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Abstract
Classification maps are required for agricultural management and the estimation of agricultural disaster 
compensation. The extreme learning machine (ELM), a newly developed single hidden layer neural 
network is used as a supervised classifier for remote sensing classifications. In this study, the ELM was 
evaluated to examine its potential for multi-temporal ALOS/PALSAR images for the classification of 
crop type. In addition, the k-nearest neighbor algorithm (k-NN), one of the traditional classification 
methods, was also applied for comparison with the ELM. In the study area, beans, beets, grasses, maize, 
potato, and winter wheat were cultivated; and these crop types in each field were identified using a data 
set acquired in 2010. The result of ELM classification was superior to that of k-NN; and overall accu-
racy was 79.3%. This study highlights the advantages of ALOS/PALSAR images for agricultural field 
monitoring and indicates the usefulness of regular monitoring using the ALOS-2/PALSAR-2 system.
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Introduction

Land-cover classification is one of the most common 
applications of remote sensing. Crop-type classification 
maps are useful for yield estimation and agricultural 
disaster compensation, in addition to the management of 
agricultural fields. Optical remote sensing remains one 
of the most attractive options for the accumulation of 
biomass information and forest monitoring (Samreth et al. 
2012, Sarker and Nichol 2011). In addition, while optical 
satellites such as ALOS/AVNIR-2 (Sonobe et al. 2014a), 
Landsat (Hartfield et al. 2013), MODIS (Sakamoto et al. 
2009), and NOAA (Hirano and Batbileg 2013) have been 
employed in the identification of species and conditions of 
vegetation, cloud cover significantly limits the number of 
available optical images, radar is unaffected by cloud cover 
or low solar zenith angles (Bindlish and Barros 2001). 
And significant information about soil and vegetation 
parameters can also be obtained through microwave remote 

sensing (Sonobe et al. 2014b). These techniques are em-
ployed increasingly to manage land and water resources for 
agricultural applications (Sonobe et al. 2014c). The num-
ber of studies on rice and wheat monitoring and mapping 
using SAR data has increased, and some studies utilizing 
multi-temporal SAR data have reported high correlations 
between backscattering coefficients, and plant height and 
age (Chakraborty et al. 2005, Sonobe et al. 2014d, Waisur-
asingha et al. 2008). These examples highlight possible 
uses in the area of agricultural management, specifically 
for the identification of paddy fields. They indicate the 
potential use of SAR data for the discrimination of crop 
types. Furthermore, a number of examples have shown the 
practical usefulness of supervised learning for classifica-
tion (Sonobe et al. 2014b). This paper reports a comparison 
of crop classification using PALSAR data performed by 
extreme learning machine (ELM) and k-nearest neighbor 
algorithm (k-NN). 
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Materials and Methods

The experimental area of this study was agricul-
tural fields in the western Tokachi plain, Hokkaido, Japan 
(142°55′12″ to 143°05′51″ E, 42°52′48″ to 43°02′42″ N). 
The mean size of fields was 2.16 ha (the largest and small-
est field areas were 18.0 and 0.01 ha, respectively).

The characteristics of the satellite images used in 
this study are shown in Table 1. PALSAR operates in the 
L band (1.27 GHz) and has five operational modes: FBS, 
a single-polarization high-resolution strip with a 70-km-
wide swath; FBD, a dual-polarization receiver (HH+HV, 
with HV for transmission with horizontal polarization and 
reception with vertical polarization) enabling deforestation 
monitoring; SCANSAR, which has a 350-km-wide swath 
for quick deforestation and sea-ice monitoring; PLR, for the 
clarification of scattering mechanism; and DSN, which is a 
reduced-resolution strip-mode. Generally, only the FBS and 
FBD modes were adopted, and HH polarization data were 
regularly obtained. Furthermore, PALSAR backscattering 
coefficients were a powerful tool for biomass estimation 
(Kiyono et al. 2011). The PALSAR data (level 1.5 prod-
ucts) were converted from digital number images to sigma 
naught images, which are the radiometrically calibrated 
power images referenced to the ground, using the PALSAR 
Level 1.1/1.5 product format description procedures (JAXA 
2008). 

Reference data was provided by Tokachi Nosai as 
a polygon shape file in which the position of the fields 
and attribute data, such as crop type, were included. Any 
field below 0.5 ha was deemed too small for analysis and 
removed from the vector maps. All remaining fields were 
buffered inward 25 m, taking into account field shape. The 
buffer was used to avoid the selection of training pixels 
from the edge of a field, which would create a mixed signal 
and affect assessment accuracy. Then, mean sigma naught 

values were calculated (Bargiel and Herrmann 2011, 
Sonobe et al. 2014b).

ELM was applied using MATLAB and Statistics 
Toolbox Release 2014b (The MathWorks, Inc., Natick, 
Massachusetts, United States), and we used the source code 
published by Nanyan Technological University (http://
www.ntu.edu.sg/home/egbhuang/index.html). Furthermore, 
we generated the code for K-fold cross validation. k-NN 
was applied using R version 3.0.0 (R Core Team 2013) and 
IBk function included in the RWeka package (Hornik et 
al. 2009). We used a stratified random sampling approach 
to select fields used for training (Foody 2009), and 20% 
of crop fields were selected at random as training samples 
(Hartfield et al. 2013). The stratified random sampling 
is a method of sampling that involves the division of a 
population into smaller groups known as strata. In stratified 
random sampling, the formation of strata is based on shared 
members attributes or characteristics. The remaining 80% 
of the fields were used for accuracy assessment. The clas-
sification maps was evaluated in terms of overall accuracy 
(OA), producer’s accuracy (PA), user’s accuracy (UA), and 
the kappa index of agreement (κ). PA is the result obtained 
from dividing the number of correctly classified fields in 
each crop type by the number of reference fields. This value 
represents how well reference fields of the crop cover type 
are classified. UA is computed by dividing the number of 
correctly classified fields in each crop type by the total 
number of fields that were classified in that crop type. It 
represents the probability that a field classified into a given 
crop type actually represents that crop type.

In this study, the ELM was selected as a classification 
algorithm, and the six crop types were identified using 10 
PALSAR images. The training data comprised 555 fields 
(71 bean, 86 beet, 60 maize, 66 potato and 200 winter 
wheat, and 72 grasses) and the test data comprised 2217 
fields (281 bean, 346 beet, 239 maize, 263 potato and 801 

Table 1.  Characteristics of satellite data

Date ALOS/PALSAR mode Off-nadir angle (°) Pixel spacing (m) Orbit Path Frame
03 May, 2010 FBS 34.3 6.25 Descending 55 2750
04 May, 2010 FBD 34.3 12.5 Ascending 396 850
21 May, 2010 FBD 34.3 12.5 Ascending 397 850
18 June, 2010 FBS 34.3 6.25 Descending 55 2750
19 June, 2010 FBD 34.3 12.5 Ascending 396 850
06 July, 2010 FBD 34.3 12.5 Ascending 397 850
03 August, 2010 FBS 34.3 6.25 Descending 55 2750
18 September, 2010 FBS 34.3 6.25 Descending 55 2750
19 September, 2010 FBD 34.3 12.5 Ascending 396 850
06 October, 2010 FBD 34.3 12.5 Ascending 397 850
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winter wheat fields, and 287 grasses). The ELM-based clas-
sification approach is based on the use of a single hidden 
layer neural network (Huang et al. 2006). For the training 
data having K number of samples, represented by {xi, yi}, 
where xi = [xi1, xi2…, xip]T ϵ Rp is the input vector and yi = [ 
yi1, yi2, …, yiq]T ϵ Rq is the target vector and Rp and Rq are 
p- and q-dimensional vector spaces over R. A single hid-
den layer neural network having H hidden neurons and an 
activation function f(x) can be represented as:

where wi xi is the inner product of wi and xi, wi and αi are the 
weight vectors connecting inputs, the i th hidden neuron, 
the i th hidden neuron and output neurons, respectively; and 
ci is the complex bias of the i th hidden neuron. The ELM 
algorithm works for any infinitely differentiable activa-
tion function f (x). These activation functions include the 
sigmoidal functions as well as the radial basis, sine, cosine 
and exponential functions. In this study, a sigmoidal activa-
tion function based ELM was applied. The parameter (H) 
was determined by K-fold cross validation technique using 
training data selected by stratified random sampling. This 
technique repeatedly generates training and test data sets 
from populations with a known land cover class member-
ship. This data are separated into equally-sized K subsets 
(here, K = 10). A classifier is trained using nine subsets and 
is tested using the excluded one subset. Accuracy measures 
are obtained by interchanging test data and the resultant 
ten accuracy measures are averaged. The cross validation 
process including separation is then repeated 10 times. 

 For comparison with the result of ELM classification, 
we conducted k-NN, one of the traditional classification al-
gorithms. This non-parametric procedure was introduced by 
Fix and Hodges (1951), and has since become well-known 
in the pattern recognition literature as the voting k-NN rule. 
The k-NN classifier assigns a class to unclassified data 
using its k-NNs in the training set. Cover and Hart (1967) 
have provided a statistical justification of this procedure 
by showing that, as N samples and k both tend toward 
infinity in such a manner that k/N→0, the error rate of the 
k-NN rule approaches the optimal Bayes error rate. Beyond 
this remarkable property, the k-NN rule owes much of its 
popularity in the pattern recognition community to its good 
performance in practical applications. However, in the finite 
sample case, there is no guarantee that the voting k-NN rule 
is the optimal way of using the information contained in 
the classified data in the neighborhood (Denoeux 1995). 
RWeka automatically finds the best value for k between 1 
and 20; and the K value is determined by 10 iterations.

The significant differences among the results of the 
two classifications were determined at a 95% level of sig-

nificance using the Z-test, which is performed for pairwise 
comparison of the proposed methods and takes into account 
the ratio between the difference values of two κ coefficients 
and the difference in their respective variances (Congalton 
and Green 2008).

Results and Discussion

For application of the ELM, the number of hidden 
nodes was tuned using training data and the K-fold cross 
validation technique. Fig. 1 represents the relationships 
between the number of hidden nodes and the averaged 
accuracy rate calculated using 10-fold cross validation. 
Higher accuracy was observed when the number of hidden 
nodes was 450, thus the value was adopted for ELM clas-
sification. For application of k-NN, The proper K value 
ranged from 5 to 10, and the average value was 8 by cross 
validation for RWeka (Table 2). In this study, 8 was selected 
as the k value 

The corresponding confusion matrices of classifica-
tions using PALSAR data are given in Table 3. In terms 
of the agreement indices, those of the ELM are superior to 
those of k-NN. However, in terms of the PA of beans, beet 
and grasses, the results of k-NN are superior to those of the 
ELM. Furthermore, in the case of the UAs of maize, potato 
and wheat, those of the ELM are inferior to those of k-NN.

We used the Z-test to compare the accuracy of clas-
sification methods because the same test data were used for 
each classification. The Z score was 2.44, indicating that the 
difference is significant. The variances and standard devia-
tions related to Kappa statistics are given in Table 4. Unlike 
passive systems, synthetic aperture radar (SAR) systems are 
not dependent on atmospheric influences or weather condi-
tions; thus they are especially suitable for multi-temporal 
classification approaches, and the advantage leads to high 
accuracy (Bargiel and Herrmann 2011). However, compu-
tational cost of a classifier, such as training and test time, 
often represents a significant proportion of the total cost in 
classifications using multi-temporal remote sensing data. 
The ELM is a fast algorithm among machine learning meth-
ods because it is based on the use of a single hidden layer 
neural network, and input weights and biases are randomly 
assigned and need not be tuned. This approach should be 
applicable to the generation of land cover/use classification 
maps, in particular, in the area of agricultural.

Conclusions

To generate classification maps, ten images from 
ALOS/PALSAR were used, and two algorithms, the ELM 
and k-NN, were applied. Although this study is simply a 
case in point and these results may not always be practical, 
the results of the ELM were superior to those of k-NN in 

H

∑αi f (wixj + ci) = yj (1)
j=1

H

∑αi f (wixj + ci) = yj (1)
j=1
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terms of overall accuracy and kappa. Furthermore, the ELM 
requires only one parameter whereas the support vector 
machine and neural network require a number of tuning 
parameters. In addition, the ELM algorithm is fast among 
machine learning methods because it is based on the use of 
a single hidden layer neural network, and input weights and 
biases are randomly assigned and need not be tuned. This 
approach should be applicable to the generation of land 
cover/use classification maps, in particular, in the area of 
agricultural.

This study also demonstrated the great potential of L-
band SAR data for agricultural applications. The Advanced 
Land Observing Satellite-2 is a follow-up to the ALOS 
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Fig. 1. Relationships between the number of hidden nodes and the averaged accuracy rate calculated using 10-fold cross valida-
tion

Table 2.  Nearest neighbors and correctly classified instances

Nearest neighbors Correctly classified instances
Case 1 8 0.777
Case 2 5 0.766
Case 3 5 0.775
Case 4 10 0.760
Case 5 6 0.760
Case 6 10 0.791
Case 7 10 0.758
Case 8 8 0.762
Case 9 7 0.787
Case 10 6 0.760
Average 8 0.769

Table 3.  Classification accuracy

Algorithm
Class

Extreme Learning
Machine (ELM)

k-Nearest Neighbor
(k-NN)

Producer’s accuracy
Beans 0.764 0.765
Beet 0.873 0.908
Grass 0.651 0.753
Maize 0.627 0.523
Potato 0.794 0.650
Wheat 0.874 0.833

User’s accuracy
Beans 0.726 0.655
Beet 0.916 0.781
Grass 0.721 0.643
Maize 0.640 0.683
Potato 0.703 0.810
Wheat 0.864 0.881

Overall acuracy 0.793 0.770
Kappa 0.737 0.709

Table 4. Variance and standard deviation related to the 
Kappa statistic

Extreme Learning
Machine (ELM)

k-Nearest
Neighbor (k-NN)

Variance 0.00011 0.00012
Standard deviation 0.01040 0.01076
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mission. For this new satellite, further studies testing the 
applicability of the method will be necessary. In addition, 
operational methodology for the mapping will be tested. 
Furthermore, cross-year classification may increase the 
ability to generate crop-type classification maps without 
concurrent training data and may prove useful in reducing 
labor costs for management in the area of agricultural and 
early information gathering. In future studies, the potential 
of PALSAR data for cross-year classification will be tested.
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