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Abstract
Crop damage due to environmental stresses, including drought, high salinity, and high temperature, oc-
curs worldwide. Therefore, genetically modifying plants to increase their environmental stress tolerance 
is an important global issue. In this paper, we discuss recent developments in basic and applied research 
aimed at genetically improving crop environmental stress tolerance. First, we review the progress made 
in understanding the environmental stress-tolerance mechanisms in plants, using Arabidopsis or rice 
as models. Then, we discuss our international collaboration to genetically modify crops such as rice, 
wheat, sugarcane and soybean that entails greenhouse- or field-based drought-tolerance tests. Finally, 
we assess the future prospects for developing stress-tolerant varieties.
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Introduction

Extreme weather occurs frequently around the world, 
causing crop damage. The damage caused by droughts is 
extensive and has become a serious global problem (Yadav 
et al. 2011). Drought, which leads to extensive damage 
over several decades, has caused a significant loss in food 
production. In 2012, droughts in the United States affected 
the production of such crops as maize and soybean, and had 
a huge impact on the world’s food supply (Edmeades 2013, 
Nakashima et al. 2014). In Brazil, droughts often damage 
the production of soybean (Nakashima et al. 2014), and 
severe droughts have occurred there four times (2004/2005, 
2008/2009, 2011/2012, and 2013/2014 seasons) in the past 
10 years (Alexandre Nepomuceno, Embrapa, Brazil, per-
sonal communication). Drought is a major cause of hunger 
in developing countries. Of the total rice cultivation area 
in Asia, rain-fed fields account for 20%, totaling 23 mil-
lion hectares, and are vulnerable to the impact of drought 
(Pandey & Bhandari 2007). The United Nations predicts 
that 2.7 billion people will face severe water shortages in 
2025. Given current population growth and possible water 
shortages in the near future, the Comprehensive Assessment 

of Water Management in Agriculture released in 2003 by 
the International Water Management Institute concluded 
that it is necessary to increase crop production by 40% in 
drought areas before 2025 (Pennisi 2008). Thus, drought-
tolerant crops such as rice, wheat, maize, and soybean must 
be developed to ensure food security.

We have studied the molecular mechanisms involved 
in environmental stress responses in rice and Arabidopsis 
as model plants for more than 20 years, and have revealed 
that stress-inducible transcription factors (TFs) such as 
dehydration-responsive element-binding protein (DREB), 
abscisic acid (ABA)-responsive element-binding factor 
(AREB), NAM (no apical meristem), ATAF (Arabidopsis 
transcription activation factor), and CUC (cup-shaped 
cotyledon) (NAC) play important roles in regulating stress 
responses and tolerances (Fig. 1; reviewed in Nakashima 
et al. 2009, Nakashima et al. 2014, Yamaguchi-Shinozaki 
& Shinozaki 2006). The overexpression of these key genes 
enhanced stress tolerance in rice and Arabidopsis in 
greenhouse experiments. We have been collaborating with 
various research institutes to examine whether such genes 
can improve stress tolerance in the field or in other crops 
(reviewed in Nakashima et al. 2014). This review provides 
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an overview of the recent progress made in molecular stud-
ies on stress tolerance and the current status of international 
collaborative research on improving stress tolerance in 
crops.

Molecular responses and tolerance to stresses in 
plants

1.	 DREB1/CBF TFs
DREB protein 1A (DREB1A), DREB1B, and DRE-

B1C are plant-specific AP2/ERF-type TFs which were iso-
lated as proteins that bind to DREs in promoters responsive 
to drought, high salinity, and low temperature in Arabidop-
sis (Liu et al. 1998). These genes are located in a locus in 
tandem and are induced by low temperatures. The DREB1s 
were also isolated as C-repeat binding factors (CBFs) that 
bind to C-repeats in cold-responsive promoters (Jaglo-Ot-
tosen et al. 1998). Recent studies have revealed that natural 
variations in the CBFs’ cold-response pathway correlate 
with local adaptations in Arabidopsis ecotypes (Gehan et 
al. 2015). DREB-type proteins have been isolated from 
a number of other plant species such as barley, rice, sun-
flower, maize, and wheat (reviewed in Mizoi et al. 2012). 

Overexpression of these genes enhanced the tolerance to 
drought, high salinity, and low temperature in Arabidopsis. 
In transgenic plants including rice and tobacco, overex-
pressing DREB1A also showed improved drought tolerance 
under greenhouse conditions (Ito et al. 2006, Kasuga et al. 
2004). However, the constant overexpression of DREB1A 
using the 35S promoter of the Cauliflower Mosaic Virus 
induced growth defects. Such stress-responsive promoters 
as RD29A of Arabidopsis are associated with the avoidance 
of growth defects caused by DREB1A expression (Kasuga 
et al. 1999).

2.	 DREB2 TFs
DREB2s were also isolated as DREB proteins (Liu 

et al. 1998). However, the overexpression of DREB2 
did not induce expression of the target genes, indicating 
that modifications are necessary to activate the DREB2 
proteins. DREB2Aca, which harbors a defect in its nega-
tive regulatory domain, is transcriptionally active and the 
stress-responsive overexpression of DREB2Aca improved 
stress tolerance in Arabidopsis (Sakuma et al. 2006a). An 
integrated analysis of transcripts and metabolites showed 
very different expression levels of the genes responsible for 
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Fig. 1.	 Transcriptional network under environmental stress conditions in plants.
Abiotic stresses such as osmotic stress, heat stress, and cold stress induce the expression 
and/or activation of transcription factors. The transcription factors bind to specific cis-ele-
ments to induce the expression of targeted stress-inducible genes. The products of the genes 
function in stress response and tolerance. Ellipses denote transcription factors; boxes denote 
cis-elements. Details are described in the text.
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carbohydrate metabolism in DREB1A and DREB2A trans-
genic Arabidopsis (Maruyama et al. 2009). DREB proteins, 
including DREB2A, cooperate with AREB/ABF proteins 
in gene expression (Lee et al. 2010, Narusaka et al. 2003). 
AREB/ABFs and SNF1-related protein kinases type 2s 
(SnRK2s) are involved in expression of the DREB2A gene 
under osmotic stress conditions (Kim et al. 2011), suggest-
ing that there are complex interactions between the AREB 
and DREB pathways. We will describe the international 
collaborative research focused on developing drought-toler-
ant plants using DREB2. The function of DREB2 during 
heat stress is described next.

Heat and the accompanying dehydration cause severe 
damage to crops in drought situations. Heat shock factors 
are important TFs for controlling the expression of heat 
shock proteins in both flora and fauna. A comprehensive 
microarray analysis of the transgenic plants overexpressing 
DREB2 revealed that DREB2 induces the expression of 
heat-related genes, such as heat shock proteins. The over-
expression of DREB2Aca can enhance the tolerance levels 
to drought and heat stress in Arabidopsis (Sakuma et al. 
2006b), indicating that the overexpression of DREB2 might 
improve the heat and drought tolerance of crops in the field. 
Recent studies showed that DNA polymerase II subunit B3-
1 (DPB3-1)/nuclear factor Y, subunit C10 (NF-YC10) binds 
to DREB2A, and the overexpression of DPB3-1 improves 
heat tolerance in Arabidopsis (Sato et al. 2014). Dpb3-1 

might be useful in improving the heat tolerance of crops. 
Heat shock factors control DREB2A expression, suggesting 
that there are cascades of TFs involved in controlling gene 
expression under heat-stress conditions (Yoshida et al. 
2011).

3.	 AREB1/ABF TFs
ABA is a phytohormone that plays important roles 

in plants under water-limiting conditions such as drought. 
ABA controls molecular responses, including the expression 
of genes associated with drought response and tolerance 
(Fig. 1), and mediates physiological responses, including 
stomatal closure. AREB/ABFs are ABA-responsive bZIP-
type TFs. These bind to ABREs in the stress-responsive 
promoters and activate gene expression (Figs. 1, 2). Among 
the AREB/ABF TFs in Arabidopsis, AREB1, AREB2, 
and ABF3 were reported to have important roles in ABA 
signaling in the vegetative stage under drought conditions 
(Yoshida et al. 2010). Recently, ABF1 was also reported 
to play an important role in ABA signaling and drought 
tolerance in the vegetative stage in Arabidopsis (Yoshida et 
al. 2015). Other AREB/ABF TFs, including ABI5 and EEL, 
were reported to have roles in seed maturation and germina-
tion (reviewed in Fujita et al. 2013). 

Because the native form of AREB1 cannot activate 
target genes such as RD29B in Arabidopsis, modification is 
necessary for transcriptional activation. Our group revealed 
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Fig. 2.	 Model of ABA perception and signaling in plants.
(A) Under normal growth conditions; (B) Under stress conditions or during seed maturation.
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that the deletion (Fujita et al. 2005) or phosphorylation-
mimic (Furihata et al. 2006) forms of AREB1 could activate 
transcription, and that the overexpression of such forms 
could also improve drought tolerance. 

In ABA research, ABA PYR/PYL/RCAR receptors 
have recently been discovered (reviewed in Cutler et al. 
2010, Fujita et al. 2013a, 2013b, Miyakawa et al. 2013, 
Nakashima and Yamaguchi-Shinozaki 2013, Raghavendra 
et al. 2010, Umezawa et al. 2010, Weiner et al. 2010). Fig-
ure 2 shows the ABA perception and signaling mechanisms. 
When ABA does not exist (stress-free condition; Fig. 2 A), 
type 2C protein phosphatases (PP2Cs) dephosphorylate 
SnRK2s, resulting in inactivation of the SnRK2s and ABA 
signal transduction not occurring. When ABA exists (stress 
conditions and seed maturation stage: Fig. 2 B), it forms a 
complex with the PYR/PYL/RCAR receptors and PP2Cs, 
inactivating the PP2Cs. Then SnRK2 can phosphorylate 
target proteins such as AREB/ABFs TFs; consequently, 
AREB/ABFs are activated. The activated AREB/ABFs 
bind to ABRE in stress-responsive promoters and trigger 
gene expression. The SnRK2-activated proteins and the 
expressed proteins function in ABA responses. ABA recep-
tors form a family in plants, and the differences in their 
expression patterns and functions are under study. 

PP2Cs in Clade A, including ABI1 and ABI2, are 
negative regulators of ABA signaling and play important 
roles in ABA perception and signaling as described above 
(Fig. 2). This clade contains ~10 PP2Cs in rice and Arabi-
dopsis, but their expression patterns and functions are not 
well known. Interestingly, recent studies have suggested 
that ABI2 modulates nitrate sensing and uptake (Léran et 
al. 2015), and that ABI1 regulates the signaling involved in 
the carbon and nitrogen nutrient balance (Lu et al. 2015). 
Crosstalk between ABA and nutrient signaling could pos-
sibly control plant growth under stress conditions.

SnRK2s are positive regulators in ABA signaling and 
play important roles in controlling the activity of target 
proteins, including AREB/ABFs, through phosphorylation, 
as described above (Fig. 2). We studied three types of 
ABA-associated SnRK2s (SRK2D, SRK2E, and SRK2I) in 
Arabidopsis and revealed their crucial roles in ABA signal-
ing (Fujita et al. 2009, Nakashima et al. 2009a). The triple 
knockout mutant showed defects in all of the traits involved 
in ABA response, such as ABA-responsive gene expression, 
drought tolerance, and seed dormancy. The data suggest that 
these SnRK2s function in the control of stress tolerance in 
the vegetative stage, and in the control of seed maturation 
and germination.

4.	 Other TFs
Other TFs, including MYB, MYC, and NAC, are 

also related to stress response and tolerance in Arabidopsis 
(reviewed in Nakashima et al. 2009b, Nakashima et 

al. 2014, Yamaguchi-Shinozaki & Shinozaki 2006). We 
studied stress-responsive NACs in Arabidopsis and rice, 
and showed that the overexpression of NACs improves 
stress tolerance (Nakashima et al. 2007, Nakashima et al. 
2013, Takasaki et al. 2010, Tran et al. 2004). Other groups 
also reported that the overexpression of NACs can improve 
drought tolerance. For instance, the overexpression of 
SNAC1 in rice improves drought tolerance in the field (Hu 
et al. 2006). NACs may be involved in root growth (Jeong 
et al. 2013, Redillas et al. 2012), and a recent study revealed 
that stress-responsive NACs affect the control of senes-
cence (Garapati et al. 2015, Takasaki et al. 2015). Takasaki 
et al. (2015) identified the major roles of seven genes from 
the A subfamily of stress-responsive NACs (SNAC-A) in 
ABA-inducible leaf senescence during stress responses. An 
analysis of the septuple mutant revealed the retardation of 
ABA-inducible leaf senescence. They also identified target 
genes of the SNAC-A TFs to show the differences between 
AREB/ABF-inducible genes and SNAC-A-inducible genes. 
These results suggest that the SNAC-A subfamily of genes 
is mainly involved in ABA-induced leaf senescence.

5.	 Other factors
Genes encoding proteins other than TFs that have 

important functions in stress-response and tolerance have 
also been reported (reviewed in Nakashima et al. 2009b, 
Nakashima et al. 2014, Yamaguchi-Shinozaki & Shinozaki 
2006). For instance, genes encoding 9-cis-epoxycarotenoid 
dioxygenase (NCED) to synthesize ABA (Iuchi et al. 2001), 
galactinol synthase (GolS) for the synthesis of oligosaccha-
rides (Taji et al. 2002), late embryogenesis abundant (LEA) 
proteins (Xiao et al. 2007), and CCCH-type zinc finger pro-
teins for the control of RNA metabolism (Jan et al. 2013), 
have important roles in the regulation of stress tolerance. 
The overexpression of OsLEA3 improves the drought toler-
ance of rice in the field (Xiao et al. 2007). Recent studies 
revealed that stress-responsive OsTZF1 was involved in 
the control of senescence (Jan et al. 2013). While OsTZF1 
is stress responsive, its constant overexpression causes 
growth retardation. For the purpose of crop improvement, 
stress-responsive promoters must be used to drive OsTZF1 
to avoid growth retardation. 

International collaboration for the genetic 
improvement of drought tolerance in crops

The frequency and severity of droughts have increased 
in recent years, and the resulting damage caused has 
become more serious as compared with previous eras. 
Rain-fed cultivation is impacted more greatly than irrigated 
cultivation, and such rain-fed cultivation areas are closely 
linked with areas of poverty. Thus, drought has a significant 
impact on social issues in developing countries. Our 
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research team has established international collaborative 
research projects in cooperation with other research institu-
tions, including international institutes, under the umbrella 
of national research centers in developing countries and the 
Consultative Group for International Agricultural Research 
(CGIAR) to improve drought tolerance in crops (reviewed 
in Nakashima et al. 2014). In our joint projects, research-
ers in different countries and specializing in such diverse 
fields as molecular biology, transformation technology, 
plant breeding, plant physiology, and eco-physiology work 
toward the development of drought-tolerant crops.

1.	 Rice and wheat
We introduced such genes as DREB1 into lowland 

rice, upland rice, and wheat to evaluate drought tolerance 
in fields in collaboration with research centers affiliated 
with the CGIAR, such as the International Rice Research 
Institute (IRRI) in the Philippines, the International Tropi-
cal Agriculture Center (CIAT) in Colombia, and the Interna-
tional Maize and Wheat Improvement Center (CIMMYT) 
in Mexico, respectively (Gaudin et al. 2013, Pellegrineschi 
et al. 2004, Saint Pierre et al. 2012). Japan’s Ministry of 
Agriculture, Forestry and Fisheries (MAFF) supported a 

collaborative research project from 2007 to 2012 known 
as the “Development of abiotic stress tolerant crops by 
DREB genes” project (DREB Project, Fig. 3). The Japanese 
research institutes, Japan International Research Center for 
Agricultural Sciences (JIRCAS) and RIKEN (Institute of 
Physical and Chemical Research, Japan) produced 32 com-
binations of constructs using five promoters and 14 toler-
ance genes, and sent them to the IRRI, CIAT, and CIMMYT 
during this project. From ~350,000 calli or embryos, more 
than 1,100 independent transformation events were pro-
duced. The grain yields of the transformants under drought 
conditions were investigated through tests conducted in 
greenhouses, rain-out shelters, and confined fields. From the 
evaluation, ~40 elite candidate transformants were selected. 
A new project called the “Development of drought-tolerant 
crops for developing countries (GM Drought Tolerance 
project)” supported by MAFF was launched in 2013 to 
verify the performance of these candidates under drought 
conditions. The new project aims to develop at least 10 elite 
lines from the candidates selected in the DREB project.

2.	 Soybean
In collaboration with Embrapa (Brazilian Corporation 
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of Agricultural Research), RIKEN, and the University of 
Tokyo, we introduced stress-tolerant genes into soybean 
and then evaluated drought tolerance in greenhouses and 
confined fields. This project has been supported by the Sci-
ence and Technology Research Partnership for Sustainable 
Development of the Japan Science and Technology Agency 
(JST)/Japan International Cooperation Agency (JICA) 
since 2009 (Fig. 4). Soybeans expressing DREB or AREB 
genes were generated to show improved tolerance under 
greenhouse conditions, and we are currently conducting 
field trials (Barbosa et al. 2012, de Palva Rolla et al. 2013, 
Engels et al. 2013, Leite et al. 2014, Marinho et al. 2015, 
Polizel et al. 2011). For soybean, it has been difficult to 
produce transformants due to very low transformation 
efficiency. However, we succeeded in improving the 
transformation efficiency of Brazilian soybean cultivars by 
establishing a transformation method using Agrobacterium. 
The transformation efficiency was 1.74% when we used 
the reporter β-glucuronidase gene for transformation. This 
efficiency enables the production of transgenic soybeans at 
a practical level. We obtained 37 transgenic lines by using 
particle gun or Agrobacterium methods. Then drought toler-
ance was evaluated in the greenhouse and fields. Seven out 

of 11 lines evaluated in the greenhouse showed tolerance, 
and one out of four lines evaluated showed tolerance under 
drought conditions in the field. Thus, we can expect to 
produce transgenic soybean varieties with high yields under 
drought conditions in the future. Given the current situation 
where genetically modified (GM) soybean is used in more 
than 90% of Brazil’s soybean production area (Rally da 
Safra, 2016) and in 80% of the world’s total soybean pro-
duction area (ISAAA 2014), a GM soybean variety showing 
improved drought tolerance could be used worldwide, and 
not just in Brazil.

3.	 Other crops
In collaboration with the International Crop Research 

Institute for the Semi-Arid Tropical (ICRISAT) in India, 
we successfully produced DREB1 transgenic peanuts. 
The peanut-expressing DREB1 showed drought tolerance 
under greenhouse conditions, and its drought tolerance 
was confirmed in field trials (Bhatnagar-Mathur et al. 
2007, 2013). A substantial yield improvement of up to 
24% in field drought tests was achieved and thus related to 
higher harvest indices (Bhatnagar-Mathur et al. 2013). The 
transgenic lines had significantly higher seed-filling values 
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than the wild-type variety and displayed 20-30% pod yield 
reductions under drought conditions.

In collaboration with Embrapa Agroenergy in Brazil, 
we introduced the DREB2 gene into sugarcane. Assays on 
transgenic sugarcane expressing the DREB2Aca gene of 
Arabidopsis also produced good results under greenhouse 
conditions (Reis et al. 2014). The next studies will entail 
analyzing the performance of sugarcane transformants in 
fields under drought conditions. Because sugarcane can 
be propagated through shoots, its genetic fixation is not 
required. Therefore, the development of genetically modi-
fied sugarcane varieties might be easier than in crops that 
require transgene fixation.

Future work

1.	 Promotion of research on improving drought 
tolerance 

In collaboration with international institutions, we 
have shown that some drought-tolerant genes can improve 
the performance of crops under drought conditions as 
verified by tests conducted in a greenhouse. This finding 
suggests that such genes can work in different genetic 
backgrounds (plant species and/or varieties), growth stages, 
and environmental conditions. However, given the various 
drought factors such as the length and severity of a drought, 
soil water depth, and temperature, we must conduct more 
experiments. At the same time, we should select appropri-
ate varieties, such as commercial varieties, in which to 
introduce these genes. As transformation efficiency differs 
among the varieties, it is often difficult to introduce a gene 
directly into practical varieties. Thus, the transgene needs to 
be transferred to practical varieties through crossing when 
the selected varieties cannot be used in transformations. 

There are four types of drought-resistance mechanisms 
in plants: (1) drought avoidance, such as getting water 
from the soil by deep rooting, (2) drought escape, whereby 
the flowering time avoids the drought season, (3) drought 
tolerance, which maintains the intracellular water poten-
tial, and (4) drought recovery, whereby growth recovers 
after a drought (Gowda et al. 2011). Our research group has 
studied genes mainly related to drought tolerance. Of the 
other mechanisms, deep rooting is regarded as an important 
trait to maintain crop production under drought conditions 
(Yoshida & Hasegawa, 1982). Recently, the DEEPER 
ROOTING1 gene (DRO1) was isolated in rice (Uga et al. 
2013). Control of the root system’s architecture by DRO1 
increased rice yield under drought conditions. Even if there 
is a deep-rooting gene in rice, plants may wither before 
the roots reach groundwater under drought conditions. 
Drought-tolerance genes might be effective in enabling 
plants to withstand the stress until rain can be received. 
Therefore, the combination of a drought-tolerance gene 

and genes for the other resistance mechanisms might prove 
beneficial. 

2.	 Impediments to commercialization
The development of GM crops entails a number of 

patents for genes and promoters, including the marker 
genes in a vector, as well as patents related to transforma-
tion techniques. Thus, it is important to implement the 
freedom-to-operate (FTO) surveys on patents as soon as 
possible after launching a project aimed at developing 
GM crops. Therefore, cooperation is necessary between 
the departments in charge of intellectual property and the 
research sections. 

Huge amounts of funding are also needed for the 
development of GM crops, including for deregulation and 
safety assessments. It is estimated to cost an average of 
USD 136 million over 13 years to bring a new GM crop 
product to the commercial market (Prado et al. 2014). 
Thus, only a small number of multinational companies can 
currently afford to develop GM crops, and it is problematic 
to sustain funding for public and semi-public institutions. 
As drought is a major problem in developing countries, 
we hope that public or private funding will support the 
development of drought-tolerant varieties.

Conclusion

Recent molecular studies have revealed some impor-
tant genes, including genes encoding DREB and AREB/
ABF TFs for stress tolerance, and that the overexpression of 
such genes can enhance the stress tolerance in several types 
of plants in a greenhouse. International collaborative re-
search showed that transgenic plants containing such genes 
could improve the grain yields of such crop plants as rice 
and soybean under drought conditions in the field. We hope 
that these results will contribute to the development of com-
mercial transgenic varieties. In order to address global food 
and environmental problems, a multinational framework 
with more interdisciplinary cooperation is needed. Further 
more, the future commercialization of GM crops requires 
appropriate project management, encompassing science, 
technology and intellectual property, and GM regulation. 
We hope that the crops developed in our international joint 
research projects may contribute to stabilizing agricultural 
production and providing a sufficient worldwide food sup-
ply in the future.
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