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Abstract
Drainage management in a complicated system in an agricultural lowland must operate pumps 
flexibly and quickly, based on the water level at the pumping station. A data-driven model without 
any physical-based information was implemented in a complicated drainage management system to 
predict the water level of a lagoon near a main drainage pumping station. We employed a long short-
term memory (LSTM) model as an advanced neural network model to utilize the field datasets 
obtained from water-related facilities and sensors over about eight years as model input data. We 
performed sensitivity tests for model accuracy with different types of data and locations of data using 
cross-validation with an error quantity between observed and predicted water levels at the main 
drainage pumping station. The results showed that the LSTM model with the input of all available 
datasets predicted better than the models using several parts of datasets or it was roughly equivalent 
to those for water levels over the entire observed period in 3-h and 6-h lead times. In addition, the 
LSTM with only inputs of the water level and rainfall observed by drainage pumping stations 
performed better for the observed subperiod, including the severest flood event.

Discipline: Agricultural Engineering
Additional key words: complicated drainage management, K-fold cross-validation, multiple long 

short-term memory

Introduction

Drainage management in an agricultural lowland 
must facilitate the flexible and quick operation of pumps 
for the control of floods and droughts, which will be 
affected by climate change in the near future. Pumps are 
typically operated with on- or off-switching, depending 
on the water level of a water source near the pumping 
station. For flood control, pump operations have often 
been performed by skilled engineers who use their 
expertise to control the drainage management system. 
However, some negative factors recently reported in 
Japan could hinder effective and efficient drainage 
management. For example, skilled engineers may retire 
and the number of engineers could decrease due to high 
labor costs (e.g., Yamamoto et al. 2010). Artificial 

intelligence (AI) tools can be utilized to support these 
engineers or completely replace them with machines. In 
this study, an AI tool, an artificial neural network (ANN) 
model originally proposed by McCulloch & Pitts (1943), 
was developed. An ANN model was driven by a large 
amount of data without physical- and experimental-based 
parameters, unlike physical-based hydrological models. 
This study focused on the prediction of water level in a 
lagoon near a drainage pumping station using an ANN 
model.

There are several classes of ANNs, such as 
multilayer perceptron (MLP) and recurrent neural 
network (RNN). The MLP is a feedforward ANN, 
consisting of input, hidden, and output layers. Nodes on 
the layers are fully connected to the network with 
backpropagation for training (Rumelhart et al. 1986a). 
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The RNN, which entails directed graph forms in sequence 
data, can be used to predict temporal dynamic behaviors 
(Hopfield 1982, Rumelhart et al. 1986b). An example of 
an advanced RNN is the long short-term memory 
(LSTM) network originally proposed by Hochreiter & 
Schmidhuber (1997). It can predict better on a temporal 
sequence or sequential letter recognition by holding long-
term trends.

Previous studies employed an ANN model as a non-
physical hydrological model to predict long-term water 
levels at a drainage pumping station in an agricultural 
lowland. For example, Kimura et al. (2018) reported that 
water-level and discharge predictions by an MLP model 
in a small lowland with a single drainage pumping station 
were in good agreement with referenced values produced 
by pseudo-rainfalls using a physical model calibrated to 
the small lowland for supplementing insufficient 
observed datasets. Another example is a comparison 
study between MLP and LSTM models in a complicated 
drainage management system in a mid-size lowland 
(Kimura et al. 2019). This study showed that the LSTM 
model predicted long-term water levels more accurately 
than the MLP model by several percent during the highest 
peak period. The comparison was made under a 
simplified condition of the drainage management system 
that only considered the main drainage pumping station 
in discharging water from the lowland to a river. However, 
an ANN model that considers multiple drainage pumping 
stations simultaneously has not been used in a real, 
complicated drainage management system.

LSTM models are currently well-accepted for time-
series predictions. Several studies on water-level 
predictions have recently employed LSTM models with 
deep learning, particularly during riverine flood events 
(Yamada et al. 2018, Hu et al. 2018, Le et al. 2019). An 
LSTM inner structure is suitable for predicting time-
series data as its memory function retains past sequential 
patterns (Hochreiter & Schmidhuber 1997, Gers et al. 
2000). Therefore, the LSTM model was also employed in 
this study to predict water levels. This LSTM structure 
was extended with multiple hidden layers from a 
conventional hidden-layer structure of the LSTM 
described by Kimura et. al. (2019).

The purpose of this study was to evaluate the 
sensitivity of an LSTM model with multiple hidden layers 
that was implemented in a complicated drainage 
management system in an agricultural lowland to assist 
drainage management with long-term water-level 
predictions by selecting available field datasets. In this 
paper, the “Materials and methods” section describes the 
field site, LSTM structure, and setup of simulation cases. 
The “Result” section describes the LSTM predictions of 

water levels, and the “Discussion” section explains the 
evaluation of LSTM sensitivity among different input 
datasets and its accuracy compared with other studies. 
Then in summary, the conclusions of this study and 
proposed future work are presented.

Materials and methods

1. Field site
The target lowland (called Kamedagou) is located in 

the city of Niigata in the northern part of central Japan 
(37.9225°N, 139.0433°E). The Kamedagou basin covers 
an area of 99.8 km2 and its northern side is near the Sea of 
Japan. It is bounded by two main rivers (Shinano and 
Agano) on its western and eastern sides, respectively, and 
by a tributary of the Agano River to the south. Located in 
the northwest part of the basin. Lagoon Toyanogata (1.58 
km2) is used to control the entire water volume of the 
area. Kamedagou has five drainage pumping stations and 
four main irrigation pumping stations (Table 1). Two of 
the drainage pumping stations (Oyamatsu and 
Toyanogata) are directly connected to the lagoon with a 
wide canal without slopes. Oyamatsu constantly operates 
to maintain a water level of approximately 2.5 m in the 
lagoon. The other drainage pumping stations potentially 
operate from April to October during heavy rainfall 
events. These stations only employ artificial drainage 
with pumps. The irrigation pumping stations operate 
from May to August for rice-paddy cultivation. In 
addition, there are six gates on the drainage canals 
(Honsho, downstream-Yokogoshi, mid-Yokogoshi, 
upstream-Yokogoshi, Kameda, and Oishi) and six stand-
alone sensors for water level (Ohori, Kiyogoro, Yamasaki, 
Kameda, Yokogoshi, and Oishi). Each pumping station 
provides the datasets for water level, discharge that the 
pumps drain or draw, and rainfall. Each gate provides the 
water levels upstream and downstream from the gates. 
Each stand-alone sensor only provides the water level in 
one canal. Figure 1 shows a map of Kamedagou.

2. LSTM model

LSTM is a class of RNNs; it was created to train 
datasets with long-term trends and solve problems in 
vanishing and exploding gradients by introducing a 
memory cell that holds past trends. We explain the LSTM 
structure based on some past studies (Fischer & Krauss 
2018, Hu et al. 2018, Sugomori 2017). The bold variables 
show the vectors in the following description. As shown 
in Figure 2 (a), input data  that consists of multiple nodes 
at present time t are mixed with output data (e.g., water 
level) ht－1 that consists of multiple nodes at the previous 
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time step t-1. Note that a node roughly models a neuron in 
the brain. The input data move to three gates: forget, 
input, and output. The following equation defines the role 
of forget gate ft that removes some information from the 
memory cell.

 (1)

where wf,h and wf,x are the weighted coefficients in matrix 
form related to xt and ht－1, bf is a bias, and σ is a sigmoid 
as an activation function. The input gate mixes two types 
of information sources obtained from the feature 
quantities of the input data with two different activation 
functions. Equations (2) and (3) express the two sources. 
The input gate adds the mixed information to the memory 
cell.

 (2)

 (3)

where tanh is a hyperbolic tangent as an activation 
function, wi,h, wz,h, wi,x and wz,x are the weighted 
coefficients in matrix form, and bi and bz are biases. The 
variables ft, it, and zt are combined into the following 
equation with the state of a past trend at t-1 (Ct－1), which 
the memory cell holds.

 (4)

where  and  are the multiplication and addition at each 
component between two vectors, whose symbols simply 
follow those in Figure 2 (a). The following equation 
defines output gate ot that still involves the original 
feature quantities of the input data.

 (5)

Where wo,h and wo,x are the weighted coefficients in 
matrix form, bo is a bias. Finally, Ct from the memory cell 
is multiplied by ot and updates the output (ht).

 (6)

The network structure of the LSTM model has three 
layers: input, hidden, and output. The hidden layer can be 
extended to several layers of LSTM. We followed the 
Keras Documentation (https://keras.io/getting-started/
sequential-model-guide) for the sequential model 
treatment of input and output. Figure 2 (b) shows the 
LSTM network structure, when variables A and B (e.g., 
water level and rainfall) are used as input data. Variables 

C and D are predicted at the forward time steps (t+1, t+2, 
…, t+q, where q = lead time) in the output layer of the 
network. Note that lead time is defined as the time when 
the model predicts. The training of the model uses the 
input data from past p h to 0 h and the output data of 1–q 
h lead times as a set. The model inner parameters, 
corresponding to the number of nodes, are tuned to obtain 
more optimal solutions of 1–q h lead times simultaneously. 
It suggests that the longer the lead time of q, the more 
difficult the accuracy of output. The model prediction 
uses the p–0 h input data and then outputs 1–q h lead 
times at the same time through a fully-connected layer 
after LSTM output.

3. LSTM simulation design
This study focused on the temporal prediction of 

Fig. 1. Map of the field site
 The enclosed deep blue area is a lagoon. Blue lines and 

red dotted lines indicate drainage canals and irrigation 
canals, respectively, and marks show the following 
locations: ● drainage pumping stations (1: Oyamatsu, 2: 
Toyanogata, 3: Nihongi, 4: Kuraoka, 5: Honsho); 
▲irrigation pumping stations (i: Maigata, ii: Ryousen, 
iii: Soumi, iv: Takeo); * gates (a: Honsho, b: downstream-
Yokogoshi, c: mid-Yokogoshi, d: upstream-Yokogoshi, 
e: Kameda, f: Oishi); + sensors (A: Ohori, B: Kiyogoro, 
C: Yamasaki, D: Kameda, E: Yokogoshi, F: Oishi). The 
enclosed bold line indicates the boundary of the 
Kamedagou basin. These locations are referenced from 
the homepage of the Kamedagou Land Improvement 
District (http://www.kamedagou.jp/yousui/index.html, 
in Japanese). Each number on the map refers to Tables 1 
and 2.
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Fig. 2.  LSTM and network structures

Fig. 3. Data flow for LSTM training and prediction
 T0 is present time, T－2, T－1… are past times, and T1, T2… are future times.
 *Temporally predicted data indicate primary predictors from the RNN model in a learning 

process.
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water level at a lagoon connected by a canal without 
slopes to Oyamatsu, which operates continuously based 
on the water level. The water level at Oyamatsu was set 
up as a model output. The data on drainage and irrigation 
pumping stations, gates, and sensors were used for the 
sensitivity tests as model input. The basic case (Case 1) 
entailed the use of all input data. The same setup as that 
in Case 1 was also used for preliminary tests that 
determined appropriate hyperparameters such as the 
number of hidden layers and an optimizer, and other 
functions such as lead time and activation functions. The 
other cases were utilized as the sensitivity tests of input 
datasets, which were available in the field measurements. 
Cases 2 and 3 constituted the test that investigated the 
roles of facilities that control water volume in the lowland. 
Cases 4-6 tested the impact of the types of observed data 
(e.g., water level, rainfall) as related only to the drainage 
pumping stations. Cases 7-9 entailed a test similar to that 
of Cases 4-6, but only considered Oyamatsu, which 
always operates to ensure normal water-level control as 
well as flood control. The model was run for the nine 
cases listed in Table 2.

4. Data acquisition, model validation, and data flow
The observed data at all pumping stations, gates, 

and sensor locations were obtained at Kamedagou from 
March 2010 to November 2017. The data collected at each 
pumping station were pump discharge (hereafter 
“discharge”), rainfall, and water level. Upstream and 
downstream water levels were measured at each gate. 
The water level was measured at each sensor location. 
Data from the Toyanogata drainage pumping station were 
collected and preserved by Japan’s Ministry of Land, 
Infrastructure, Transport, and Tourism (MLIT). The 
Kamedagou Land Improvement District, a local social 

association for land development, obtained the other data 
in cooperation with Niigata Prefecture and Japan’s 
Ministry of Agriculture, Forestry and Fisheries (MAFF). 
These data were used to train the LSTM model and 
evaluate the errors of model predictions. K-fold cross-
validation (Geisser 1993) was employed for the validation 
comparison. The number K was set to 10, and the 
observed data were separated into ten groups. Nine 
groups were used for training the model and one group 
was used for comparison with the model prediction. The 
one group for model prediction was exchanged with the 
other groups in order. Note that chronological-order 
periods during daily and flood pump operations are much 
shorter than a period of each group, although a nested 
cross-validation (Varma & Simon 2006) is typically used 
to capture progressive trends of time-series data. A 
quantitative error between observation and prediction 
was defined by root mean square error (RMSE). For a 
comparison among all cases listed in Table 2, a mean 
RMSE that is averaged over the RMSEs from ten time 
tests in each group was adopted. The second group 
(Group 2) of the ten groups was also considered for 
RMSE evaluation because it involves the highest flood 
peak during the observed period.

Observed data were obtained from field 
measurements in the first step. Parts of the observed data 
were used for the K-fold cross-validation in a learning 
process in the second step. In the third step, the remaining 
observed data were used for prediction. Figure 3 
illustrates the data flow for the aforementioned 
procedures in LSTM learning and prediction. The 
program for the LSTM model was created using Python 
(version 3.6.4, http://www.python.org) incorporated with 
the Python deep learning libraries in Keras (http://keras.
io/) that include the Tensorflow module on a Windows-
OS PC with an Intel Core i7-4770K CPU at 3.50 GHz. 
The computational time averaged for all cases was 
approximately 1 h. Table 3 details the setups of several 
hyperparameters, such as batch size, epoch number, and 
activation functions.

Results

The field data in Kamedagou were obtained from 
March 2010 to November 2017. The data were screened 
by simply removing errors and interpolating between 
missing data. Figure 4 shows the water-level and rainfall 
data with the ten groups at the major drainage pumping 
station (Oyamatsu) for about eight years. These data 
indicate that several severe flood events occurred due to 
heavy rains. The largest flood event appears in Group 2 
(Fig. 4 (b)). First, preliminary tests for the sensitivities of 

Table 1. Characteristics of drainage and irrigation pumping 
stations

No. Name Maximum flow 
rate (m3/s)

Number of 
pumps

Drainage pumping station
1 Oyamatsu 60.0 4
2 Toyanogata 40.0 Unknown
3 Nihongi 6.8 3
4 Kuraoka 12.8 3
5 Honsho 16.2 3

Irrigation pumping station
i Maigata 5.9 3
ii Ryousen 4.2 2
iii Soumi 8.4 2
iv Takeo 2.2 2
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Table 2.  Simulation cases

No. Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9
Drainage pumping stations

1
Water level ○ ○ ○ ○ ○ ○ ○ ○ ○
Rainfall ○ ○ ○ ○ ○ ○ ○
Discharge ○ ○ ○ ○ ○

2
Water level ○ ○ ○ ○ ○ ○
Rainfall ○ ○ ○ ○ ○
Discharge ○ ○ ○ ○

3
Water level ○ ○ ○ ○ ○ ○
Rainfall ○ ○ ○ ○ ○
Discharge ○ ○ ○ ○

4
Water level ○ ○ ○ ○ ○ ○
Rainfall ○ ○ ○ ○ ○
Discharge ○ ○ ○ ○

5
Water level ○ ○ ○ ○ ○ ○
Rainfall ○ ○ ○ ○ ○
Discharge ○ ○ ○ ○

Irrigation pumping stations

i
Water level ○ ○ ○
Rainfall ○ ○ ○
Discharge ○ ○ ○

ii
Water level ○ ○ ○
Rainfall ○ ○ ○
Discharge ○ ○ ○

iii
Water level ○ ○ ○
Rainfall ○ ○ ○
Discharge ○ ○ ○

iv
Water level ○ ○ ○
Rainfall ○ ○ ○
Discharge ○ ○ ○

Gates for water level

a
Upstream ○ ○
Downstream ○ ○

b
Upstream ○ ○
Downstream ○ ○

c
Upstream ○ ○
Downstream ○ ○

d
Upstream ○ ○
Downstream ○ ○

e
Upstream ○ ○
Downstream ○ ○

f
Upstream ○ ○
Downstream ○ ○

Sensors for water level
A ○
B ○
C ○
D ○
E ○
F ○
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the hyperparameters related to the LSTM network 
structure and calculational conditions were performed. 
From the preliminary results, the following 
hyperparameters were chosen for a more appropriate 
setup. The number of hidden layers in the network 
structure was set to two, which indicates the adoption of 
multiple hidden layers of LSTM. Time-series data in 
input were set up with the past 6 h and the present. Table 
3 lists the other model setups including the 
hyperparameters selected in this study. Appendix I 
presents the major results of the preliminary tests.

This study focused on the sensitivity test for input 
datasets that consist of water level, discharge, and rainfall 
obtained from different locations in the LSTM model, 
which was implemented in a complicated drainage 
management system. We ran nine cases and compared 
their model predictions with the observed data by the 
mean of RMSEs among the ten groups (M-RMSE). 
Because the RMSE of Group 2 (G2-RMSE) potentially 
became worse than those of the other groups in the 
preliminary tests, the G2-RMSE and M-RMSE were 
chosen for the evaluation of model accuracy. The response 
time of water level to rainfall is typically 3-4 h; however, 
the drainage management system in the target lowland 
keeps monitoring the water level of the lagoon with up to 
6 h of lead time (MAFF Rural Development Bureau). 

Therefore, G2-RMSE and M-RMSE were observed with 
1, 3, and 6 h of lead time.

For Case 1, the predicted water levels for the lead 
times of 1, 3 and 6 h at the target station (Oyamatsu) 
showed M-RMSEs of 0.023, 0.034, and 0.046 m, 
respectively. When a relative M-RMSE is defined as 
M-RMSE divided by the variation between the maximum 
and minimum water levels during the observed period, 
the relative M-RMSEs of Case 1 were 1.81%, 2.70%, and 
3.72% for lead times of 1, 3, and 6 h, respectively. The 
Nash-Sutcliffe coefficients (NSs) in Table 3 were 0.82, 
0.62, and 0.26 for 1-, 3-, and 6-h lead times. It indicates 
that the predictions of Case 1 were good for 1- and 3-h 
lead times, but not for the 6-h lead time. In addition, the 
RMSEs of Group 2 were 0.03, 0.041, and 0.054 m, 
respectively, corresponding to the relative RMSEs of 
2.58%, 3.57%, and 4.66% with respect to the variation 
between the maximum and minimum water levels during 
the Group 2 subperiod (Table 4). The NSs of Group 2 
were 0.79, 0.59, and 0.30 for 1-, 3-, and 6-h lead times, 
respectively, which are similar to the mean NSs of all 
groups. Due to the poorer prediction accuracy among the 
ten groups, the water levels of Group 2 are drawn in 
Figure 5 with zoomed panels that indicate a typically 
operated period and a flood period. The prediction of 6-h 
lead time cannot determine the observations on typical 

Table 3.  Setups of LSTM hyperparameters and other functions

Hyperparameters Values/function Remarks
Number of hidden layers 2
Number of vector dimensions in 
LSTM inner parameters (nodes) 20 e.g., Ct in Fig. 2a

Past and present time in input －6 to 0　 Time interval = h
Lead time in output 1 to 6 Same as above
Batch size 100
Number of epochs 100
Learning rate 0.01 Only for SGD
Dropout rate 0.0
Reproducibility None
Optimizer Stochastic gradient descent (SGD)

Activation function Sigmoid or 
hyperbolic tangent

Loss function
Sum of squared residuals ci=model prediction, oi=observed 

data, N1=the number of data

Error evaluation

Root mean square error (RMSE)
Same as above

Nash-Sutcliffe coefficient (NS)
Same as above, and <*> = average
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water-level control and flood control from the lines in the 
small panels. In particular, quick increases in water level 
at the starting point are shifted backward on a flood wave 
because a 6-h time lag exists. This poor prediction was 
caused by the LSTM model feature in which the model 
must obtain optimal solutions from 1-6 h simultaneously 
in the training. Given a longer time lag, the model cannot 
forecast a rising part for the waveform increase until a 
symptom of the increase appears.

Table 4 presents the RMSEs of the other cases. The 
M-RMSEs in 1-, 3-, and 6-h lead times are approximately 
0.022, 0.035, and 0.047 m, respectively. The ranges of 
G2-RMSEs are more fragmented than those of 
M-RMSEs. For a quantitative comparison of the cases, 
the differences between the RMSE of Case 1 and those of 
the other cases were plotted (Fig. 6). The aforementioned 
difference is defined using the following equation.

 (7)

where RMSE is replaced by M-RMSE or G2-RMSE. The 
M-RMSEs of Cases 2-9 in a 1-h lead time are slightly 
improved, but those in 3- and 6-h lead times are worse 
than the M-RMSE of Case 1. In particular, Cases 8-9, 

only using the data at Oyamatsu, provide much worse 
errors. The G2-RMSE of Case 1 in 1-h lead time is more 
than 6% worse than those of the other cases, except for 
Case 3. Most G2-RMSEs in the 3- and 6-h lead times of 
Cases 2-9, excluding Cases 5 and 7, are more than 2% 
worse than that of Case 1. Case 5 has better output than 
the other cases in 1-, 3-, and 6-h lead times in Group 2. 
Figure 7 illustrates the predicted water levels of Case 5 in 
Group 2. The small panels in the typically operated and 
flood periods indicate that the water levels of Case 5 are 
greatly improved with better fits to observed data after 
wave peaks.

Discussion

The prediction accuracy of the LSTM model was 
evaluated among nine cases using RMSEs. A better 
prediction was the output of Case 1 that used all datasets 
from all observed locations for a comparison of 
M-RMSEs, for the output of 3-h and 6-h lead times 
(except the 1-h lead time at Oyamatsu) as input data. The 
worst result of Case 1 in 1-h lead time was potentially 
caused by time lags of water movement between the 
predicted location and other observed locations.  
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This implies that the model in Case 1 inappropriately 
trained the time lags due to poor determination of 
numerous relationships among datasets. The outputs of 
longer lead times suggest that a complicated drainage 
management system similar to the one in this study may 
require numerous datasets that cover information related 
to the water volume of the lowland as much as possible. 
As in the comparison of M-RMSEs, Case 1 was worse in 

1-h lead time and better in longer lead times for G2-
RMSEs, except for Case 5. The model in Case 5 that 
considered only drainage pumping stations excluding the 
discharge data made the best predictions for all lead 
times. The reason is that the predicted water level at 
Oyamatsu is mainly affected by the drainage pumping 
stations that transfer the water volume from the area to 
the rivers during a flood event, and the severest flood 

(a)

(b)

(c)

(d)

Observed period in 2010-2011

R
ai

nf
al

l
(m

m
/h

)
W

at
er

 L
ev

el
in

 1
 h

 (m
)

W
at

er
 L

ev
el

in
 3

 h
 (m

)
W

at
er

 L
ev

el
in

 6
 h

 (m
)

40

20

0

–1.5

–2.0

–2.5

-2.4

-2.6

-1.5

-2.0

-2.5

–1.5

–2.0

–2.5

–1.5

–2.0

–2.5

Dec28-10 Feb16-11 Apr07-11 May27-11 Jul16-11 Sep04-11

04/28 04/29 04/30 05/01 07/28 07/29 07/30 07/31

Fig. 5. Predicted water levels of Case 1 compared with observed data at Oyamatsu in Group 2 with lead times of 1, 3, and 
6 h

 Gray and black lines indicate observed data and predicted data of water level, respectively. The two small panels show a 
typically operated period and a flood period, respectively.

53

ANN Prediction for Water Levels at Drainage Pumping Stations



event is a major characteristic of data patterns in Group 
2. However, the data on discharge excluded in Case 5 
were not countable, although discharge is a main factor 
when performing flood control. The Group 2 result of 
Case 5 shows that water level and rainfall for input data 
were the major factors of better prediction for a longer 
lead time when compared with those of Cases 4 and 6 
(Fig. 6 (b)).

This study with an ANN-based model is the first, to 
the authors’ knowledge, to perform sensitivity tests 
related to input datasets from the field in a complicated 
drainage management system in a lowland setting. 
However, some studies have reported long-term 
predictions of water level, including riverine flood events. 
Yamada et al. (2018) reported that the LSTM model 
performed well for long-term prediction of water levels, 
including multiple riverine flood events. Their model 
setups were similar to those in the present study. For 
example, 95% of 18 years was used for training and the 
rest was used for prediction. A difference in the setup is 

that the targeted water level was a river in a watershed 
that ranges from mountain highland to 0 m lowland. 
However, the targeted water level in our study was a 
lagoon in a lowland under a 0 m area. The RMSE for their 
model accuracy was 0.18 m in a 6-h lead time at the 
downstream location. The M-RMSEs in the present study 
had a similar order based on the evaluation of model 
accuracy, although their RMSE was approximately 40% 
of our M-RMSEs.

Less accurate predictions in this study may have 
occurred for the following reasons, however. The 
observed water levels were affected by pump operations 
based on human judgment during flood events and by 
inhomogeneous time delays due to inertial force when 
switching the pumps on or off. These observed data 
might contain fewer periodic patterns than the number 
the LSTM model needs to learn. Another reason could be 
the model setup by Yamada et al. (2018). The data 
obtained along a main river can be beneficial to train 
temporal variations of water level, including flood events. 

Table 4.  Prediction accuracy among cases in lead time

Case name M-RMSE (m) G2-RMSE (m) Remarks
1 ha 3 ha 6 ha 1 ha 3 ha 6 ha

Case 1 0.0225 0.0335 0.0461 0.0299 0.0414 0.0541 All data from fields
Case 2 0.0218 0.0338 0.0469 0.0281 0.0417 0.0565 All data from facilities
Case 3 0.0219 0.0336 0.0460 0.0325 0.0438 0.0555 Data from only stations
Case 4 0.0215 0.0335 0.0462 0.0294 0.0418 0.0559 Only drainage consideration
Case 5 0.0224 0.0357 0.0477 0.0275 0.0406 0.0538 Same as above
Case 6 0.0222 0.0355 0.0476 0.0281 0.0437 0.0585 Same as above
Case 7 0.0210 0.0338 0.0472 0.0264 0.0406 0.0566 Only Oyamatsu consideration
Case 8 0.0222 0.0367 0.0499 0.0278 0.0432 0.0579 Same as above
Case 9 0.0222 0.0367 0.0496 0.0280 0.0434 0.0576 Same as above

a 1, 3, and 6 h indicate lead times.
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Fig. 6. RMSE differences between Case 1 and the other cases
 The negative values indicate the reduction in RMSE compared to Case 1.
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This is because the data pattern of the upstream river 
must be similar to that of the predicted location 
downstream. As a result, the data pattern upstream 
strongly reflects the pattern at the predicted location, 
although a certain time lag exists. Water levels at 
observed upstream locations can enhance a similar water 
level in a learning process. Therefore, it is possible that 
their model accuracy was much better than that in the 
present study.

Conclusion

In this study, sensitivity tests of the LSTM model 

implemented in a complicated drainage management 
system in a lowland area were performed to predict long-
term water levels in a lagoon near a main station where 
the water volume is always controlled. Nine case 
predictions based on the type and location of data were 
conducted using datasets obtained from the sensors and 
facilities that control water movement and volume in the 
area. The findings related to model accuracy using 
M-RMSE and G2-RMSE are as follows:
1. The error evaluation for the entire simulation period 

(i.e., Groups 1-10) revealed that Case 1 containing all 
datasets from the field had relatively better or roughly 
equivalent accuracy for the water level in 3- and 6-h 
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lead times when compared with the other cases,  
but provided poorer accuracy in a 1-h lead time than 
the other cases.

2. The error evaluation for the subperiod simulation 
including the severest flood event (i.e., Group 2) 
showed that Case 5, containing the dataset of water 
levels and rainfalls only from the drainage pumping 
stations, provided the most accurate prediction of 
water levels in 1-, 3-, and 6-h lead times.

 For the prediction of long-term water levels in a longer 
lead time, it is reasonable that the use of all datasets 
over the field (Case 1) provided better performance due 
to the available information that may include the 
factors of time lags. For the predicted water level in the 
subperiod that includes the severest flood event, the 
result of Group 2 in Case 5 was better. However, the 
physical reason why is unknown due to a data-driven 
model. Therefore, in future work, we need to study the 
implications of physical mechanisms from the datasets 
by using methods that evaluate major factors based on 
the contribution to the model’s predictions, such as 
Local Interpretable Model-agnostic Explanations 
(LIME, Ribeiro et al. 2016) and SHapley Additive 
exPlanations (SHAP, Lundberg & Lee 2017).
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Appendix I

The preliminary sensitivity tests were performed for 
hyperparameters to choose a better setup of the LSTM 
model. Major tests included the number of hidden layers 
in the LSTM network structure, a selection from several 
optimizers in Keras that search for a local minimum of 
the loss function, and error evaluation of the ten groups 
that were separated from the observed period. The 
learning rate controls how much the weights of networks 
are adjusted to the gradient of the loss function. As a 
result of the first test related to the number of hidden 
layers, two layers can be appropriate for a longer lead 
time (after 3 h), although the mean RMSE of one layer is 
similar to that of the two layers (Fig. A1). Moreover, a 
deep-learning approach of more than three layers might 
not be trained appropriately in the learning process due to 
a limited number of data (Zappone et al. 2019). Stochastic 
gradient descent (SGD) was employed as an optimizer in 
this test.

In the second test for a better optimizer, SGD, 
Adagrad, Adam, Adamx, Nadam, and root mean square 
propagation (RMSProp) were selected. SGD is an 
iterative optimizing method with a smoothing approach 
and a constant learning rate based on a substantially 
stochastic approximation (Robbins & Monro 1951). 
Adagrad is a modified version of SGD with a per-
parameter learning rate (Duchi et al. 2011), and Adam is 
an extended version of SDG that is designed particularly 
for a deep learning approach (Kingma & Ba 2015). 
Adamax is an extended method of Adam based on the 
Euclidean norm of individual present and past gradients 
(Kingma & Ba 2015). Nadam is a modified version of 
Adam incorporating Nesterov momentum based on a 
moving window of gradient updates (Dozat 2016), and 
RMSProp is a method that determines a specific learning 
rate for each parameter (Hinton). The number of hidden 
layers was set to two. The mean RMSEs from these 
optimizers similarly increase with respect to lead time 
from 1 to 10 h (Fig. A2). The mean RMSE of SGD is 

slightly better than those of the other optimizers from 1 
to 4 h. A lead time of 3-4 h is roughly equivalent to a 
maximum response time of water level to rainfall in the 
target lowland, from past flood events.

The third test evaluated the differences in RMSEs 
among the groups with up to a 4-h lead time. The number 
of hidden layers was two, and SGD was selected as a 
better optimizer. Group 2 had a higher RMSE up to a 4-h 
lead time in Fig. A3, because it involves a maximum 
water level caused by a more severe flood event. As a 
result, for the RMSE in Group 2, it is important to 
measure the worst error in the LSTM model as well as the 
mean RMSE.
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