal constituents M2, K1, S2, O1, and P1. The four time series lengths were selected in light of a basic constraint in the Fourier analysis that the analyzed time series length has to be an integer multiple of the period of the isolated component. For instance, to accurately isolate M2, with a period of 12.420601 h, the time series must closely approximate a multiple of the M2 period, such as 708 h (approximately 57 times the M2 period). When Fourier analysis is used to isolate a tidal constituent of a fixed period from a data series of arbitrary length, the output tidal constituent period, given by a quotient of the analyzed data length divided by an integer, generally deviates from the exact tidal constituent period. The deviation, hereafter called the period approximation deviation (PAD), is a basic source of error in the isolation of a tidal constituent. This error due to the PAD of the desired isolated tidal constituent is referred to in this paper as first-category error. It appears as a reduction of the output amplitude of the desired tidal constituent accompanied by the leakage of the amplitude to adjacent frequencies in the frequency spectrum (de Leve 2004, Thomson & Emery 2014, Shirahata et al. 2017), referred to here as spectral leakage. Treffry & Bekele (2004) recognized this error in their study using Fourier analysis to determine the amplitudes of tidal components, and they reproduced the amplitude of a major tidal constituent from three output amplitudes at three consecutive frequencies.

Another category of error was described by Shirahata et al. (2017), who demonstrated that a large PAD of a nearby tidal constituent, that is, a constituent with a frequency or period close to that of the desired constituent, can affect the isolation of the desired constituent and result in a large error in the output when the true amplitude of the nearby constituent is comparable with that of the desired constituent. This error is unavoidable in the Fourier analysis of observation data containing many tidal constituents with different periods. This second-category error is relevant to the spectral leakage of nearby tidal constituents, and it becomes non-negligible when the PAD of a nearby constituent is significant (Blair 1979, Shirahata et al. 2017). Tanaka et al. (1967) studied errors in the amplitudes and phases of eight major tidal constituents obtained by Fourier analyses of earth-tide time series records. However, the analyses used only two time series lengths of 8,784 h and 8,760 h. Blair (1979) theoretically studied the second-category error in the amplitudes of tidal constituents determined by Fourier analyses of finite-length time series of varying lengths. The study was limited to the isolations of one semidiurnal constituent M2 and one diurnal constituent O1 (period: 25.819342 h). In addition, Blair’s discussion laid emphasis on the total possible error owing to several nearby tidal constituents (five semidiurnal constituents for the isolation of M2 and five diurnal constituents for the isolation of O1), not on separate errors owing to each constituent. Furthermore, the derived error prediction formula presupposed that the output frequency was exactly the frequency of the desired tidal constituent M2 or O1 or, equivalently, that the analyzed time series length was an exact multiple of the period of the desired constituent. Naturally, the study also ruled out the possibility of a first-category error. Nowadays, as available observation time series data usually consist of exact whole numbers of time units (e.g., 1 h), it rarely happens that the data length is equal to a multiple of a tidal constituent period; therefore, Fourier analyses of the type treated here should always consider the first-category error. For these reasons, it has been difficult to widely apply the results of Blair (1979) to the Fourier analysis of real observation data. In the study of Shirahata et al. (2017), the first-category error was avoided beforehand in the tentative selection of the time series lengths, and thus was not fully examined. Second-category errors were clearly exemplified in the discussion of Shirahata et al. (2017), but the examples presented were limited to the combination of two major tidal constituents, the desired isolated S2 (period: exactly 12 h) and the affecting nearby M2, and they only considered 20 representative time series lengths up to 8,856 h.

The present study aimed to organize a set of criteria for selecting time series lengths appropriate or...
Fourier Analysis for Accurate Isolation of Tidal Components

recommendable for their use in Fourier analysis to isolate major tidal constituents. We extensively investigated the first- and second-category errors involved in the isolation of eight major semidiurnal and diurnal tidal constituents. The investigation did not use an approximate analytical solution of an equation for predicting errors such as Blair (1979) derived but instead relied on the concrete calculations of the amplitudes and initial phases of the major tidal constituents by simple Fourier analysis of artificial time series in lengths of whole hours between 600 h and 30,000 h. The results of the Fourier analyses, the magnitudes of the amplitude reductions and the spectral leakages, were investigated in relation to the PAD of the tidal constituent and the analyzed time series length. From this effort, we derived empirical formulas that predict the errors for time series even longer than 30,000 h. The formulas, combined with representative relative amplitudes of tidal constituents expected in nature, provide a set of PAD criteria for selecting time series lengths for the accurate isolation of the eight major tidal constituents. This paper presents the investigations of the errors in the tidal constituent isolation by Fourier analysis and discusses the derivation of the criteria. An example list of the time series lengths that pass the criteria is given, and a brief demonstration using real groundwater observation data is provided.

Methods and notes

1. Investigation of errors in the isolation of major tidal constituents by simple Fourier analysis

In this study, the isolation of tidal constituents from time series, that is, the calculation of the amplitude and initial phase of sinusoidal tidal components, followed the Fourier analysis technique described by Shirahata et al. (2014, 2017), with a slight modification. The calculations simply used formulas for Fourier series expansion as described in these studies. The one difference is that in the present study, the origin of the time, where the time \(t = 0 \), of the analyzed hourly sampled time series data was placed at the center of the analyzed length if it had an odd length (i.e., with an odd number of data points) and at 0.5 h from the center of the analyzed length if it had an even length. In previous studies, in contrast, the time origin was always placed at the start of the analyzed time series. Because the initial phase calculated by the simple Fourier analysis technique is the phase at the time origin, its setting may affect the error in the output initial phase. The effect of the setting of the time origin on the output initial-phase error is briefly described in the Results section.

The analyzed time series data were composed of a sinusoidal component that had the exact period of a known tidal constituent. The values of the time series data \(f(t) \) for hourly interval time \(t \) (h) were calculated as follows:

\[
f(t) = A \sin(2\pi T^{-1} t + IP),
\]

where \(T \) is the period (in h) of the tidal constituent, \(A \) is the amplitude, and \(IP \) is the initial phase (in radians or rad). Figure 1 shows an example of the time series analyzed for the investigation in this study.

Table 1 lists the 15 tidal constituents used in this study with their angular frequencies and periods. The constituents and their frequencies were excerpted from the list given by Kudryavtsev (2004), and the periods were calculated from the frequencies in the list. These are the top major 15 constituents in tide-generating potential among the semidiurnal and diurnal constituents listed by Kudryavtsev (2004). These 15 tidal constituents include all the constituents covered by Blair (1979), who was not concerned with the 2N2, L2, or T2 constituents. In this article, the abbreviated notations written in parentheses in Table 1 are occasionally used to enumerate the eight constituents M2, K1, S2, O1, P1, N2, K2, and Q1 or “MKSOpnkq” in decreasing order of tidal potential, which are often referred to as the eight principal or major tidal constituents (Tanaka et al. 1967, Dushaw et al. 1995, Kowalik & Polyakov 1998, Foreman et al. 2009, Siddig

![Fig. 1. Example of the hourly sampled time series data subjected to the Fourier analysis for the investigation in this study](image-url)

Time series data composed of one tidal constituent M2 (period: 12.420601 h), with an amplitude of 10 and initial phase of zero rad, with a finite length of 601 h
et al. 2019). They were focused on in this study as the desired isolated constituents. Among them, the first four ("MKSO") are referred to as the four major tidal constituents (Nishida 1980, Kowalik & Polyakov 1998, Karang et al. 2010, Siddig et al. 2019).

The length of the time series subjected to Fourier analysis was varied from 600 to 30,000 h with an hourly interval. The Fourier analysis technique applied to a finite-length time series can output the amplitude and initial phase for every discrete frequency (e.g., in cycles per hour [cph]) that is a multiple of the reciprocal of the analyzed time series length (e.g., in h). This study focused on the outputs for the frequencies that represent the eight major tidal constituents. Among the discrete frequencies for which outputs are given, the frequency that represents a tidal constituent was defined as the one closest to the exact frequency of the tidal constituent. In this paper, the Fourier analysis output (amplitude and initial phase) and the output frequency in the spectrum for a tidal constituent are denoted by terms such as “M2 output” and “M2 (frequency) site”; however, they do not necessarily indicate the output for the exact frequency. The period, the Fourier analysis of a finite-length time series isolates sinusoidal components of a period that is a quotient of the analyzed time series length divided by an integer. One of the isolated components has a period that is the reciprocal of the output frequency closest to the exact tidal constituent frequency. The period approximates but not necessarily equals the exact period of the tidal constituent. The PAD of a tidal constituent is defined in this paper as follows:

\[D = \left| \frac{T_{APX}}{T} - 1 \right|, \]

where \(D \) is the PAD, \(T_{APX} \) is the output approximate tidal constituent period as a quotient of the analyzed time series length, and \(T \) is the exact tidal constituent period. For example, the PADs of the S2 constituent for time series lengths 1,197 h and 1,203 h are both 0.250%. The PAD varies with the tidal constituent concerned and with the analyzed time series length.

The first-category error for each of the eight major tidal constituents was measured by performing Fourier analyses of time series composed of a single sinusoidal component of the exact tidal period with an amplitude of 10 and an initial phase of zero rad. The errors in the output amplitude and initial phase for the frequency that represents the tidal constituent (not necessarily the exact frequency of the tidal constituent) were calculated by comparison with the true amplitude and initial phase given in the generation of the time series. In the Results section, the magnitudes of the amplitude and initial-phase errors are expressed in relative and absolute terms, in percent and radians, respectively.

Fourier analyses of time series composed of one of the 15 tidal constituents, with an amplitude of 10 and an initial phase of zero rad, were performed, and the amplitude leakages of the contained constituent to the frequency that represents another desired constituent were computed. This leakage is the source of the second-category error in the isolation of the desired tidal constituent. The analysis results for time series lengths that caused the two relevant tidal constituents (the affecting nearby constituent contained in the time series and the affected desired constituent) to share the same Fourier analysis output frequency were excluded from the investigation. Such results of the analysis are not included in the description below. Such cases are typical for short time series when the frequencies of the two constituents are especially close. For instance, for the combination of K1 and P1 constituents, among 1,000 time series lengths of 600 h-1,599 h, this was the case for 748 lengths.

The “amplitude leakage” or “amplitude leak” quantified in this paper always refers to the ratio between the output amplitude at a frequency site and the true amplitude given in the analyzed time series. To give an example, the Fourier analysis of a pure-M2 hourly sampled time series with a length of 3,660 h, generated by Eq. (1) with \(T = 12.420601, A = 10, \) and \(IP = 0 \), yields an amplitude of approximately 0.27 at the S2 frequency site (at a frequency of 305/3660 cph). Alternatively, the

Table 1. Major and relatively major diurnal and semidiurnal tidal constituents used in this study

<table>
<thead>
<tr>
<th>Tidal constituents</th>
<th>Frequency (°/h)</th>
<th>Period (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1 (q)</td>
<td>13.398661</td>
<td>26.868357</td>
</tr>
<tr>
<td>O1 (O)</td>
<td>13.943036</td>
<td>25.819342</td>
</tr>
<tr>
<td>M1</td>
<td>14.496694</td>
<td>24.833248</td>
</tr>
<tr>
<td>P1 (p)</td>
<td>14.958931</td>
<td>24.065890</td>
</tr>
<tr>
<td>K1 (K)</td>
<td>15.041096</td>
<td>23.934470</td>
</tr>
<tr>
<td>J1</td>
<td>15.585443</td>
<td>23.098477</td>
</tr>
<tr>
<td>2N2</td>
<td>27.895355</td>
<td>12.905374</td>
</tr>
<tr>
<td>μ2</td>
<td>27.962808</td>
<td>12.871758</td>
</tr>
<tr>
<td>N2 (n)</td>
<td>28.439730</td>
<td>12.658348</td>
</tr>
<tr>
<td>v2</td>
<td>28.512583</td>
<td>12.620044</td>
</tr>
<tr>
<td>M2 (M)</td>
<td>28.984104</td>
<td>12.420601</td>
</tr>
<tr>
<td>L2</td>
<td>29.528479</td>
<td>12.626004</td>
</tr>
<tr>
<td>T2</td>
<td>29.958933</td>
<td>12.016449</td>
</tr>
<tr>
<td>S2 (S)</td>
<td>30.000000</td>
<td>12.000000</td>
</tr>
<tr>
<td>K2 (k)</td>
<td>30.082137</td>
<td>11.967235</td>
</tr>
</tbody>
</table>

* Abbreviations in this article for the eight major constituents
S2 output amplitude from the pure-M2 time series is approximately 0.27. The amplitude leakage of the M2 constituent to the S2 site is approximately 2.7% in this case. If the analyzed time series also contains an S2 constituent with an amplitude of 5.0 and the desired isolated constituent is S2, the M2 leakage to the S2 frequency site is the source of the second-category error in the isolation of S2, leading to a possible maximum error in the amplitude of approximately 5.4%. The subsequent section explains why the magnitude of the leakage of the nearby tidal constituent indicates the “possible maximum” error in the output amplitude of the desired isolated constituent.

2. Relationships among amplitude reduction, amplitude leakage, and two categories of error

The Fourier analysis results are often displayed as the frequency spectra of the output amplitudes for consecutive discrete frequencies and the spectra of the output initial phases. Figure 2 shows examples of six sets of such amplitude and initial-phase spectra. The analyzed hourly sampled time series to derive the spectra shown in Figures 2a-d were composed of the two tidal constituents, M2 and S2, with amplitudes of 12 and 10 and initial phases of 1 and 2 rad, respectively. The following formula was used for generating these four time series:

\[A = 12 \text{, IP} = 1 \]

Fig. 2. Pairs of frequency spectra showing Fourier analysis output amplitudes and initial phases

Outputs from (a) 3,192-h, (b) 3,428-h, (c) 3,660-h, and (d) 4,096-h time series composed of M2 and S2; (e) 4,096-h time series composed only of S2; and (f) 4,096-h time series composed of M2. The true amplitude and initial phase of each component in the analyzed time series are noted on the top of each pair of spectra.

\[A: \text{amplitude}; \text{IP: initial phase; n: frequency indicator or the integer used in the Fourier analysis calculation; PAD: period approximation deviation of the tidal constituent} \]
It is premised here that the desired isolated constituent is S2. Figure 2a shows the Fourier analysis spectra of the time series with an analyzed length of 3,192 h. For this time series length, the PAD for S2 is zero, and the PAD for M2 is also fairly small (0.003%). The outputs for S2 are an amplitude of 9.995 and initial phase of 2.001 rad with small error magnitudes (0.05% and 0.001 rad, respectively). Figure 2b presents the outputs of the Fourier analysis of a 3,428-h-long time series and exemplifies the first-category error in the S2 output. For this time series length, the PAD of S2 is somewhat large (0.117%). Because of the large PAD, the reduction of the output amplitude at the S2 frequency site (i.e., at 286/3,428 cph) accompanied with the spectral leakage of S2 to adjacent frequencies is not negligible. The S2 output amplitude is 8.270 with an error of 17.30%. Figure 2c exemplifies the second-category error in the isolation of S2. The PAD of the S2 constituent for this 3,660-h time series is zero, but the PAD of M2 is slightly large (0.111%). Affected by the leakage component of the M2 constituent at the S2 frequency site (305/3,660 cph), the errors of the S2 output are 1.73% in the amplitude and 0.026 rad in the initial phase. For the Fourier analysis of a 4,096-h time series (Fig. 2d), both categories of error are involved in the S2 output. The two sources of error can be separately represented as in Figures 2e and 2f, which show the results of the Fourier analyses of two time series of the same length 4,096 h with each single constituent S2 or M2. It is noted that the total S2 amplitude error of 18.42% (Fig. 2d) is not the simple addition or subtraction of the amplitude errors observed in Figures 2e and 2f, 17.26% and 2.22%, respectively.

As our Fourier analysis output for one frequency is composed of the amplitude and initial phase, the output and its error can be represented by vectors in a polar (circular) plot. Figure 3 shows the Fourier analysis outputs of three 3,660-h-long time series at the S2 frequency site. The “original S2 output” vector in Figure 3 represents the Fourier analysis output derived from time series composed only of the S2 constituent with an amplitude of 10 and initial phase of 1.2 rad. This output shows no error. The “affected S2 output” in Figure 3 presents the output from time series composed of the two constituents S2 and M2, the former with the same amplitude and initial phase as in the “original” pure-S2 time series and the latter with an amplitude of 60 and initial phase of 0.2 rad. The subtraction of these two vectors demonstrates the second-category error in the S2 isolation occurring in the Fourier analysis of the time series that include the M2 constituent. The error vector is equivalent to the vector of the output of the other time series composed only of the M2 constituent with an amplitude of 60 and initial phase of 0.2 rad or the leakage component of the M2 constituent at the S2 frequency site (“M2 leakage output” in Fig.3). This demonstration on a polar plot indicates that the effects of the second-category error on the output amplitude and initial phase of a desired tidal constituent vary with the difference between the initial phase of the (original) desired constituent and that of the leakage component of a nearby affecting constituent. The error of the output amplitude of the affected desired constituent should be maximal when the difference between the two initial phases is either zero or π, with the maximum amplitude error being the ratio between the amplitude of the leakage component of the nearby constituent and the true amplitude of the desired constituent. Given that the amplitude of the leakage component of a nearby constituent is much smaller than the amplitude of a desired constituent at the frequency site of the desired constituent, the affected amplitude error will be nearly zero, and the affected initial-phase error will be near its maximum when the difference between the two initial phases is close to +π/2 or −π/2. The expected value of the magnitude of the affected error will be calculated as approximately 0.637 (=2/π) times the possible maximum error, the multiplier given by the integral from zero to π of the sine function. For example, if the amplitude of the leakage component of a nearby tidal constituent is 1.5% of the amplitude of the (original) desired tidal constituent, the expected value of the error will be a little less than 1.0% for the amplitude and a little less than 0.010 rad for

\[f(t) = 12 \cdot \sin(2\pi \cdot 12.420601 \cdot t + 1) + 10 \cdot \sin(2\pi \cdot 12 \cdot t + 2). \]
the initial phase. For a specified time series length and a specified nearby affecting constituent, the maximum possible magnitude of the second-category errors in the outputs (amplitude and initial phase) of an affected desired constituent is determined by the magnitude of the leakage from the frequency of the nearby constituent to the frequency site of the desired constituent.

Results

1. Errors due to period approximation deviation of the desired isolated constituent itself

Fourier analyses of hourly sampled time series, each composed of one of the eight major tidal constituents, were performed for varying time series lengths from 600 to 30,000 h. The analysis results demonstrate first-category errors in the outputs of the contained tidal constituent due to the PAD of the same constituent.

Figure 4 shows part of the results: output amplitude errors for six major constituents, O1, P1, K1, N2, M2, and S2, in increasing order of frequency. The magnitudes of the errors are plotted against the PAD of the tidal constituent. The outputs for time series longer than 12,000 h are not shown for a clear presentation.

In Figure 4, for a specified constituent and a limited range of analyzed time series lengths, the data points form a belt shape with approximately straight side edges on a double-logarithmic graph. The slope of the belt is positive (with a value of approximately two), and there is a rough trend that the error magnitude increases as the PAD of the constituent increases. It can also be seen that the error magnitude is generally larger for longer time series for a specified constituent and a fixed PAD. In addition, a comparison of the plots for the six constituents

![Output amplitude error magnitudes of six major tidal constituents, (a) O1, (b) P1, (c) K1, (d) N2, (e) M2, and (f) S2, plotted against the period approximation deviation of the constituent](Fig. 4)

Outputs from the Fourier analyses of hourly sampled time series of varying lengths from 600 to 12,000 h, each composed of a single tidal constituent
reveals that generally for a fixed PAD and fixed range of time series lengths, the error magnitude is larger for a constituent of higher frequency or shorter period. These three general tendencies were true for the eight major tidal constituents, including those not shown. In summary, in general, the magnitude of the first-category error in amplitude is positively related to the PAD, the analyzed time series length, and the frequency of the tidal constituent.

After some trials, we found the following calculation formula that yields mostly similar values:

$$E_1 = D^2L^2F^2$$ \hspace{1cm} (4)

$$E_1 = D^2L^2T^2,$$ \hspace{1cm} (5)

where E_1 is the (first-category) error magnitude of the output amplitude, D is the PAD of the tidal constituent, L is the analyzed time series length (h), F is the exact frequency of the tidal constituent (cph), and T is the exact period of the tidal constituent (h). In cases where the PAD was zero, which occurred for the S2 constituent, the output amplitude error was always zero, and the calculation of the above formula was not performed.

With those exceptions, the calculations were made for all outputs derived from time series with lengths 600 h-30,000 h and for the eight major tidal constituents. Figure 5 shows part of the results for lengths up to 12,000 h and for the four constituents O1, K1, M2, and S2.

As shown in Figure 5, most of the calculation results remained close to the value of 1.6 regardless of the PAD, the analyzed time series length, or the constituent period, although the results for small PADS (therefore with small output amplitude errors) became outliers. This concentration and approximate constancy of the values calculated using Eq. (4) or (5) were confirmed for the entire investigated range of the time series lengths from 600 to 30,000 h and for all eight constituents. The first quartiles, medians, and third quartiles (for lengths 600 h-30,000 h) of the values for the eight constituents were in the ranges 1.510-1.533, 1.588-1.594, and 1.623-1.628, respectively. More than 99.5% of the values were < 2.0. We infer that the approximate constancy of the values of Eq. (4) or (5) also holds for time series longer than 30,000 h.

Figure 6 shows examples of output initial-phase errors. The error magnitudes for the P1 and S2 constituents are plotted against the PADS. For both

Fig. 5. Values calculated using Eq. (4) or (5) plotted against the analyzed time series length for the (a) O1, (b) K1, (c) M2, and (d) S2 constituents

Values derived from the outputs of the Fourier analyses of hourly sampled time series of varying lengths from 600 to 12,000 h, each composed of a single tidal constituent. Calculations were made up to 30,000 h, but only a portion is shown.

A: amplitude; PAD: period approximation deviation; Med: median; Max: maximum
The errors in the former part were outputs of the time series of an even length and those in the latter part of an odd length. These features of the initial-phase errors were common to all eight major constituents, including those not shown. This shows that the deviation of the time origin of the analyzed time series from its center, when accompanied with a nonzero PAD, led to an initial-phase error. Nevertheless, these initial-phase errors derived from the setting of the time origin in the present Fourier analysis procedure were small for the desired tidal constituents and time series lengths of interest in this study (less than roughly 0.01 rad for the eight major constituents and time series 600 h and longer). The initial-phase errors are not further addressed here.

2. Amplitude leakages due to the period approximation deviation of nearby tidal constituents

To investigate the second-category errors in outputs for one of the eight major constituents, hourly sampled time series, each composed of one of the other 14 major or relatively major tidal constituents, were subjected to Fourier analyses, with analyzed lengths of 600 h-30,000 h.

Figures 7a-c show the amplitude leakages of the Q1, P1, and M2 constituents contained in the analyzed time series to the K1 frequency site, plotted against the PADs of Q1, P1, and M2, respectively. The leakages are the sources of second-category errors in the isolation of the K1 constituent. In each of the three graphs, the leakage is generally positively related to the PAD of the constituent contained in the time series. For each constituent, the slopes of the lines (not shown) connecting the plotted data points and the origin are of course all positive, and their ranges narrow as the time series length becomes longer. The upper limit of a slope, for the range of the time series lengths shown (600 h-12,000 h), is larger for leakages of a constituent that has a frequency closer to the affected constituent K1. For instance, the P1 constituent, the frequency of which is closest to that of K1, has the largest slope upper limit (Fig. 7b).

Figures 7d-f show other examples of amplitude leakages, namely, the leakages of O1, L2, and S2, respectively, as affecting nearby constituents to the frequency site of M2 as the affected constituent, demonstrating the sources of second-category errors in the isolation of the M2 constituent. The same features as described above for the leakages to the K1 site are observed for the leakages to the M2 site.

The ratios between the output amplitude leakage and the PAD of the constituent contained in the time series, which are represented by the slopes of the data points in Figure 7, are plotted in Figure 8 against the analyzed time series length. Figures 8a-d plot the ratios for the leakages of M1, P1, J1, and N2, respectively, to the frequency site of K1. The medians, third quartiles, and maximums for the range from 600 to 30,000 h are depicted and noted in the plot areas. To compute 601-h-wide centered moving averages and other quantities for time series lengths down to 600 h, Fourier analyses with time series lengths as small as 300 h were additionally performed, although the analysis outputs themselves are not included in the plot range of Figure 8. Moving averages and medians were computed to investigate the general trend of the change of the plotted ratio with the time series length. Examples are shown in Figures 8a and b, respectively. In addition, 601-h-wide “moving third quartiles,” defined as the third quartiles of the values within the range from 300 h shorter to 300 h longer than the length where the
quartile is defined, were also computed (Fig. 8c). They are used to infer the trend of the third quartile for time series lengths even longer than 30,000 h.

A comparison of Figures 8a-c shows that when the two relevant constituents have closer frequencies, the plotted ratios are generally larger and the maximum of the upper envelope of the plotted ratios occurs with a larger value at a longer time series. Regarding the N2 constituent affecting the K1 site (Fig. 8d), as the frequencies of the two constituents differ much more, the actual maximum occurs at a short time series length outside the plot range with a value larger than the (local) maximum between 600 h and 30,000 h. Among all the 112 combinations of the two relevant constituents, the T2 constituent affecting the S2 frequency site showed the largest maximum of the plotted ratio, with a value of approximately 1,050.3, at the longest time series with a length of approximately 11,500 h. For all combinations of the two relevant constituents, at least within the longer half of the investigated range of lengths 600 h-30,000 h, as the analyzed time series were lengthened, the upper envelope of the plot data decreased and then became nearly constant,

Fig. 7. Amplitude leakages for six combinations of the tidal constituent contained in the analyzed time series and the tidal constituent frequency site affected by the leakage, plotted against the PAD of the contained constituent.

The amplitude leakage is the ratio of the output amplitude at the affected frequency site over the true amplitude of the contained constituent given in the analyzed time series. The leakages are for (a) Q1 constituent to K1 site, (b) P1 to K1, (c) M2 to K1, (d) O1 to M2, (e) L2 to M2, and (f) S2 to M2. These are derived from the outputs of the Fourier analyses of hourly sampled time series of varying lengths from 600 h to 12,000 h, each composed of one tidal constituent.
and the lower envelope increased and then became nearly constant. For a longer part of the investigated range of time series lengths, the moving third quartile eventually became nearly constant with values almost the same as the third quartile for the entire investigated range. The moving median and moving average for a longer part of the investigated range of time series lengths from 600 h to 30,000 h, each composed of one hourly sampled time series of varying lengths, are derived from the outputs of the Fourier analyses of the tidal constituent contained in the time series plotted against the analyzed time series length, for leakage of the M2 constituent with an analyzed time series length of 720 h, the PAD of the M2 constituent is 0.055%. The amplitude error in the M2 isolation is approximately predicted as 0.16% (= 0.00055² × 720² × 12.420601² × 1.6). The actual output error we already have for this length is 0.141%. For a time series length of 4,096 h, with an M2 PAD of 0.068%, the error is approximately predicted as follows:

\[E_{JM} = D^2 L^2 T^{-2} \times 1.6 \] \hspace{1cm} (6)

and will very rarely exceed the value calculated by:

\[E_{IX} = D^2 L^2 T^{-2} \times 2.0, \] \hspace{1cm} (7)

where \(E_{JM} \) and \(E_{IX} \) are the approximate prediction of the error and the practical predicted maximum of the error, respectively, defined here by these formulas; \(D \) is the PAD of the tidal constituent; \(L \) is the analyzed time series length (h); and \(T \) is the exact period of the desired tidal constituent (h). For instance, when Fourier analysis is to be performed on a time series containing the M2 constituent with an analyzed length of 720 h, the PAD of the M2 constituent is 0.055%. The amplitude error in the M2 isolation is approximately predicted as 0.16% (= 0.00055² × 720² × 12.420601² × 1.6). The actual output error we already have for this length is 0.141%. For a time series length of 4,096 h, with an M2 PAD of 0.068%, the error is approximately predicted as 8.0%. The actual error is 8.114%.

According to Eqs. (6) and (7) that predict the
first-category error, if the PAD of the desired tidal constituent is appropriately limited, the first-category error in the output amplitude can be almost limited. More specifically, if the PAD is limited to less than the value of the formula as:

\[D_{Cl} = TL^{-1} \alpha, \]

(8)

the errors will be less than approximately:

\[E_{1M} = \alpha^2 \times 1.6 \]

(9)

and, in almost all cases, will be less than:

\[E_{1x} = \alpha^2 \times 2.0, \]

(10)

where \(D_{Cl} \) is the PAD criterion as a function of \(T \) and \(L \), and \(\alpha \) is a constant to be determined.

Setting the value of \(\alpha \) requires a compromise between allowable error and available data length. If \(\alpha \) is set to a tiny value, the Fourier analysis of a time series with a length selected by the criterion will provide isolation of a tidal constituent with a tiny (first-category) error, but the selected time series lengths may be restricted to too few to be practical.

2. Approach to the organization of the catalog of tidal constituent

The values in Table 2 provide rough predictions of the spectral leakages from the frequencies of the 15 constituents ([A] in Table 2) to the output frequency sites of the eight major constituents ([B] in Table 2). For instance, if Fourier analysis is intended to be performed on an hourly sampled time series that contains the O1 constituent with an amplitude of 10 and if the PAD of the O1 constituent for the analyzed length is 0.050% (e.g., for lengths 2,400 h, 4,800 h, 9,600 h, and 19,200 h), the output leakage component at the Q1 frequency site will have an amplitude of roughly 0.11 (= 10 × 0.050% × 22.540) and will never exceed 0.194 (= 10 × 0.050% × 38.738). The actual output amplitudes at the Q1 site for the above four time series lengths we already have are 0.115, 0.130, 0.116, and 0.100, respectively.

The setting of the PAD criterion for the limitation of the second-category error requires a compromise for a different reason than the reason for the first-category error. In Table 2, three values that can be used to relate the PAD of an affecting nearby constituent to the second-category error in a desired constituent are given. To refer to the maximums in the setting of the PAD criteria is the safest way. However, this choice would make the criteria excessively severe for long time series in the case where

| Table 2. Maximum, third quartile, and median of the ratios of the amplitude leakage over the period approximation deviation for the Fourier analyses of hourly sampled time series with lengths of every whole hour from 600 to 30,000 h |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Period (h) | Q1 | O1 | M1 | P1 | K1 | J1 | 2N2 | 2p2 | 2p1 | 2p2 | 2L2 | 2S2 | 2K2 |

* The PADs of nearby tidal constituents are used as “spectral leakage factors” in this study (see text).
the two relevant constituents have close frequencies. The reason is that for two such constituents, the ratio between the leakage and the PAD reaches its maximum at a time series length shorter than approximately 12,000 h and will never approach the maximum again for longer time series (as exemplified in Figs. 8a-c). Such a situation is common for the leakages of diurnal constituent to diurnal and the leakages of semidiurnal constituent to semidiurnal. Using medians or averages (not shown in Table 2) is the simplest way; however, these choices would lead to criteria a little too relaxed for short time series lengths in the case of two constituents with close frequencies. In this study, we make a compromised or moderate choice; we use the third quartiles given in Table 2 as “spectral leakage factors,” that is, coefficients for rough quantitative representations of the slopes of the proportionality of the amplitude leakage to the PAD. In the following, the empirically determined spectral leakage factor is used to calculate the representative magnitude of the leakage from the frequency of a tidal constituent to the Fourier analysis output frequency of another constituent. For example, if the O1 constituent has a PAD of 0.050% for an analyzed time series length, we calculate the representative amplitude of its leakage component at Q1 frequency site as 1.22% (= 0.050% × 24.424) of the true O1 amplitude.

To organize practical PAD criteria for the second-category errors, the difference between the amplitudes of the two relevant constituents should be considered. In the case of the last example, the possible maximum error of the Q1 output caused by the calculated representative leakage of O1 is 1.22% in the amplitude and 0.0122 rad in the initial phase, under the condition that the true amplitude of the Q1 constituent in the analyzed time series is equivalent to that of the O1 constituent. Thus, the possible maximum second-category error in the isolation of a tidal constituent affected by another nearby constituent is empirically roughly predicted by:

$$E_2 = A_y A_D^{-1} \beta D,$$

where E_2 is the second-category error; A_y and A_D are the (true) amplitudes of the affecting nearby constituent and the affected desired constituent, respectively; β is the spectral leakage factor we adopted above for the combination of the two constituents; and D is the PAD of the affecting nearby tidal constituent. If the allowable value of the predicted error is set to $E_{2,t}$, the PAD criterion for the affecting tidal constituent (D_{c2}) would be:

$$D_{c2} = A_y A_D^{-1} \beta D,$$

where C_D is the spectral leakage factor we adopted above for the affecting tidal constituent (D_{c2}) would be:

$$D_{c2} = C_D C_N^{-1} D,$$

where C_D and C_N are the absolute values of the cartwright potentials of the affected desired constituent and the affecting nearby constituent, respectively. The value of β, the spectral leakage factor, is listed in Table 2 as the third quartile. The value of $E_{2,t}$, the allowable predicted error, is left to be determined.

To organize the recommended criteria of the PADs in this study, we set the values of a in Eq. (8) and $E_{2,t}$ in Eq. (13) in an inverse way. They are set so that the derived criteria allow a convenient time series length that was conventionally used for tidal analysis (Schureman 1940, Cartwright & Catton 1963, Zetler et al. 1979) as well as already examined and used for the isolation of tidal constituents from groundwater observation data in previous studies (Shirahata et al. 2017, 2018). That length is 8,856 h, which is used for the isolation of the M2, K1, S2, O1, P1, and K2 constituents (in order of the tidal potential). The criteria are also set so that the expected or predicted first- and second-category errors are not extremely different from each other (e.g., with a difference of less than one order of magnitude). Therefore, the value of a is set to 0.05 here. The PAD criterion for the first-category error is given as follows:

$$D_{c1} = T L^{-1} \times 0.05,$$

where T is the period of the desired isolated constituent and L is the analyzed time series length. With this criterion, the first-category errors that appear in the form of the reduction of the output amplitude will approximately be $< 0.4\%$ and, in almost all cases, will be $< 0.5\%$. The allowable value of the predicted second-category error is set to 1.5\%, and the PAD criterion for the second-category error is given by:
never exceed the criteria within the time series lengths of a multiple of 1 h and not shorter than 600 h.

Table 4 lists examples of the time series lengths for the accurate isolation of the eight major tidal constituents selected by the criteria. For each of the

Table 3. Recommended criteria (upper limits) of the period approximation deviation of tidal constituents (A) for selecting time series lengths for the accurate isolation of major tidal constituents (B) by Fourier analysis

<table>
<thead>
<tr>
<th>Period (h)</th>
<th>Q1</th>
<th>O1</th>
<th>M1</th>
<th>P1</th>
<th>K1</th>
<th>J1</th>
<th>N2</th>
<th>p2</th>
<th>N2</th>
<th>q2</th>
<th>M2</th>
<th>L2</th>
<th>T2</th>
<th>S2</th>
<th>K2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartwright potential</td>
<td>**</td>
<td>0.012%</td>
<td>0.296%</td>
<td>0.078%</td>
<td>0.024%</td>
<td>0.569%</td>
<td>(3.798%)</td>
<td>(3.161%)</td>
<td>0.518%</td>
<td>(2.739%)</td>
<td>0.102%</td>
<td>(1.681%)</td>
<td>(3.875%)</td>
<td>0.234%</td>
<td>0.058%</td>
</tr>
<tr>
<td>Calculated from the frequency list in Kudryavtsev (2004)</td>
<td>**</td>
<td>0.321%</td>
<td>**</td>
<td>0.06%</td>
<td>0.23%</td>
<td>0.03%</td>
<td>(2.838%)</td>
<td>(18.605%)</td>
<td>(15.485%)</td>
<td>(2.541%)</td>
<td>(13.435%)</td>
<td>0.501%</td>
<td>(18.235%)</td>
<td>(19.244%)</td>
<td>(1.152%)</td>
</tr>
<tr>
<td>Calculated by [(tidal constituent period)·(time series length)−1×0.05]</td>
<td>**</td>
<td>0.43%</td>
<td>0.05%</td>
<td>0.28%</td>
<td>**</td>
<td>0.03%</td>
<td>0.374%</td>
<td>(7.674%)</td>
<td>(6.391%)</td>
<td>(1.015%)</td>
<td>0.208%</td>
<td>(7.589%)</td>
<td>(8.060%)</td>
<td>0.47%</td>
<td>(1.74%)</td>
</tr>
<tr>
<td>Desired isolated tidal constituent</td>
<td>**</td>
<td>0.016%</td>
<td>0.4%</td>
<td>0.003%</td>
<td>0.6%</td>
<td>0.2%</td>
<td>0.02%</td>
<td>0.005%</td>
<td>0.12%</td>
<td>0.002%</td>
<td>0.005%</td>
<td>0.005%</td>
<td>0.005%</td>
<td>0.005%</td>
<td>0.005%</td>
</tr>
</tbody>
</table>

Table 4. Example list of time series lengths recommended for the accurate isolation of tidal constituents by Fourier analysis

<table>
<thead>
<tr>
<th>Time series length</th>
<th>Isolated tides</th>
</tr>
</thead>
<tbody>
<tr>
<td>696 h</td>
<td>M</td>
<td>4,212</td>
<td>K</td>
<td>8,532</td>
<td>S</td>
<td>12,445</td>
<td>MKO</td>
</tr>
<tr>
<td>708</td>
<td>M</td>
<td>4,235</td>
<td>MO</td>
<td>8,544</td>
<td>KS</td>
<td>13,048</td>
<td>Kp</td>
</tr>
<tr>
<td>1,379</td>
<td>M</td>
<td>4,236</td>
<td>MK</td>
<td>8,545</td>
<td>MKO</td>
<td>13,068</td>
<td>Kp</td>
</tr>
<tr>
<td>1,391</td>
<td>M</td>
<td>4,260</td>
<td>MKO</td>
<td>8,554</td>
<td>S</td>
<td>13,075</td>
<td>Kp</td>
</tr>
<tr>
<td>1,403</td>
<td>M</td>
<td>4,284</td>
<td>K</td>
<td>8,808</td>
<td>KSp</td>
<td>13,116</td>
<td>KOp</td>
</tr>
<tr>
<td>1,404</td>
<td>M</td>
<td>4,285</td>
<td>MO</td>
<td>8,831</td>
<td>MKO</td>
<td>13,140</td>
<td>Kp</td>
</tr>
<tr>
<td>1,416</td>
<td>M</td>
<td>4,308</td>
<td>K</td>
<td>8,832</td>
<td>KSp</td>
<td>13,164</td>
<td>Kp</td>
</tr>
<tr>
<td>1,441</td>
<td>M</td>
<td>4,331</td>
<td>K</td>
<td>8,844</td>
<td>Msk</td>
<td>13,198</td>
<td>Kp</td>
</tr>
<tr>
<td>1,838</td>
<td>M</td>
<td>4,332</td>
<td>K</td>
<td>8,855</td>
<td>KO</td>
<td>14,483</td>
<td>Mq</td>
</tr>
<tr>
<td>2,050</td>
<td>M</td>
<td>4,357</td>
<td>K</td>
<td>8,856</td>
<td>MKSOpk</td>
<td>16,644</td>
<td>MS</td>
</tr>
<tr>
<td>3,253</td>
<td>O</td>
<td>4,524</td>
<td>K</td>
<td>8,868</td>
<td>MS</td>
<td>16,680</td>
<td>SO</td>
</tr>
<tr>
<td>3,254</td>
<td>MO</td>
<td>4,596</td>
<td>MKO</td>
<td>8,880</td>
<td>KS</td>
<td>16,704</td>
<td>SO</td>
</tr>
<tr>
<td>3,278</td>
<td>O</td>
<td>4,608</td>
<td>Mn</td>
<td>8,904</td>
<td>KS</td>
<td>17,016</td>
<td>MSO</td>
</tr>
<tr>
<td>3,279</td>
<td>O</td>
<td>4,620</td>
<td>MKO</td>
<td>9,167</td>
<td>MKO</td>
<td>17,040</td>
<td>SO</td>
</tr>
<tr>
<td>3,280</td>
<td>O</td>
<td>4,633</td>
<td>Mn</td>
<td>9,191</td>
<td>MKO</td>
<td>17,340</td>
<td>Sk</td>
</tr>
<tr>
<td>3,304</td>
<td>O</td>
<td>5,291</td>
<td>Mn</td>
<td>9,192</td>
<td>KSO</td>
<td>17,352</td>
<td>Mksk</td>
</tr>
<tr>
<td>3,564</td>
<td>O</td>
<td>5,316</td>
<td>Mn</td>
<td>9,204</td>
<td>MS</td>
<td>17,364</td>
<td>MSk</td>
</tr>
<tr>
<td>3,589</td>
<td>O</td>
<td>8,448</td>
<td>KS</td>
<td>9,216</td>
<td>MS</td>
<td>17,376</td>
<td>MKSOpk</td>
</tr>
<tr>
<td>3,590</td>
<td>MO</td>
<td>8,460</td>
<td>S</td>
<td>9,228</td>
<td>MSn</td>
<td>17,388</td>
<td>Sk</td>
</tr>
<tr>
<td>3,899</td>
<td>O</td>
<td>8,472</td>
<td>KS</td>
<td>9,241</td>
<td>Mn</td>
<td>17,688</td>
<td>KSpk</td>
</tr>
<tr>
<td>3,900</td>
<td>MO</td>
<td>8,484</td>
<td>S</td>
<td>9,253</td>
<td>Mn</td>
<td>17,700</td>
<td>Sk</td>
</tr>
<tr>
<td>3,925</td>
<td>MO</td>
<td>8,496</td>
<td>MKS</td>
<td>9,266</td>
<td>MQ</td>
<td>17,712</td>
<td>MKSOp</td>
</tr>
<tr>
<td>3,950</td>
<td>MO</td>
<td>8,508</td>
<td>MS</td>
<td>9,291</td>
<td>Mn</td>
<td>17,736</td>
<td>MKSk</td>
</tr>
<tr>
<td>3,975</td>
<td>MO</td>
<td>8,520</td>
<td>MKSO</td>
<td>9,862</td>
<td>MQ</td>
<td>18,048</td>
<td>SO</td>
</tr>
<tr>
<td>4,188</td>
<td>K</td>
<td>8,521</td>
<td>MKO</td>
<td>9,874</td>
<td>Mn</td>
<td>18,433</td>
<td>q</td>
</tr>
</tbody>
</table>

M: M2; K: K1; S: S2; O: O1; p: P1; n: N2; K: K2; q: Q1
Eight major constituents, the six combinations of two out of the four major constituents MKSO, and the four combinations of three out of MKSO, the shortest 10 lengths that enable accurate isolations are shown in Table 4. All time series lengths between 600 h and 30,000 h that enable the accurate isolations of four or more tidal constituents are also shown. The two lengths examined and recommended by Shirahata et al. (2017) other than 8,856 h, namely, 708 h for the isolation of M2 and 3,279 h for the isolations of M2 and O1, consistently passed the current criteria. Shirahata et al. (2017) inferred that the time series lengths of the multiples of their recommended lengths 708 h and 3,279 h are also recommendable. The present results showed that it holds to some extent, but for other short time series lengths (e.g., 696 h, 1,379 h, and 3,254 h), the same is not always true. The length of 8,520 h, which has been preferentially used in analyzing tides (Cartwright & Catton 1963, Miyazaki 1967, Ishitobi et al. 1993, Thomson & Emery 2014), is confirmed by the current criteria to enable the accurate isolation of the four major tidal constituents and is the shortest length to do so.

The Fourier analysis of time series longer than a few years may be rare, but the applicability of the criteria should not change for additional longer time series because the approximate stability of the formulas and the values the criteria rest on would apply almost equally well to longer time series. To give some examples, time series lengths 30,468 h and 39,684 h should enable the accurate isolations of the seven constituents MKSOpkq and MKSOpnq, respectively. Time series lengths 70,152 h and 83,292 h should enable the accurate isolations of all the eight major tidal constituents. Because these four time series lengths are multiples of 12 h, the time series data prepared for Fourier analysis can be two-, three-, or four-hourly sampled data, although sparsely sampled time series data will be subject to Fourier analysis output errors caused by random noise (Shirahata et al. 2017). Note that six-hourly sampled data cannot be used for the isolation of the S2 or K2 constituent, because these two tidal constituents have frequencies equal to or higher than the Nyquist frequency, 1/12 cph.

4. Comparison with existing formula for the prediction of spectral leakage

Blair (1979) analytically derived a formula for the approximate prediction of the total error in the Fourier output amplitude of a tidal constituent jointly caused by the amplitude leakages of five nearby constituents. By extracting terms from this formula and modifying the form and variable notations, the following formula that predicts the second-category error owing to one nearby constituent is obtained:

\[
E_2 = A_N D_N + \left| \frac{\sin \pi (L / T_N + L / T_D)}{\pi (L / T_N + L / T_D)} \right| + \left| \frac{\sin \pi (L / T_D - L / T_N)}{\pi (L / T_D - L / T_N)} \right|,
\]

where \(E_2\), \(D_N\), and \(D_D\) are the same as in Eq. (11); \(L\) is the analyzed time series length; and \(T_N\) and \(T_D\) are the periods of the affected desired tidal constituent and the affecting nearby constituent, respectively. For simple comparison with the results of the present study, assuming \(D_N = D_D\), the amplitude leakages of an affecting nearby constituent were calculated as follows:

\[
\left| \frac{\sin \pi (L / T_D + L / T_N)}{\pi (L / T_D + L / T_N)} \right| + \left| \frac{\sin \pi (L / T_D - L / T_N)}{\pi (L / T_D - L / T_N)} \right|
\]

These values can be compared with values such as those plotted in Figure 7. The ratios between the amplitude leakage and the PAD of the affecting nearby constituent were calculated by:

\[
\frac{\left| \frac{\sin \pi (L / T_D + L / T_N)}{\pi (L / T_D + L / T_N)} \right| + \left| \frac{\sin \pi (L / T_D - L / T_N)}{\pi (L / T_D - L / T_N)} \right|}{D_N}
\]

where \(D\) is the PAD of the nearby constituent. These values are to be compared with values such as those exemplified in Figure 8.

The curved line in Figure 9a shows an example of amplitude leakage calculated by Eq. (17) based on Blair (1979), the leakage of the N2 constituent to the M2 frequency, for time series lengths from 300 to 3,000 h. The values are plotted against the time series length as in Blair (1979). The dots represent the Fourier analysis results obtained in the present study. They are distributed around the prediction line derived from Blair (1979) but considerably deviate from it. Calculations based on the Blair (1979) formula rarely predict the present outputs accurately. It can be said that, at least for time series longer than approximately 900 h, the fluctuation range of the predictions matches the range of the present outputs. As mentioned in the introduction, the error prediction formula from Blair (1979) was originally derived for cases where the frequency of the desired constituent is exactly represented by an output Fourier frequency. Therefore, the prediction will be applicable if one of the available discrete Fourier frequencies closely approximates the frequency of the desired constituent, M2 in this case, with the PAD of the desired constituent close to zero. This is supported by the distribution of the present outputs for a restricted range of M2 PAD as shown in Figure 9a, which is limited to the vicinity of the prediction line from Blair (1979).
the second-category error owing to a nearby tidal constituent for a time series length that is a multiple of 1 h and generally not a multiple of the periods of the desired tidal constituents.

5. Brief comparative demonstration using real observation data

Shirahata et al. (2019b) used hourly sampled groundwater-level time series data to estimate the hydraulic properties of an island aquifer. The observation data that were collected from a site very close to an ocean shore clearly contained tidal components. By the Fourier analyses of the same data with analyzed lengths of 708 h, 3,279 h, and 8,856 h, the amplitudes of the contained tidal components were measured to be approximately 0.44 m-0.47 m for M2, 0.19 m-0.20 m for K1, and 0.17 m-0.18 m for O1 (Shirahata et al. 2014, 2018, 2019a). As a demonstration, Fourier analyses were applied with the 10 lengths from 3,900 to 4,284 h listed in Table 4 to the same observation data starting from 0:00 on August 1, 2008, and the M2, K1, and O1 constituents were isolated following Table 4. For comparison, the Fourier analyses of the same data were also performed with 10 additional lengths that did not meet the above criteria.

The Fourier analyses with time series lengths selected by the criteria provided consistent amplitudes (Fig. 10a), with values in the ranges of 0.459 m-0.464 m for M2, 0.192 m-0.195 m for K1, and 0.173 m-0.176 m for O1. The analyses of the unselected lengths produced inconsistent amplitudes (Fig. 10b), which are unlikely to be accurate.

Concluding remarks

This study investigated errors in the isolation of the eight major semidiurnal and diurnal tidal constituents by the Fourier analysis of finite-length time series.
The investigation included concrete calculations of the amplitudes and initial phases of the eight constituents by the Fourier analyses of 600- to 30,000-h-long time series data each containing one of the 15 major and relatively major tidal constituents. The PAD of a tidal constituent is inevitable in the Fourier analysis of a time series with a length not equal to a multiple of the period of the constituent. The investigation demonstrated that two categories of error are both positively related to the PADs of the tidal constituents, but in different ways. The first-category error due to the PAD of the desired isolated tidal constituent, which results in the reduction of the output amplitude of the desired constituent, can be limited by the appropriate selection of the time series length using a PAD criterion that is a function of the period of the desired tidal constituent and the time series length. The second-category error due to the PAD of a nearby tidal constituent other than the desired constituent, which leads to inaccurate output amplitude and phase, is dependent on the closeness of the frequencies of the two constituents, the magnitude relationship of the two constituents, and the PAD. This error can also be limited if the PAD of the nearby tidal constituent is restricted by a criterion based on the factors of the error empirically quantified in the present investigation. The organized set of PAD criteria can help systematically select time series lengths for the accurate isolation of the eight major semidiurnal and diurnal tidal constituents by Fourier analysis.

The criteria for the PADs of tidal constituents presented in this paper are based on representative relative amplitudes of tidal constituents. If, for a specified observation target, time, and place, the magnitude relationship between the amplitudes of tidal constituents is expected to be significantly different from what we used, another set of criteria may be more appropriate. In that case, the results of the investigations into the factors relevant to spectral leakage will be of practical help for organizing the criteria.

The results of this study enhance the applicability of the simple but accurate Fourier analysis of tidally induced fluctuations in observation data and will contribute to the studies of groundwater resources and aquifers that provide irreplaceable water resources on many remote islands.

Acknowledgements

This study was motivated during the preparation of the first author’s dissertation by a comment made by the author’s main academic advisor, Dr. Tang Changyuan, Professor at Chiba University, Japan. This research was supported by grants from the Project of the NARO Bio-oriented Technology Research Advancement Institution (Research Program on the Development of Innovative Technology).

References

Ishitobi, Y. et al. (1993) Tidal, meteorological and hydrological effects on the water level variation in a lagoon, Lake Shinji.

Shirahata, K. et al. (2019a) Estimation of hydraulic parameters of coastal aquifers using tidal response method with frequency decomposition techniques optimized for predominant tides—Application to 147-day groundwater-level data from Tarama Island—. Nougyo noson kogakukai ronbunshu (Irrigation, Drainage and Rural Engineering Journal), 87, 1_51-1_60 [In Japanese with English summary].

