Climate Change Effects on Long-term World-crop Production: Incorporating a Crop Model into Long-term Yield Estimates

Jun FURUYA¹*, Shintaro KOBAYASHI¹, Yukiyo YAMAMOTO² and Motoki NISHIMORI³

- ¹ Social Sciences Division, Japan International Research Center for Agricultural Sciences (Tsukuba, Ibaraki 305-8686, Japan)
- ² Research Planning and Coordination Division, Japan International Research Center for Agricultural Sciences (Tsukuba, Ibaraki 305-8686, Japan)
- ³ Agro-Meteorology Division, National Institute for Agro-Environmental Sciences (Tsukuba, Ibaraki 305-8604, Japan)

Abstract

Annual crop yield forecasts are necessary for analysis because evaluating climate-change impacts on world food markets requires supply-response functions, including output prices of the prior year. This research was undertaken to develop yield-response functions of the world food model to evaluate climate-change effects by incorporating a crop model into the yield-trend function. Yield-trend functions of rice, wheat, maize, and soybeans were obtained by estimating logistic functions or linear functions with a logarithmic time-trend term and climate variables. Furthermore, temperature and solar-radiation elasticities of yields were calculated using a crop model of the FAO and IIASA. The functions of the maximum rate of gross biomass production and the maximum net rate of CO₂ exchange of leaves in the crop model were modified by introducing cubic spline interpolation and logistic functions. Smoothing these two functions alleviates drastic changes, but reveals small changes in the elasticities of crop yields compared to the kinked functions and these more realistic elasticities can improve the evaluation accuracy of climate-change impacts on crop supply and demand. These variable elasticities of temperature and solar-radiation were inserted into the yield-trend functions, whereupon the global effects of changes in climate variables, including rainfall, were analyzed. The changes in yields obtained using climate variables of two of the four RCP scenarios were compared with the baseline, for which climate variables were fixed. Results of trend analyses show that yields of rice, wheat, maize, and soybeans under RCP8.5 are lower than those under RCP2.6, except for wheat in China. Results of geographical analysis show that climate change can be expected to affect wheat and maize productions in low-latitude countries. Furthermore, results suggest that climate change will depress rice production in sub-Saharan African countries in the 2040s.

Discipline: Agricultural economics and Crop production **Additional key words:** CMIP5, CO₂ exchange rate, Cubic-spline, Logistic function, RCP

Introduction

Analyzing climate-change effects on crop production is crucial for developing food-security countermeasures because a widespread decline in crop production will trigger a sharp rise in food prices. Such a price hike constitutes a threat to human entitlement to food, as asserted by Sen (1981).

To evaluate climate-change effects on agricultural product markets, supply and demand models of agricultural

products have been incorporated into crop models. Parry *et al.* (1999) estimated the yield functions for which the dependent variable is the potential yield of crop models such as CERES-Wheat and for which independent variables include temperature, rainfall, and CO_2 concentration. The yield functions are used in a supply and demand model: the Basic Linked System of International Institute for Applied Systems Analysis (IIASA).

Furuya & Koyama (2005) developed a world food model with yield functions, including terms of climate variables as independent variables and used it to evaluate the

^{*}Corresponding author: e-mail furuya@affrc.go.jp Received 11 October 2013; accepted 6 October 2014.

effects of global warming on agricultural markets. The model was then extended by Furuya & Kobayashi (2009) to a stochastic world food model considering variations in climate variables. These functions are specified as linear functions, for which explanatory variables are the time trend, temperature, and rainfall. An important shortcoming of the linear yield–function approach is the inability of the function to follow the inverse–u shaped relation between yield and temperature. However, it is difficult to estimate quadratic– or parameter–variable yield functions when time– series data are lacking.

To analyze climate-change effects on crop production and agricultural markets, the parameter-variable yield function, which has an inverse-u shaped relation between the yield and temperature, is necessary for long-term forecasting. Furthermore, this yield function follows a diminishing rate of increase of technological progress. Introducing crop models to the world food model is one means of improving it and Rosenzweig et al. (2013) organized a group comprising climate, crop modeling, and economic teams to improve the model accuracy, but connecting crop models and the economic sector remains difficult to evaluate. Equilibrium prices and quantities in the supply and demand model sector will not be obtained if gaps exist between the estimated yield from a crop model and actual yield in statistics. To fill that gap, as shown earlier, Parry et al. (1999) estimated the quadratic functions for which the yield was calculated, using a crop model explained by temperature, rainfall, and CO₂ concentration using cross-section data.

Most crop models incorporate a system such as a Decision–Support System for Agrotechnology Transfer (DSSAT), which help analyze climate–change effects on crop production such as the analysis reported by Jones & Thornton (2003). However, it is difficult to apply such systems to economic models because the system parameters are obscure.

In contrast to these packaging models, the crop-model parameters of the Global Agro-ecological Zones (GAEZ) of the Food and Agriculture Organization of the United Nations (FAO) and the IIASA are presented in a report by Fischer *et al.* (2002), although not shown in Fischer *et al.* (2012). The parameters cover 34 crops in four climate zones worldwide. The biomass production and yield calculation method of the GAEZ (Doorenbos & Kassam 1979) is applied to estimate climate–variable elasticities of yields in this study. These parameters are incorporated into yield functions for long-term forecasting and the long-term trend and annual changes in global crop yields under RCP scenarios will be obtained using the yield functions.

The target crops in this study are rice, wheat, maize, and soybeans. Changes in the yields of four simulations using climate variables under the Representative Concentration Pathway (RCP) scenarios of the Coupled–Model Intercomparison Project Phase 5 (CMIP5) of the Intergovernmental Panel on Climate Change (IPCC) are compared with the baseline, for which climate variables are fixed on those in the base year of 2008.

This study was conducted to develop yield–response functions of the world food model to evaluate climate– change effects by incorporating the crop model into the yield–trend function. Another purpose is ascertaining the climate–change impacts on crop yield in the long term in the world by these yield–response functions, using climate– forecast data of the RCP scenarios of the CMIP5.

Model

The relation between temperature and crop yield is inverse–u shaped, resembling that presented by Horie *et al.* (1995). However, since it is difficult to estimate the quadratic functions using crop yield and climatic–variable data due to the limited duration of available data, many studies instead evaluate climate–change impacts on crop production using sophisticated crop models based on plant physiology. However, the parameters and functions of most such models remain undisclosed. Moreover, these packaging models are unsuitable for research if the research purpose is to analyze annual changes in crop yields under climate change. A method of incorporating the climatic parameters of a crop model to the yield–trend functions is investigated in this section.

First, the trends of the yield, as a proxy of the technological progresses of the four crops for each country, are estimated considering past climate change. Second, the parameters of changes in yield to temperature and solar– radiation calculated from the crop–model parameters, are introduced into the yield–trend functions. The first stage involves estimating the yield–trend function using the time trend and climate variables before the base year for exclusion of the climate–change effects from the trend.

The general form of the yield-trend function before the base year is $Y = f_{YH}$ (T, TP_H , RG_H , PT_H), where T is the time trend and where TP_H , RG_H , and PT_H respectively represent the historical temperature, solar-radiation, and rainfall. After the base year, the yield-trend function responds only to the time trend: the general form of the function is $Y = f_{YB}$ (T). Results estimated using this function are used as the baseline.

The general form of the yield function with the climate parameters of the crop model is $Y = f_{YF} [T, g_{TP}(TP_F, RG_F), g_{RG}(TP_F, RG_F), PT_F]$, where TP_F, RG_F , and PT_F respectively denote the forecast temperature, solar–radiation, and rainfall. Results estimated using this function are used as simulation results in the RCP scenarios.

The potential yield, Y_p , is used in the crop model and determined by climate conditions such as changes in tem-

perature and solar-radiation. The difference in the potential yield Y_p and the actual or forecast yield Y corresponds to the differences in technological and institutional circumstances in each country.

1. Yield-trend function

Crop yields increased dramatically during the 1960s-1980s in economically developing countries because of the green revolution, i.e., dissemination of modern plant varieties and chemical fertilizers and construction of irrigation facilities. Recently however, rates of increase in yields have slumped (Ray et al. 2012). Considering crop yield-trends, the yield functions of the four crops are specified as the four parameter logistic function. These logistic functions are used mainly to analyze nutritional input-output responses such as those presented by Vedenov & Pesti (2008). Moreover, 1-5 parameter logistic models exist (Harris 1989, Gottschalk & Dunn 2005). Considering the lack of data in economically developing countries and the future uncertainty related to yield changes, the results of a five-parameter logistic model, which assumes an asymmetric slope, will depend heavily on the few most recent data. Therefore, the following four-parameter logistic models are estimated with climate variables as crop-yield functions. The climatechange effects are included in these yield-trends because atmospheric CO2 concentrations have been increasing since the mid-twentieth century. To eliminate climate-change effects from yield trend, climate variables are introduced into the yield function.

$$Y_{lk} = a_{lk} + \frac{b_{lk} - a_{lk}}{1 + \exp[-c_{lk}(T - d_{lk})]} + \beta_{TPlk}TP_{lk} + \beta_{RGlk}RG_{lk} + \beta_{PTlk}PT_{lk}$$
(1)

Therein, *l* stands for crop index, *k* is the country index, Y_{lk} signifies the crop yield, a_{lk} denotes the minimum yield (1st parameter), b_{lk} represents the maximum yield (2nd parameter), c_{lk} is the slope (3rd parameter), and d_{lk} is the inflection point (4th parameter). In addition, *T* is the time trend where 1961=1, *TP*_{lk} is temperature, *RG*_{lk} is solar–radiation, and *PT*_{lk} is rainfall. Figure 1 exhibits an estimation result of the logistic rice yield function in Bangladesh as an example.

In some economically developing countries, such as many in Africa, technological progress in crop production started only recently. The logistic function does not fit well in these cases. The following linear function with the logarithmic time trend as a variable is used as yield functions in this case.

$$Y_{lk} = a_{0lk} + b_{Tlk} \ln T_L + \beta_{TPlk} TP_{lk} + \beta_{RGlk} RG_{lk} + \beta_{PTlk} PT_{lk} \quad (2)$$

Therein, T_L stands for the time trend where 1951=1. As in the previously introduced equation, TP_{lk} signifies tempera-

Fig. 2. Soybeans yield in Argentina

ture, RG_{lk} denotes solar–radiation, and PT_{lk} represents rainfall. Figure 2 presents an estimation result of a linear–yield function with the logarithmic trend of soybeans in Argentina as an example.

2. Yield function with climate parameters based on a crop model

The crop model used for this study was developed by Doorenbos & Kassam (1979) and summarized by Fischer *et al.* (2002). The model incorporates 34 crops produced worldwide, including rice, wheat, maize, and soybeans. All functions of the crop model are presented in the Appendix 4-5 (PP. 141-142) of Fischer *et al.* (2012). The functions of the maximum rate of gross biomass production and the maximum net rates of CO_2 exchange of leaves have been modified for smoothing in this study because kinks of functions engender drastic changes in the elasticities and yields of crops. Furthermore, these smoothed functions can capture the effects of small changes in climate variables on the elasticities. These more realistic elasticities will improve the accuracy of evaluations of the climate–change impacts on the supply and demand of crops.

(1) Maximum rate of gross biomass production

The maximum rate of gross biomass production (b_{gm}) (kg ha⁻¹ day⁻¹) changes dramatically at 20 kg ha⁻¹ h⁻¹ of the maximum net CO₂ exchange rate (P_m) (kg ha⁻¹ h⁻¹) in the original model as follows.

If $P_m < 20$, then,

$$b_{gm} = F(0.5 + 0.025P_m)b_o + (1 - F)(0.05P_m)b_c.$$
 (3)

If
$$P_m \ge 20$$
, then,
 $b_{gm} = F(0.8 + 0.01P_m)b_o + (1 - F)(0.5 + 0.025P_m)b_c.$ (4)

Therein, *F* stands for the fraction of the daytime for which the sky is cloudy, as determined using the following function: $F = (A_c - 0.5RG) / (0.8A_c)$, and A_c signifies the maximum solar-radiation on clear days (cal cm⁻² day⁻¹). *RG* denotes the solar-radiation for a given location and year (cal cm⁻² day⁻¹). b_o represents the gross dry matter production rate of a standard crop for a given location and year on a completely overcast day (kg ha⁻¹ day⁻¹). b_c is the gross dry matter production rate of a standard crop for a given location and year on a perfectly clear day (kg ha⁻¹ day⁻¹).

The kink of the function engenders sharp declines in crop yields, while the four parameters of the functions of b_{gm} vary according to logistic curves from 15 to 25 kg ha⁻¹ h⁻¹ of P_m , as follows to alleviate drastic changes in this study.

If $P_m < 15$, then, function (3). If $15 \le P_m < 25$, then,

$$b_{gm} = F\left[\left(0.5 + \frac{0.3}{1 + e^{20 - pm}}\right) + \left(0.01 + \frac{0.015}{1 + e^{pm - 20}}\right)P_m\right]b_0$$
$$+ (1 - F)\left[\left(\frac{0.5}{1 + e^{20 - pm}}\right) + \left(0.025 + \frac{0.025}{1 + e^{pm - 20}}\right)P_m\right]b_c.$$
 (5)

If $P_m \ge 25$, then, function (4).

Figure 3 depicts the relation between P_m and b_{gm} of the modified function.

(2) Maximum net CO₂ exchange rate of leaves

The maximum net CO₂ exchange rates of crop leaves according to temperatures are provided in the tables of appendix VII of an earlier report (Fischer *et al.* 2002). Those are point data in 5°C increments. First, linear interpolations are applied to the data. However, the estimated yields change dramatically over the point data, such as 25°C. Alleviating the drastic changes in thresholds, cubic– spline (CS) interpolations are applied to the data. If points of data are $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ for $(a \le x_1 \le x_2 \le \dots \le x_n \le b)$, then the CS function of $[x_i, x_{i+1}]$ is defined as

$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3,$$

(*i* = 1, 2, ... *n*-1). (6)

Using conditions of interpolation and continuity of the first and second derivatives on the tangent points, parame-

Fig. 3. Relation between maximum net CO_2 exchange rate (P_m) and maximum gross biomass production rate (b_{gm})

F=0.6, bo=250, bc=450

Fig. 4. Relation between temperature and maximum net CO_2 exchange rate (P_m) of rice, Japonica, wetland

ters c_i are obtained by solving the tri-diagonal matrix function, while other parameters are obtained from the conditions of continuities (Shimoda & Tabe 1990). The CS functions are estimated for four crops with two or three types and Figure 4 presents the relation between temperature and P_m of Japonica rice in a wetland area.

(3) Temperature and solar-radiation elasticities of the potential yield

The temperature elasticity of the potential yield is calculated using the following equation.

$$\frac{\partial \ln YP}{\partial \ln TP} = \frac{\partial Yp}{\partial TP} \frac{TP}{Yp} = \frac{\partial B_n}{\partial TP} \frac{TP}{B_n}$$
$$= \frac{\partial b_{gm}}{\partial TP} \frac{TP}{b_{gm}} + \frac{\partial (1/N + 0.25c_l)^{-1}}{\partial TP} TP (1/N + 0.25c_l).$$
(7)

In that equation, Yp signifies the potential yield (kg ha⁻¹), TP

denotes the temperature (°C), B_n represents the rate of net biomass production (kg ha⁻¹), b_{gm} stands for the maximum rate of gross biomass production (kg ha⁻¹ day⁻¹), N denotes the total growing days (day), and c_t stands for a constant proportion of maintenance respiration (g g⁻¹ day⁻¹). The potential yield is that calculated from the crop model of Doorenbos & Kassam (1979). The gap separating the actual yield and the potential yield is explained by evapotranspiration in the GAEZ. The total growing days (N) are estimated from cropping calendars of the United States Department of Agriculture (World Agricultural Outlook Board 1994).

Substituting $\partial b_{gm} / \partial TP$, i.e., the marginal propensity of the maximum rate of gross biomass production to temperature, and $c_t = c_{30}(0.0044 + 0.0019TP + 0.0010TP^2)$, which is shown in equation (8) of Appendix 4-5 of a report by Fischer *et al.* (2012), into the equation, the temperature elasticities of potential yield were obtained as presented below. If $P_m < 15$, then,

$$\frac{\partial \ln Yp}{\partial \ln TP} = \frac{[0.025Fb_o + 0.05(1 - F)b_c]TP}{b_{gm}} \frac{\partial P_m}{\partial TP} - \frac{0.25(0.0019 + 0.0020TP)c_{30}TP}{1/N + 0.25c_t}.$$
(8)

If $15 \le P_m < 25$, then,

N=165, HI=0.45, LAI=4.5, bo=216, bc=417, RG=18 (MJ m⁻² day⁻¹)

Climate Change Effects on World-crop Production

$$\frac{\partial \ln Yp}{\partial \ln TP} = \left[\frac{0.3Fb_0 + 0.5(1 - F)b_c}{(1 + e^{20 - Pm})^2} e^{20 - Pm} + \left[0.01Fb_0 + 0.025(1 - F)b_c + \frac{0.015Fb_0 + 0.025(1 - F)b_c}{1 + e^{Pm - 20}} \right] - \frac{0.015Fb_0 + 0.025(1 - F)b_c}{(1 + e^{Pm - 20})^2} e^{Pm - 20}P_m \right] \frac{\partial P_m}{\partial t} \frac{TP}{b_{gm}} - \frac{0.25(0.0019 + 0.0020TP)c_{30}TP}{1/N + 0.25c_t}.$$
(9)

If $P_m \ge 25$, then,

$$\frac{\partial \ln Yp}{\partial \ln TP} = \frac{[0.01Fb_o + 0.025(1 - F)b_c]TP}{b_{gm}} \frac{\partial P_m}{\partial TP} - \frac{0.25(0.0019 + 0.0020TP)c_{30}TP}{1/N + 0.25c_r}.$$
(10)

In those equations, $c_{30} = 0.0283$ for legume crops and $c_{30} = 0.0108$ for other crops.

The potential yield is calculated as

$$Yp = \frac{0.36HI \cdot b_{gm} \cdot LAI/5}{1/N + 0.25c},$$
(11)

where *HI* stands for the harvest index and *LAI* represents the leaf area index. Figure 5 presents relations between the

Fig. 5. Relation between temperature and potential yield

temperature and potential yield of Japonica rice in wetland, winter wheat, maize in sub-tropics, and soybeans in the tropics of the crop model of the GAEZ. These graphs indicate smoothing loci based on the modified functions of the maximum rate of gross biomass production and the maximum net rates of CO₂ exchange of leaves as shown in Figure 3 and 4. Total growing days (*N*) (day), harvest index (*HI*) (dimensionless number), leaf area index (*LAI*) (dimensionless number), the gross dry-matter production rate on a completely overcast day and a perfectly clear day (b_o , b_c) (kg ha⁻¹ day⁻¹), and solar-radiation (*RG*) (MJ m⁻² day⁻¹) are shown in the graph notations. The unit of solar-radiation is changed from cal cm⁻² day⁻¹ to MJ m⁻² day⁻¹ in these graphs of Figure 5 (1 MJ m⁻² day⁻¹ = 23.89 cal cm⁻² day⁻¹).

The solar-radiation elasticity of potential yield is calculated using the following equation:

$$\frac{\partial \ln Yp}{\partial \ln RG} = \frac{\partial Yp}{\partial RG} \frac{RG}{Yp} = \frac{\partial B_n}{\partial RG} \frac{RG}{B_n}$$
$$= \frac{\partial b_{gm}}{\partial RG} \frac{RG}{b_{gm}} = \frac{\partial b_{gm}}{\partial F} \frac{\partial F}{\partial RG} \frac{RG}{b_{gm}}.$$
(12)

The marginal propensity of F to RG is shown below.

$$F = \frac{A_c - 0.5RG}{0.8A_c}, \frac{\partial F}{\partial RG} = -\frac{0.625}{A_c}.$$
 (13)

Substituting the marginal propensity of b_{gm} to F and that of F to RG into the equation, the solar-radiation elasticities of the potential yield are obtained as presented below. If $P_m < 15$, then

$$\frac{\partial \ln Yp}{\partial \ln RG} = -\frac{0.625}{A_c} \left[(0.5 + 0.025P_m)b_o - 0.05P_mb_c \right] \frac{RG}{b_{gm}}.$$
(14)
If $15 \le P_m < 25$, then

$$\frac{\partial \ln Yp}{\partial \ln RG} = -\frac{0.625}{A_c} \left[0.05b_0 + 0.75b_c + (0.0775b_0 - 0.1375b_c)P_m - (0.0015b_0 - 0.0025b_c)P_m^2 \right] \frac{RG}{b_{gm}}.$$
(15)

If $P_m \ge 25$, then

$$\frac{\partial \ln Yp}{\partial \ln RG} = -\frac{0.625}{A_c} \left[(0.8 + 0.01P_m)b_o - (0.5 + 0.025P_m)b_c \right] \frac{RG}{b_{gm}}.$$
 (16)

Figure 6 shows the relations between solar-radiation and

Fig. 6. Relation between solar-radiation and potential yield

Climate Change Effects on World-crop Production

the potential yield of the crop model of the GAEZ for given conditions. N, HI, LAI, b_o , b_c , and TP are shown in the graph notation.

(4) Incorporating temperature and solar-radiation elasticities into the yield functions

Yield functions specified as logistic functions with marginal propensity to temperature, solar–radiation, and rainfall in the base year 2008 and the 2009 are

$$Y_{lk2008} = a_{lk} + \frac{b_{lk} - a_{lk}}{1 + \exp[-c_{lk}(T_{2008} - d_{lk})]} + \frac{\partial Y_{lk2008}}{\partial TP_{lk2008}} TP_{lk2008}$$

$$+\frac{\partial Y p_{lk2008}}{\partial R G_{lk2008}} R G_{lk2008} + \frac{\partial Y p_{lk}}{\partial P T_{lk}} P T_{lk2008}, \qquad (17)$$

$$Y_{lk2009} = a_{lk} + \frac{b_{lk} - a_{lk}}{1 + \exp[-c_{lk}(T_{2009} - d_{lk})]} + \frac{\partial Y_{lk2008}}{\partial TP_{lk2008}} TP_{lk2008}$$

$$+ \frac{\partial Y_{lk2008}}{\partial RG_{lk2008}} RG_{lk2008} + \frac{\partial Y_{lk}}{\partial PT_{lk}} PT_{lk2008}$$

$$+ \frac{1}{2} \left[\frac{\partial Y_{lk2009}}{\partial TP_{lk2009}} + \frac{\partial Y_{lk2008}}{\partial TP_{lk2008}} \right] (TP_{lk2009} - TP_{lk2008})$$

$$+ \frac{1}{2} \left[\frac{\partial Y_{lk2009}}{\partial RG_{lk2009}} + \frac{\partial Y_{lk2008}}{\partial RG_{lk2008}} \right] (RG_{lk2009} - RG_{lk2008})$$

$$+ \frac{\partial Y_{lk2009}}{\partial PT_{lk}} (PT_{lk2009} - PT_{lk2008}) .$$
(18)

where *T* stands for the time trend where 1961=1, Yp_{lk} denotes the potential yield, *l* stands for the index of crop, *k* represents the index of country, and *t* signifies the year. Parameters a_{lk} , b_{lk} , c_{lk} , and d_{lk} of function (17) are the same as those in function (1). The yield function in year *t* can be written as follows.

$$Y_{lkt} = Y_{lkt-1} + \frac{b_{lk} - a_{lk}}{1 + \exp[-c_{lk}(T_t - d_{lk})]} - \frac{b_{lk} - a_{lk}}{1 + \exp[-c_{lk}(T_{t-1} - d_{lk})]} + \frac{1}{2} \left[\frac{\partial Y_{P_{lkt}}}{\partial TP_{lkt}} + \frac{\partial Y_{P_{lkt-1}}}{\partial TP_{lkt-1}} \right] (TP_{lkt} - TP_{lkt-1}) + \frac{1}{2} \left[\frac{\partial Y_{P_{lkt}}}{\partial RG_{lkt}} + \frac{\partial Y_{P_{lkt-1}}}{\partial RG_{lkt-1}} \right] (RG_{lkt} - RG_{lkt-1}) + \frac{\partial Y_{P_{lk}}}{\partial PT_{lk}} (PT_{lkt} - PT_{lkt-1})$$
(19)

In a similar fashion, the yield function that is specified as the linear function with the logarithmic time trend is

$$Y_{lkt} = Y_{lkt-1} + b_{Tlk}(\ln T_{Lt} - \ln T_{Lt-1})$$

+ $\frac{1}{2} \left(\frac{\partial Y_{Plkt}}{\partial TP_{lkt}} + \frac{\partial Y_{Plkt-1}}{\partial TP_{lkt-1}} \right) (TP_{lkt} - TP_{lkt-1})$
+ $\frac{1}{2} \left(\frac{\partial Y_{Plkt}}{\partial RG_{lkt}} + \frac{\partial Y_{Plkt-1}}{\partial RG_{lkt-1}} \right) (RG_{lkt} - RG_{lkt-1})$

$$+\frac{\partial Y p_{lk}}{\partial P T_{lk}} \left(P T_{lkt} - P T_{lkt-1} \right), \qquad (20)$$

where T_L is the time trend where 1951=1. Parameter b_{Tlk} of function (20) is the same as that in function (2). The marginal propensities are replaced by elasticities multiplied by the yield by temperature in the base year 2008.

$$Y_{lkt} = Y_{lkt-1} + \frac{b_{lk} - a_{lk}}{1 + \exp[-c_{lk}(T_t - d_{lk})]} - \frac{b_{lk} - a_{lk}}{1 + \exp[-c_{lk}(T_{t-1} - d_{lk})]} + \frac{1}{2} \left[\frac{\partial \ln Y_{P_{lkt}}}{\partial \ln TP_{lkt}} + \frac{\partial \ln Y_{P_{lkt-1}}}{\partial \ln TP_{lkt-1}} \right] \frac{Y_{lk2008}}{TP_{lk2008}} (TP_{lkt} - TP_{lkt-1}) + \frac{1}{2} \left[\frac{\partial \ln Y_{P_{lkt}}}{\partial \ln RG_{lkt}} + \frac{\partial \ln Y_{P_{lkt-1}}}{\partial \ln RG_{lkt-1}} \right] \frac{Y_{lk2008}}{RG_{lk2008}} (RG_{lkt} - RG_{lkt-1}) + \beta_{PTlk} (PT_{lkt} - PT_{lkt-1})$$
(21)

$$Y_{lkt} = Y_{lkt-1} + b_{Tlk} (\ln T_{Lt} - \ln T_{Lt-1}) + \frac{1}{2} \left[\frac{\partial \ln Y_{P_{lkt}}}{\partial \ln TP_{lkt}} + \frac{\partial \ln Y_{P_{lkt-1}}}{\partial \ln TP_{lkt-1}} \right] \frac{Y_{lk2008}}{TP_{lk2008}} (TP_{lkt} - TP_{lkt-1}) + \frac{1}{2} \left[\frac{\partial \ln Y_{P_{lkt}}}{\partial \ln RG_{lkt}} + \frac{\partial \ln Y_{P_{lkt-1}}}{\partial \ln RG_{kt-1}} \right] \frac{Y_{lk2008}}{RG_{lk2008}} (RG_{lkt} - RG_{lkt-1}) + \beta_{PTlk} (PT_{lkt} - PT_{lkt-1}) .$$
(22)

In those equations, the β_{PTlk} values of functions (21) and (22) are respectively equivalent to those in functions (1) and (2). Y_{lk2008} is the average yield of crop *l* and country *k* during 2007–2009. TP_{lk2008} , RG_{lk2008} , and PT_{lk2008} respectively denote the average temperature, solar-radiation, and rainfall of crop l and country k during 2007–2009. The historical climate data are available by 2009. The temperature and solar-radiation elasticities of yield of the four crops in each country are comparable among different years and countries. The yield rate of change to these climate variables is calculated using yield and climate variables in the base year. Accordingly, the risk of overestimating climate-change impacts on yields in lower productivity countries is eliminated. The temperature and solar-radiation elasticities are varied by changes in these climate variables in these yield functions.

Data

Yields of rice, wheat, maize, and soybeans from 1961 or the earliest available year to 2011 were gathered from FAO–STAT for 129 countries. The selected countries depend on those of the database of GTAP 8 (Narayanan *et al.* 2012). Hong Kong, Singapore, and the rest of the world including Greenland were omitted because no yield data for them are included in the FAO–STAT.

Data of the forecast temperature and solar–radiation from 2006–2050 are the values of a high-resolution Model for Interdisciplinary Research on Climate (MIROC5) of the Center for Climate System Research, The University of Tokyo (CCSR), National Institute for Environmental Studies (NIES), and the Japan Agency for Marine–Earth Science and Technology (JAMSTEC). Four outputs depend on the representative concentration pathways (RCP) (van Vuuren *et al.* 2011: RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios of the CMIP5 of the IPCC). Average temperature, solar–radiation, and rainfall of the four scenarios are used for the simulations.

These GCM forecast climate data were interpolated to the 0.5° grid using the method described by Yokozawa *et al.* (2003). These grid data are averaged for each country. If the country is large, such as the U.S.A. or mainland China, these data are averaged for crop–cultivation regions according to Furuya & Koyama (2005).

Results

1. Trend analyses of major production countries

Table 1–4 presents the estimation results of yield functions specified as logistic functions or linear functions with terms of logarithmic time trends. Columns of a_{lk} , b_{lk} , c_{lk} , and d_{lk} show the parameters of logistic function, i.e., minimum yield, maximum yield, slope, and inflection point, where *l* is the index of crops and *k* is the index of countries. In addition, β_{TPlk} , β_{RGlk} , and β_{PTlk} respectively represent the estimated parameters of temperature, solar–radiation, and rainfall of the yield functions. Accordingly, the minimum and maximum yields are shifted by these climate terms. If the convergence results of the logistic function were not obtained, then the linear–yield functions that have terms of logarithmic time trends were estimated using OLS, AR1, or AR2. The logarithmic time trend parameters are shown in these tables in column b_{Tlk} .

In addition to the climate variables, soil moisture and CO_2 concentration are important factors underlying yield changes under climate–change. This study includes the effects of changes in soil moisture in the parameter of rainfall. Moreover, the effects of increased CO_2 concentration are included in the time–trend parameter because the rate of increase in CO_2 concentration has remained almost constant over the past 50 years.

The three simulations are selected to ascertain climatechange effects on crop production: 1) Baseline, 2) RCP2.6, and 3) RCP8.5. The baseline scenario includes an assumption of unchanged temperature, solar-radiation, and rainfall during the simulation term of 2009–2050. Simulations of RCP2.6 and RCP8.5 include assumptions that temperature, solar-radiation, and rainfall will match those of RCP2.6 and RCP8.5 scenarios of the CMIP5.

Some loci of trend and simulation results showing yields of main production countries are investigated using graphs. Figures 7(i) and 7(ii), respectively present rice yields in Japan and India. As one might expect, Japonica and Indica rice are respectively cultivated in Japan and India. The rice yield in Japan faces a downtrend phase because farmers select high eating-quality but low-yield varieties when confronted with declining demand situation. Climate change increases the yield. Average yields under RCP8.5 and RCP2.6 scenarios are expected to be 5.98 and 6.00 t ha⁻¹, respectively, during 2041–2050, whereas the baseline yield is expected to be 5.72 t ha⁻¹ in those years. The rice yield in India will increase steadily, but the rate of increase is expected to slow. Yields under RCP8.5 and RCP2.6 scenarios are expected to fall respectively to 4.01 and 4.06 t ha⁻¹ from the baseline yield in 4.09 t ha⁻¹, on average during 2041-2050.

Figures 7(iii) and 7(iv) respectively portray wheat yields in mainland China and India. The baseline results show a steady increase in wheat in mainland China. Climate change puts upward pressure on the yield. The respective yields of RCP8.5 and RCP2.6 are expected to become 6.29 and 6.17 t ha⁻¹, whereas the baseline yield will be 5.73 t ha⁻¹ in the 2040s. The simulation results in mainland China of the climate change show substantial fluctuations during the simulation term in both RCP8.5 and RCP2.6 scenarios. The peak of the locus between yield and temperature of wheat is sharper than those of other crops such as those presented in Figure 5(ii). The yield of wheat in mainland China will fall dramatically in the crop model if temperatures exceed 12°C. The coefficients of variation, which represent the ratio of standard deviations to averages, of yield of wheat in mainland China during the simulation term of RCP8.5 and RCP2.6 are, respectively, 7.9 and 6.4% respectively. The yield of wheat in India is decreased by climate change under the RCP8.5 scenario. The average yields under RCP8.5 scenario during 2041–2050, are expected to be 3.00 t ha⁻¹, whereas the baseline yield is expected to be 3.06 t ha⁻¹ that same years.

Maize differs physiologically from the other three crops: it is a C4 crop, whereas rice, wheat, and soybeans are C3 crops. The C4 plants have thrived at higher temperatures and in drier environments than the C3 plants have, while C4 plants can adapt to a low-CO₂ atmosphere (Rötter & van de Geijn 1999, Hatch 2002). Figures 7(v) and 7(vi) respectively present maize yields in the U.S.A. and mainland China. The graph of the U.S.A. shows that higher temperatures will push up the yields of this crop in either scenario. Maize yields in the U.S.A. in the baseline will increase over the next 40 years. The respective yields of RCP8.5 and RCP2.6 are expected to become 12.33 and 12.55 t ha⁻¹, whereas the baseline yield will be 11.93 t ha⁻¹ in the 2040s.

Table 1. Parameters of rice yield functions

1 A.S.	k	Country	a1k	b1k	c1k	d1k	bT1k	$\beta TP1k$	βRG1k	$\beta PT1k$	k	(Country	a1k	b1k	c1k	d1k	bT1k	$\beta TP1k$	$\beta RG1k$	$\beta PT1k$
2 SACC 3.404 4.752 0.016 5.015 9.202 0.146 0.016 0.001 69 FNC 0.016 0.017 0.001 69 SVC 5 IKG 5.327 0.322 0.327 0.017 0.001 0.007 71 ESP 0.557 0.074 0.002 0.012 6 INN 0.337 0.322 0.327 0.027 0.001 0.000 72 SWC 0.57 0.074 0.002 0.012 8 NKO 0.337 0.321 0.007 0.000 0.000 73 ISCR 0.77 0.014 0.010 0.001	1	AUS	-8.812	-6.661	2.941	28.473		0.627	-0.001	0.002	66	5	NLD								
3 XXX 3.041 4.479 0.323 3.1.08 0.1.63 -0.004 0.004 3 KRG	2	NZL									67	1	POL								
4 CH 5.105 9.20 0.16 0.007 0.000 0.007 N N 6 NN 0.332 0.332 0.332 0.332 0.014 0.000 0.007 N NN 6 NN 0.322 0.332 0.332 0.332 0.332 0.014 0.000 0.000 7 N 6 NN 0.323 0.017 0.000 0.000 7 NLH 0.014 0.013 0.000 0.000 7 NLH 0.014 0.013 0.000 0.000 7 NLH 0.157 0.014 0.001 0.000 12 NN 0.17 0.13 0.007 0.000 0.000 0.001 0.	3	XOC	3.494	4.752	0.010	5.015		0.102	-0.012	0.001	68		PRT	3.041	4.479	0.932	31.708		0.163	-0.004	0.004
5 IRAU 0 N N 0 N	4	CHN	5.105	9.262	0.146	20.476		-0.108	-0.001	0.000	69)	SVK								
b Pr 0.007 0.002 0.012 0.001 0.002 0.012 0.002 0.012 0.002 0.012 0.002 0.012 0.002 0.012 0.002 0.012 0.002 0.012 0.002 0.012 0.002 0.012 0.002 0.012 0.002 0.012 0.002 0.012 0.002 0.012 0.002 0.012 0.012 0.014 0.002 0.012 0.001<	2	HKG					0.000	0 1 4 2	0.001	0.007	/0)	SVN	2 5 1 1	4 (25	0.007	26 5 4 2		0.074	0.000	0.012
A MAG 1.53 0.33 1.52 0.15 0.00 20 27 38 He P TWN 2.63 6.218 0.078 19.34 4.44 0.120 0.000 75 NDR 12 110 X58 8.02 0.155 13.33 0.007 0.000 0.000 76 XEF 12 110 X58 8.02 0.155 0.33 1.00 0.000 0.000 76 XEF 12 110 0.58 2.917 0.077 0.020 0.000 70 RER 0.075 0.610 0.000 0.000 14 10.15 0.380 0.001 0.000 84 XER 4.007 0.001 0.001 85 XER 4.027 0.005 0.013 0.007 0.020 9.020 9.020 9.020 0.005 0.013 0.007 0.021 0.005 0.013 0.007 0.021 0.005 0.013 0.007 0.021 0.013 <	6	JPN	1 027	5 2 2 7	0.202	15 527	0.889	0.142	0.001	-0.00/	/1		ESP	3.511	4.635	0.997	36.542		0.074	0.002	0.012
9 70N 2.622 6.218 0.917 0.044 0.006 74 CHE 11 KIM 5.58 K620 1.55 45.10 1.57 0.007 0.000 76 KEP 12 IDN 1.55 1.57 0.017 0.000 0.007 0.007 0.007 0.000 76 KEP 0.075 0.026 0.007 0.000 78 KEP 0.075 0.017 0.000 0.007 0.000 70 KE 0.075 0.017 0.000 0.007 0.000 70 KE 0.075 0.017 0.000 0.000 70 KE 0.075 0.017 0.000 70 KE 1.75 0.610 4.003 0.006 0.001	/ 8	MNG	1.957	3.327	0.382	13.327		0.147	-0.001	-0.001	72		GDD								
10 X.X. X.V. <	9	TWN	2 632	6 218	0.078	19 348		-0.072	0.004	0.000	73	l	CHE								
1 Kum 5.58 Kum 6.072 0.007 0.000 76 XIP 12 IDN 5.58 4.670 0.171 7000 0.000 77 ALB 1.576 0.014 0.001 0.000 13 LAO 0.584 4.678 0.051 4.819 0.001 0.000 78 BLR 0.755 0.610 4.003 0.007 0.026 0.007 70.002 0.000 78 BLR 0.755 0.610 4.003 0.001 0.000 82 KUS 6.290 0.65 0.018 0.003 0.012 0.818 0.012 4.818 0.018 0.003 0.012 0.818 0.012 2.448 0.031 0.001 0.004 83 KLR 2.148 0.037 0.001 0.006 84 XEE 2.1448 0.007 0.001 0.004 0.012 2.148 0.012 2.148 0.007 0.001 0.005 0.012 2.148 0.010 0.001	10	XEA	2.052	0.210	0.070	17.540	-0 444	-0.126	0.004	0.008	75		NOR								
12 13 LAO 8.078 0.671 1.791 0.049 0.009 0.00 7 A.LB 0.775 0.02 0.007 0.02 0.007 0.00 0.007 7 0.007 <	11	KHM	5.585	8.062	0.155	45.133	0	-0.072	-0.007	0.000	76	,	XEF								
13 LA 9.94 8.08 9.94 8.08 9.075 9.622 9.000 79 BLR 9.975 9.622 9.000 70 BLR 9.975 9.620 9.000 70 BLR 9.975 9.610 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.005 9.000 8.0 RU 6.837 1.755 0.610 4.903 6.209 0.005 0.00 8.0 RU 6.205 0.610 9.005 0.010 8.0 RU 5.175 0.610 0.015 0.001 8.0 RU 5.175 0.610 0.015 0.005 0.001 8.0 RU 5.175 0.610 0.015 0.001 8.0 RU 5.175 0.610 0.015 0.001 0.001 8.0 RU 5.175 0.101 0.015 0.010 0.015 0.015 0.010 0.015 0.010 0.015 0.010 <td>12</td> <td>IDN</td> <td>1.528</td> <td>4.637</td> <td>0.157</td> <td>17.791</td> <td></td> <td>0.049</td> <td>-0.003</td> <td>0.000</td> <td>77</td> <td>,</td> <td>ALB</td> <td></td> <td></td> <td></td> <td></td> <td>1.576</td> <td>-0.014</td> <td>-0.013</td> <td>-0.007</td>	12	IDN	1.528	4.637	0.157	17.791		0.049	-0.003	0.000	77	,	ALB					1.576	-0.014	-0.013	-0.007
14 MYS	13	LAO	0.944	8.078	0.051	48.198		-0.064	0.001	0.002	78	;	BGR					0.775	0.262	-0.001	0.009
15 PH1 -0.582 2.97 0.077 4.002 0.001 0.00 4.88 V 5.610 49.093 0.626 0.046 0.018 0.007 17 TIA 1.215 7.73 0.135 3.858 0.003 0.000 82 RUS -6.29 0.610 0.006 0.001 0.000 82 RUS -6.29 0.610 0.010 0.000 0.000 85 XER -3.355 0.179 0.002 0.001 0.001 85 XER -3.355 0.179 0.002 0.001 0.007 0.001 85 XER -3.355 0.179 0.002 0.001 0.003 86 KAZ -3.458 0.450 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.021 4.353 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 <td< td=""><td>14</td><td>MYS</td><td></td><td></td><td></td><td></td><td>0.905</td><td>-0.123</td><td>0.001</td><td>0.000</td><td>79</td><td>)</td><td>BLR</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	14	MYS					0.905	-0.123	0.001	0.000	79)	BLR								
16 SCP	15	PHL	-0.582	2.917	0.077	24.005		0.077	-0.002	0.000	80)	HRV								
17 THA 1.215 2.793 0.136 3.898 0.006 0.001 0.000 82 RUS 6.299 0.405 0.008 0.001 0.000 0.001 82 UKR 4.724 0.381 0.005 0.000 0.000 83 XER 3.955 -0.179 0.005 0.001 0.000 85 XER 3.955 -0.179 0.005 0.001 0.000 85 XER 3.955 -0.179 0.005 0.001 0.003 86 KAZ 2.148 0.075 0.012 0.003 0.003 87 KCZ 5.852 -0.950 0.003 0.005 0.003 87 KCZ 5.852 -0.950 0.003 0.005 0.002 0.025 1.026 1.0425 0.045 0.002 0.005 0.002 0.025 1.027 1.0435 0.0455 0.027 0.045	16	SGP									81		ROU	-6.832	-1.755	0.610	49.093		0.066	0.018	0.005
18 VNM 3.711 7.98 0.18 3.16 -0.080 0.001 -0.000 83 UKR 4.724 0.38 0.000 000 80 XEE 20 BGD 1.128 8.168 0.075 5.465 4.013 0.000 68 XEE 3.955 -0.179 0.001 20 0.001 20 1.012 0.013 0.007 0.012 0.001 20 1.012 0.013 0.007 0.013 0.007 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.023 0.025 0.025 0.025 0.025 0.024 0.031 0.025 0.025 0.024 0.021 0.018 0.000 90 91 18 0.118 0.021 0.024 0.021 0.018 0.005 0.009 91 18 0.224 0.241 0.241 0.241 0.241 0.241 0.241 0.241	17	THA	1.215	2.793	0.136	38.958		0.003	0.001	0.000	82	2	RUS					6.299	0.045	0.037	0.028
19 XSE 1.11 0.133 0.002 0.000 84 XEE 21 IND - -0.05 0.001 0.000 85 XER	18	VNM	3.711	7.988	0.118	37.167		-0.080	0.001	-0.001	83		UKR					4.724	0.381	0.008	0.012
20 BG0 1.128 8.168 0.07/5 3.462 4.0125 0.001 0.000 85 XEK 3.955 0.179 0.002 0.0012 21 ND 2.434 0.257 0.000 0.00 87 KGZ 5.252 0.050 0.013 0.007 21 NLK 3.010 5.066 0.120 2.4654 0.016 0.004 0.001 80 ARM - 5.252 0.050 0.012 0.005 0.000 90 AZE - 14.265 0.616 0.043 0.002 90 AZE - 14.265 0.616 0.043 0.002 90 AZE - 14.265 0.616 0.043 0.002 90 AZE - 14.263 0.616 0.043 0.002 90 AZE - 0.118 0.003 0.000 90 CAT - - 0.118 0.003 0.000 70 QAT - 0.118 0.012 0.014	19	XSE		0.1.00	0.075		1.411	-0.133	0.002	0.000	84	-	XEE							0.005	
21 IND 2.44 0.15 0.003 0.000 85 K.GZ 2.148 0.013 0.001 0.001 3 3.29 0.013 0.001 0.001 3 2.026 0.013 0.001 0.001 88 X.GZ 3.29 0.026 0.033 0.001 0.001 88 X.GZ 3.29 0.265 0.020 0.020 0.001 0.000 88 X.GZ 3.29 0.026 0.020 0.001 0.000 90 A.RM - 14.265 0.016 0.003 0.002 90 A.RM - 0.118 0.003 0.000 0.000 93 IRN 6.528 9.425 0.069 2.431 -0.118 0.003 0.000 90 NAN - - 91 6.023 3.040 0.023 3.040 0.023 3.040 0.023 3.040 0.023 3.040 0.023 3.040 0.023 3.040 0.023 3.040 0.023 3.040 0.023 3.040 0.023 3.040 0.023 3.040 0.011 0.011 0.011 0.021<	20	BGD	1.128	8.168	0.075	54.652	2 424	-0.005	0.001	0.000	85		XER					3.955	-0.179	0.005	0.012
12 NR 3.619 4.713 0.210 9.4.33 4.0.00 0.000 87 K.Cz 5.6.2 9.0.20 0.010 0.000 0.001 89 ARM 24 I.KA 3.100 5.066 0.120 2.4654 0.016 -0.004 -0.001 89 ARM -14.255 0.616 -0.045 0.020 19 GEO -14.255 0.616 -0.045 0.020 92 BRR -0.128 2.784 0.118 40.037 -0.025 0.022 0.000 93 RN -5.28 9.425 0.069 2.931 -0.118 -0.03 0.000 97 QAT - - 0.118 0.030 0.000 97 QAT - - 0.118 0.003 0.000 97 QAT - - 1.141 2.732 0.114 0.212 0.041 0.000 97 QAT - 1.141 1.141 2.333 1.406 0.010 0.002 0.017 0.017<	21	IND	2 (10	4 772	0.215	24 442	2.434	0.123	0.003	0.000	80) 7	KAZ					2.148	0.057	0.012	0.004
1 1	22	DAK	3.019	4.//3	0.215	34.443	1.082	-0.087	-0.001	0.003	8/		VSU					3.823	-0.030	0.013	0.007
2 XXA 0.206 1.619 0.539 42.941 0.003 0.005 0.001 90 AZE 14.265 0.616 0.045 0.002 26 CAN 7.296 12.879 0.072 0.005 0.005 0.000 90 AZE 91 GEO 28 MEX -0.128 2.744 0.110 0.002 0.005 0.000 93 IRN 6.528 9.425 0.069 24.931 -0.118 -0.003 0.005 20 ARG -6.714 2.233 0.118 0.003 0.000 97 QAT 31 BOL -0.391 0.425 0.233 31.406 0.002 0.000 99 TUR I.807 -0.146 -0.019 -0.011 31 BOL -0.391 0.147 0.032 0.000 0.002 100 8 SU 31 BOL -1.147 2.735 0.134 0.017 0.002 0.001 0.011	23	LKA	3 100	5.066	0 1 2 0	24 654	1.062	0.033	-0.008	-0.001	89	, ,	ARM					3.949	-0.303	0.023	0.025
26 CAN CAN CAN CAN PI GEO FAIL CAN CAN CAN 71 USA 7.296 12.879 0.072 40.302 -0.061 -0.003 0.002 29 BHR 28 MEX -0.128 2.784 0.110 20.23 0.005 0.000 97 QAT 30 ARG -6.741 -2.238 0.118 40.937 -0.018 0.000 97 QAT 31 BCL -0.391 0.425 0.233 31.406 0.0018 0.000 97 QAT 31 BCL -0.391 0.425 0.232 0.010 0.000 0.000 97 QAT 31 BCL -1.147 0.139 3559 -0.148 0.002 0.003 100 XWS -0.019 4.743 0.224 0.004 0.001 3008 0.021 0.017 0.019 4.743 0.224 3.640 0.024 0.018 <td< td=""><td>25</td><td>XSA</td><td>0.206</td><td>1 619</td><td>0.120</td><td>42.941</td><td></td><td>0.010</td><td>0.005</td><td>-0.001</td><td>90</td><td>)</td><td>AZE</td><td></td><td></td><td></td><td></td><td>14 265</td><td>0.616</td><td>-0.045</td><td>0.002</td></td<>	25	XSA	0.206	1 619	0.120	42.941		0.010	0.005	-0.001	90)	AZE					14 265	0.616	-0.045	0.002
17 18 A 7.296 12.879 0.071 40.302 -0.061 -0.003 0.002 92 BHR	26	CAN	0.200	11015	0.000	121711		0.000	0.000	0.001	91		GEO					1 11200	0.010	010 12	0.002
28 MEX -0.128 2.784 0.110 20.213 -0.005 0.005 0.000 94 IRN 6.528 9.425 0.609 2.4931 -0.118 -0.003 0.005 0.005 29 XAA -0.331 0.425 0.233 3.140 0.001 0.000 96 MNT - - 0.018 0.000 96 MNT - - 0.018 0.000 96 MNT - - 0.018 0.000 97 QAT 31 BOL -1.177 2.732 0.114 0.732 0.001 0.000 90 TUR - - 1.807 -0.16 -0.019 - - 0.021 -0.024 0.063 0.001 - 33.78 33.78 33.78 33.78 33.78 33.78 33.78 33.78 33.78 33.78 33.78 33.78 33.78 33.78 33.78 33.78 33.78 33.78 33.78	27	USA	7.296	12.879	0.072	40.302		-0.061	-0.003	0.002	92	2	BHR								
92 XNA	28	MEX	-0.128	2.784	0.110	20.231		-0.005	0.005	0.000	93		IRN	6.528	9.425	0.069	24.931		-0.118	-0.003	0.050
10 ARG -6.741 -2.238 0.118 40.937 -0.028 0.001 0.003 96 NM 31 BRA -1.147 2.732 0.139 42.377 -0.018 0.000 96 OMN - - - - - - 0.018 0.000 97 QAT 32 CHL -19.279 -1.112 0.107 1.033 0.000 09 TV - - - - - 0.018 0.001 000 98 SAU - - - - 0.021 - 0.013 0.003 90 TV - - 0.013 0.003 0.001 NMS - 0.024 -0.013 0.004 0.013 3.078-30.251 0.245 38.240 0.026 0.088 0.021 0.001 0.001 3.078-30.251 0.245 38.240 0.026 0.080 0.031 3.07 0.021 0.015 0.015 0.012 0.017 1.05 0.115 0.002 0.153 0.015 0.021 0.010 0.016 C	29	XNA									94	ŀ	ISR								
31 BOL -0.331 0.425 0.233 31.406 0.018 0.003 0.000 97 QAT 32 BRA -11.47 2.732 0.139 42.377 -0.018 0.000 090 97 QAT 34 COL -12.279 1.10 2.139 42.377 -0.018 0.000 0.000 98 SAU 35 FCU -12.46 -0.239 0.011 0.000 100 RR -0.019 4.743 0.228 32.877 0.029 0.08 0.001 37 PER 7.164 10.77 0.139 3.559 -0.148 0.002 0.001 103 RR -3.3078-30.251 0.245 38.240 0.029 0.08 0.091 38 URY -2.299 I.841 0.098 1.984 0.021 0.001 105 TN -2.115 0.151 0.007 0.001 100 CMR -3.3078-30.251 0.245 38.240 0.001 0.001 104 UN 1.055 0.15 0.001 0.001 10.01 UN <td>30</td> <td>ARG</td> <td>-6.741</td> <td>-2.238</td> <td>0.118</td> <td>40.937</td> <td></td> <td>-0.028</td> <td>0.022</td> <td>0.000</td> <td>95</td> <td>5</td> <td>KWT</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	30	ARG	-6.741	-2.238	0.118	40.937		-0.028	0.022	0.000	95	5	KWT								
32 BRA -1.147 2.732 0.139 42.377 -0.018 0.000 97 QAT 33 CHL -19.279-16.112 0.107 2.198 0.003 0.000 98 SAU 35 ECU 1.246 0.033 0.002 0.000 98 SAU 1.807 -0.146 -0.019 -0.021 36 PRY -4.735 -2.705 0.134 35.598 -0.18 -0.002 100 ARE -0.019 4.743 0.245 38.240 0.029 0.008 0.001 0.017 0.013 30.78 -0.155 0.115 0.000 0.01 100 MRR -3.3078-30.251 0.245 38.240 0.290 0.08 0.091 0.017 0.003 106 CMR -2.115 0.87 0.010 0.000 0.001 100 XNF -1.055 0.115 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.003 0.01 0.024 0.030 0.011 0.002 0.015 0.115 0.00<	31	BOL	-0.391	0.425	0.233	31.406		0.018	0.003	0.000	96	5	OMN								
33 CHL -19.279 - 16.112 0.107 21.984 -0.032 0.004 0.000 98 SAU 34 COL 1.246 0.033 -0002 0.003 90 TUR 1.807 -0.146 -0.019 -0.021 -0.063 -0.046 -0.013 35 ECU 1.246 0.239 0.011 0.005 0.004 101 XWS 0.245 38.240 0.024 -0.063 -0.046 -0.013 38 URY 1.139 35.598 -0.144 -0.002 1.004 -0.001 103 MAR -33.078 -0.245 38.240 0.226 0.028 0.029 0.008 -0.01 39 VEN -2.299 1.841 0.098 19.844 0.021 -0.010 1005 XNF -1.055 0.115 -0.020 0.153 41 CRI -5.009 -2.181 0.151 1.766 0.024 0.000 100 INT -1.155 0.115 0.020 0.002 41 SCI -5.09 -2.111 3.514 0.170	32	BRA	-1.147	2.732	0.139	42.377		-0.018	0.008	0.000	97		QAT								
34 COL 2.048 0.033 0.002 0.003 99 TUR 1.807 -0.146 -0.019 -0.021 35 FCU 1.246 0.239 0.011 0.002 100 ARE -0.133 0.024 0.003 100 2.03 0.019 4.743 0.228 32.787 0.029 0.008 -0.026 0.003 102 EGY -0.019 4.743 0.228 32.787 0.029 0.008 -0.026 0.020 0.033 0.017 -0.018 ATA -33.078-30.251 0.245 38.240 0.020 0.030 0.02 103 MAR -33.078-30.251 0.245 38.240 0.020 0.030 0.024 3.040 1.051 1.050 0.020 0.031 0.01 TUR -1.055 0.115 0.000 0.001 0.004 100 XMF -33.078-30.251 0.245 38.240 0.000 0.001 0.004 0.010 0.024 3.000 0.000 0.003 106 CMR -2.115 0.015 0.000 0.000 0.001 10.00 0.000 0.0	33	CHL	-19.279 -	-16.112	0.107	21.984		-0.032	0.040	0.000	98	,	SAU								
35 ECU -1.246 -0.239 0.011 0.002 100 AKE 37 PER -1.764 10.774 0.139 35.598 -0.148 -0.002 0.003 102 EGY -0.019 4.743 0.228 32.787 0.029 0.008 -0.019 38 URY -2.299 1.841 0.098 0.551 0.017 -0.000 100 MAR -3.078-30.251 0.224 38.240 0.296 0.058 0.000 39 VEN -2.299 1.841 0.098 0.012 -0.001 105 XNF -1.055 0.115 0.001 0.002 1.033 41 CRI -5.009 -2.181 0.151 17.866 0.224 0.000 0.001 100 KNF -1.055 0.115 0.002 0.003 43 HND - 1.766 0.224 0.003 0.001 100 KNF -1.055 0.115 0.000 0.001 43 HND - 1.776 0.038 0.007 0.011 100 SKR	34	COL					2.048	0.033	-0.002	0.003	99)	TUR					1.807	-0.146	-0.019	-0.021
36 PKY 4.75 2.75 0.314 36.179 0.015 0.005 0.004 101 XWS 0.024 -0.005 -0.005 -0.015 38 URY 2.349 0.155 0.005 0.000 1002 EGY -0.019 4.743 0.228 32.787 0.029 0.008 0.001 0.001 0.001 0.001 0.028 32.078 0.224 0.001 0.001 0.005 XKF -1.055 0.117 0.001 0.001 0.001 0.002 0.448 0.488 0.431 0.007 0.001 0.002 0.448 0.488 0.431 0.007 0.001 0.002 0.448 0.488 0.431 0.002 0.001 0.002 0.011 0.448 0.488 0.431 0.010 0.001 0.011	35	ECU	4 725	2 705	0.214	26 170	1.246	-0.239	0.011	0.002	100)	ARE					0.024	0.072	0.046	0.012
3) PEK 7.144 10.74 0.199 3.3.378 -0.143 -0.019 4.743 0.225 2.743 0.025 0.005 -0.005 4.743 0.225 2.743 0.025 0.026 0.025 0.026 0.025 0.026 <td< td=""><td>30</td><td>PKY</td><td>-4./35</td><td>-2.705</td><td>0.314</td><td>30.179</td><td></td><td>0.153</td><td>0.005</td><td>0.004</td><td>101</td><td>,</td><td>AWS</td><td>0.010</td><td>1 7 1 2</td><td>0 228</td><td>22 787</td><td>0.024</td><td>-0.063</td><td>-0.046</td><td>-0.013</td></td<>	30	PKY	-4./35	-2.705	0.314	30.179		0.153	0.005	0.004	101	,	AWS	0.010	1 7 1 2	0 228	22 787	0.024	-0.063	-0.046	-0.013
35 VEN -2.29 1.841 0.098 19.844 0.021 -0.004 -0.001 105 XNF -1.055 0.115 -0.002 0.138 40 XSM 1.280 3.369 0.155 18.343 0.018 0.001 -0.001 105 XNF -1.055 0.115 -0.002 0.138 41 CRI -5.009 -2.181 0.151 17.866 0.224 0.000 0.003 106 CMR -2.115 0.87 0.010 0.002 43 HND 1.769 0.112 0.017 0.000 100 ING GHA -0.639 0.448 0.488 30.435 0.068 -0.002 0.001 44 NC 1.172 0.38 0.007 0.001 110 SEN -2.923 -1.378 0.185 21.740 0.130 -0.002 0.001 45 PAN 2.111 3.514 0.170 14.639 -0.023 0.001 110 SEN -2.923 -1.378 0.185 21.740 0.130 0.002 0.014	37	PER	/.104	10.774	0.139	33.398	2 3/3	-0.148	-0.002	-0.003	102		MAR	-0.019	4.745	0.228	32.787		0.029	0.008	-0.091
101 1.280 3.369 0.153 10.37 0.001 0.001 10.001 0	39	VEN	-2 299	1 841	0.098	19 884	2.545	0.221	-0.004	-0.003	103	l	TUN	-55.070-	50.251	0.245	50.240		0.270	0.050	0.020
41 CR1 -5.009 -2.181 0.151 17.866 0.224 0.000 0.003 106 CMR 2.115 0.087 0.001 0.002 43 HND - 1.769 0.112 0.017 0.000 108 CHA -0.639 0.448 0.488 30.435 0.008 -0.003 0.002 44 NIC - 1.3514 0.170 14.639 -0.057 0.001 109 NGA -2.923 -1.378 0.185 21.76 0.033 -0.002 0.011 45 PAN 2.111 3.514 0.170 14.639 -0.057 0.000 111 SUF -2.923 -1.378 0.185 21.740 0.030 0.001 0.002 47 XCA - 2.866 -0.433 -0.025 0.000 111 XCF - 0.39 0.13 0.010 0.002 48 XCB 7.311 9.023 0.383 15.404 -0.272 0.003 0.001 114 ETH - - 0.039 0.013 0.010	40	XSM	1.280	3.369	0.155	18.343		0.018	0.001	-0.001	105	5	XNF					-1.055	0.115	-0.002	0.153
42 GTM	41	CRI	-5.009	-2.181	0.151	17.866		0.224	0.000	0.003	106	5	CMR					2.115	0.087	0.001	0.008
43 HND 1,769 0.112 0.017 0.000 108 GHA -0.639 0.448 0.488 30.435 0.068 -0.002 0.003 44 NIC 1.172 0.038 0.007 0.001 109 NGA - 0.831 0.077 0.003 0.002 45 PAN 2.111 3.514 0.170 14.69 -0.057 0.001 100 NGA - 2.923 -1.378 0.185 2.1740 0.639 0.068 -0.002 0.010 46 SLV 2.866 -0.433 0.022 0.001 111 XWF -2.923 -1.378 0.185 21.740 0.039 0.033 0.001 0.002 47 XCA 8.923 -0.469 0.003 0.001 112 XCF - - 0.399 0.135 0.015 0.011 48 XCB 7.311 9.023 0.383 15.404 -0.272 0.003 0.001 113 XAC - - 0.938 0.105 0.015 0.015	42	GTM					0.939	-0.179	-0.023	0.000	107	7	CIV					0.599	-0.127	0.001	0.002
44 NIC 1.172 0.038 0.007 0.001 109 NGA -0.831 0.077 0.003 0.002 45 PAN 2.111 3.514 0.170 14.639 -0.057 0.001 -0.001 110 SEN -2.923 -1.378 0.185 21.740 0.033 -0.002 0.011 46 SLV 2.866 -0.433 -0.025 0.002 111 XWF 0.339 -0.030 -0.001 0.002 48 XCB 7.311 9.023 0.383 15.404 -0.272 0.003 0.000 113 XAC -0.093 0.14 0.000 0.000 49 AUT 116 KEN 116 KEN -0.030 0.035 0.015 0.011 51 CYP 116 KEN 1.168 0.137 0.010 0.003 0.003 52 CZE 118 MUS 1.585 2.94 0.230 20.787 -0.101 0.003 <td< td=""><td>43</td><td>HND</td><td></td><td></td><td></td><td></td><td>1.769</td><td>0.112</td><td>0.017</td><td>0.000</td><td>108</td><td>;</td><td>GHA</td><td>-0.639</td><td>0.448</td><td>0.488</td><td>30.435</td><td></td><td>0.068</td><td>-0.002</td><td>0.003</td></td<>	43	HND					1.769	0.112	0.017	0.000	108	;	GHA	-0.639	0.448	0.488	30.435		0.068	-0.002	0.003
45 PAN 2.111 3.514 0.170 14.639 -0.057 0.001 -0.001 110 SEN -2.923 -1.378 0.185 21.740 0.130 -0.002 0.011 46 SLV 2.866 -0.433 -0.025 0.002 111 XWF 0.543 -0.030 0.001 0.002 47 XCA 8.992 -0.469 0.003 0.001 112 XCF 0.309 0.135 0.015 0.012 48 XCB 7.311 9.023 0.383 15.404 -0.272 0.003 0.000 113 XAC -0.093 0.14 0.000 0.000 49 AUT 14 ETH 115 KEN 1.058 0.139 48.336 -0.042 0.012 0.000 0.003 0.011 114 ETH 115 KEN 1.058 0.139 48.336 -0.042 0.012 0.000 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003<	44	NIC					1.172	0.038	0.007	0.001	109)	NGA					0.831	0.077	0.003	0.002
46 SLV 2.866 -0.433 -0.025 0.002 111 XWF 0.543 -0.030 -0.001 0.002 47 XCA 8.992 -0.469 0.003 0.001 112 XCF 0.309 0.135 0.015 0.012 48 XCB 7.311 9.023 0.383 15.404 -0.272 0.003 0.000 113 XAC -0.093 0.014 0.000 0.000 49 AUT - 115 KEN -0.093 0.137 0.015 0.011 50 BEL - - 115 KEN -0.030 0.042 0.012 0.000 52 CZE - - 116 MDG -2.558 -0.231 0.139 48.336 -0.042 0.012 0.000 53 DNK 118 MUS 118 MUS - 118 MUS - 0.437 0.030 0.003 0.003 54 EST - 0.205 -0.028 121 UGA 0.235 0.33 -0.040	45	PAN	2.111	3.514	0.170	14.639		-0.057	0.001	-0.001	110)	SEN	-2.923	-1.378	0.185	21.740		0.130	-0.002	0.011
47 XCA 8.992 -0.469 0.003 0.001 112 XCF 0.309 0.135 0.015 0.012 48 XCB 7.311 9.023 0.383 15.404 -0.272 0.003 0.000 113 XAC -0.093 0.014 0.000 0.000 49 AUT 114 ETH 115 KEN 1.058 0.137 0.012 0.000 50 BEL 115 KEN 1.058 0.137 0.012 0.000 52 CZE 116 MDG -2.558 -0.231 0.139 48.336 -0.042 0.012 0.000 53 DNK 118 MUS 118 MUS -0.044 0.003 0.003 0.003 54 EST 119 MOZ 120 TZA 0.437 0.030 0.003 0.003 55 FRA 7.545 9.295 0.727 2.107 0.000 -0.028 121 UGA 0.264 -0.039 0.003 0.003 58 GRC 5.322 <td>46</td> <td>SLV</td> <td></td> <td></td> <td></td> <td></td> <td>2.866</td> <td>-0.433</td> <td>-0.025</td> <td>0.002</td> <td>111</td> <td></td> <td>XWF</td> <td></td> <td></td> <td></td> <td></td> <td>0.543</td> <td>-0.030</td> <td>-0.001</td> <td>0.002</td>	46	SLV					2.866	-0.433	-0.025	0.002	111		XWF					0.543	-0.030	-0.001	0.002
48 XCB 7.311 9.023 0.383 15.404 -0.272 0.003 0.000 113 XAC -0.093 0.014 0.000 0.000 49 AUT 114 ETH 115 KEN 1.058 0.137 0.012 0.000 0.001 0.003 0.003 0.001 0.003 0.001 0.003 0.004 0.002 0.033 0.004 0.003 <td< td=""><td>47</td><td>XCA</td><td>7 211</td><td>0.022</td><td>0.202</td><td>15 404</td><td>8.992</td><td>-0.469</td><td>0.003</td><td>0.001</td><td>112</td><td></td><td>XCF</td><td></td><td></td><td></td><td></td><td>0.309</td><td>0.135</td><td>0.015</td><td>0.012</td></td<>	47	XCA	7 211	0.022	0.202	15 404	8.992	-0.469	0.003	0.001	112		XCF					0.309	0.135	0.015	0.012
49 AO1 114 E1H 50 BEL 115 KEN 1.058 0.137 0.015 0.011 51 CYP 116 MDG -2.558 -0.231 0.139 48.336 -0.042 0.002 0.000 52 CZE 117 MWI 1.585 2.594 0.230 20.787 -0.101 0.003 0.003 53 DNK 118 MUS 1.585 2.594 0.230 20.787 -0.007 0.000 54 EST 119 MOZ 0.242 0.013 0.003 0.003 55 FIN 120 TZA 0.437 0.030 0.003 0.003 56 FRA 7.545 9.295 0.727 2.107 0.000 -0.002 122 ZMB 0.235 0.033 -0.004 -0.002 57 DEU 121 26.158 -0.122 0.003 -0.003 124 XEC 0.661 -0.039 0.003 0.001 59 HUN -9.649 -7.840 0.10	48	AUT	/.311	9.023	0.383	15.404		-0.272	0.003	0.000	113	•	XAC ETU					-0.093	0.014	0.000	0.000
50 DLL 110 RDK 110 RDK 1105 0.137 0.017 0.011 0.011 0.011 0.011 0.011 0.011 0.001 0.001 0.001 0.001 0.001 0.003	49 50	BEI									114	ł	KEN					1.058	0 137	0.015	0.011
51 CTI NIDG 2053 0.121 0.101 0.002 0.003 52 CZE 117 MWI 1.585 2.594 0.230 20.787 -0.101 0.003 0.003 54 EST 119 MOZ 0.247 0.437 0.030 0.003 0.003 55 FIN 120 TZA 0.437 0.030 0.003 0.003 56 FRA 7.545 9.295 0.727 22.107 0.000 -0.002 122 ZMB 58 GRC 5.322 9.215 0.121 26.158 -0.122 0.003 120 TZA 0.437 0.030 0.004 -0.002 57 DEU 122 ZMB 122 ZMB 0.661 -0.039 0.003 0.001 59 HUN -9.649 -7.840 0.108 9.559 0.644 0.000 -0.003 126 NAM 60 IRL 125 BWA 125 BWA 1.27 ZAF 0.612 0.213 0.010 0.009	51	CVP									115		MDG	-2 558	-0.231	0 139	48 336	1.056	-0.042	0.013	0.001
53 DNK 118 MUS 118 MUS 118 MUS 118 MUS 54 EST 119 MOZ 0.264 -0.037 -0.007 0.000 55 FIN 120 TZA 0.437 0.030 0.003 56 FRA 7.545 9.295 0.727 22.107 0.000 -0.005 -0.028 121 UGA 0.235 0.033 -0.004 -0.002 57 DEU 122 ZMB 122 ZMB 124 XEC 125 BWA 0.661 -0.039 0.003 0.001 59 HUN -9.649 -7.840 0.108 9.559 0.644 0.000 -0.003 124 XEC 125 BWA 0.612 0.213 0.010 0.009 60 IRL 125 BWA 127 ZAF 0.612 0.213 0.010 0.009 0.003 128 XSC 1.956 0.263 -0.025 -0.003 64 LUX 129 XTW 129 XTW 129 XTW 129 XTW 129 XTW	52	CZE									117	,	MWI	1 585	2 594	0.139	20 787		-0.101	0.012	0.000
54 EST 119 MOZ 0.264 -0.037 -0.007 0.000 55 FIN 120 TZA 0.437 0.030 0.003 0.003 56 FRA 7.545 9.295 0.727 22.107 0.000 -0.005 -0.028 121 UGA 0.235 0.033 -0.004 -0.002 57 DEU 122 ZMB 122 ZMB 123 ZWE 0.661 -0.039 0.003 0.001 59 HUN -9.649 -7.840 0.108 9.559 0.644 0.000 -0.003 124 XEC 125 BWA 60 IRL 17A 0.666 0.283 0.016 -0.003 126 NAM 61 ITA 0.666 0.283 0.016 -0.003 126 NAM 62 LVA 127 ZAF 0.612 0.213 0.010 0.009 63 LTU 128 XSC 1.956 0.263 -0.025 -0.003 64 LUX 129 <td< td=""><td>53</td><td>DNK</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>118</td><td>;</td><td>MUS</td><td>110 00</td><td>2.071</td><td>0.200</td><td>201707</td><td></td><td>01101</td><td>0.000</td><td>0.000</td></td<>	53	DNK									118	;	MUS	110 00	2.071	0.200	201707		01101	0.000	0.000
55 FIN 120 TZA 0.437 0.030 0.003 0.003 56 FRA 7.545 9.295 0.727 22.107 0.000 -0.005 -0.028 121 UGA 0.235 0.033 -0.004 -0.002 57 DEU 122 ZMB 122 ZMB 124 ZWE 0.661 -0.039 0.003 0.001 59 HUN -9.649 -7.840 0.108 9.559 0.644 0.000 -0.003 124 XEC 125 BWA 60 IRL 0.666 0.283 0.016 -0.003 126 NAM 62 LVA 127 ZAF 0.612 0.213 0.010 0.009 63 LTU 128 XSC 1.956 0.263 -0.025 -0.003 64 LUX 128 XSC 1.956 0.263 -0.025 -0.003 65 MLT 129 XTW 129 XTW 121 120 121	54	EST									119)	MOZ					0.264	-0.037	-0.007	0.000
56 FRA 7.545 9.295 0.727 22.107 0.000 -0.002 121 UGA 0.235 0.033 -0.004 -0.002 57 DEU 122 ZMB 122 ZMB 0.661 -0.039 0.003 0.001 58 GRC 5.322 9.215 0.121 26.158 -0.122 0.003 -0.003 123 ZWE 0.661 -0.039 0.003 0.001 59 HUN -9.649 -7.840 0.108 9.559 0.644 0.000 -0.003 124 XEC 125 BWA 60 IRL 17A 0.666 0.283 0.016 -0.003 126 NAM 62 LVA 127 ZAF 0.612 0.213 0.010 0.009 63 LTU 128 XSC 1.956 0.263 -0.025 -0.003 64 LUX 129 XTW 129 XTW 1.956 0.263 -0.025 -0.003	55	FIN									120)	TZA					0.437	0.030	0.003	0.003
57 DEU 122 ZMB 58 GRC 5.322 9.215 0.121 26.158 -0.122 0.003 -0.003 123 ZWE 0.661 -0.039 0.003 0.001 59 HUN -9.649 -7.840 0.108 9.559 0.644 0.000 -0.003 124 XEC 60 IRL 125 BWA 125 BWA 61 ITA 0.666 0.283 0.016 -0.003 126 NAM 62 LVA 127 ZAF 0.612 0.213 0.010 0.009 63 LTU 128 XSC 1.956 0.263 -0.025 -0.003 64 LUX 129 XTW 1.956 0.263 -0.025 -0.003	56	FRA	7.545	9.295	0.727	22.107		0.000	-0.005	-0.028	121		UGA					0.235	0.033	-0.004	-0.002
58 GRC 5.322 9.215 0.121 26.158 -0.122 0.003 -0.003 123 ZWE 0.661 -0.039 0.003 0.001 59 HUN -9.649 -7.840 0.108 9.559 0.644 0.000 -0.003 124 XEC 125 BWA 60 IRL 1TA 0.666 0.283 0.016 -0.003 126 NAM 61 ITA 0.666 0.283 0.016 -0.003 126 NAM 62 LVA 127 ZAF 0.612 0.213 0.010 0.009 63 LTU 128 XSC 1.956 0.263 -0.025 -0.003 64 LUX 129 XTW 129 XTW 124 125 125 125	57	DEU									122	2	ZMB								
59 HUN -9.649 -7.840 0.108 9.559 0.644 0.000 -0.003 124 XEC 60 IRL 125 BWA 61 ITA 0.666 0.283 0.016 -0.003 126 NAM 62 LVA 127 ZAF 0.612 0.213 0.010 0.009 63 LTU 128 XSC 1.956 0.263 -0.025 -0.003 64 LUX 129 XTW 129 XTW	58	GRC	5.322	9.215	0.121	26.158		-0.122	0.003	-0.003	123		ZWE					0.661	-0.039	0.003	0.001
60 IRL 125 BWA 61 ITA 0.666 0.283 0.016 -0.003 126 NAM 62 LVA 127 ZAF 0.612 0.213 0.010 0.009 63 LTU 128 XSC 1.956 0.263 -0.025 -0.003 64 LUX 129 XTW 124 XTW 125 125	59	HUN	-9.649	-7.840	0.108	9.559		0.644	0.000	-0.003	124	ł	XEC								
61 11A 0.666 0.283 0.016 -0.003 126 NAM 62 LVA 127 ZAF 0.612 0.213 0.010 0.009 63 LTU 128 XSC 1.956 0.263 -0.025 -0.003 64 LUX 129 XTW 129 XTW	60	IRL					0	0.000	0.01.5	0.005	125		BWA								
02 LVA 12/ ZAF 0.612 0.213 0.010 0.009 63 LTU 128 XSC 1.956 0.263 -0.025 -0.003 64 LUX 129 XTW 129 XTW	61	ITA					0.666	0.283	0.016	-0.003	126	,	NAM					0 (10	0.212	0.010	0.000
64 LUX 129 XTW 65 MLT	62	LVA									127		ZAF					0.612	0.213	0.010	0.009
65 MLT	6 <i>1</i>	LIU									128	,	XTW					1.930	0.203	-0.023	-0.003
	65	MLT									129										

Note: Trend in India, log(year-1920); otherwise, log(year-1950)

Table 2. Parameters of wheat yield functions

k	Country	a2k	b2k	c2k	d2k	bT2k	$\beta TP2k$	βRG2k	$\beta PT2k$	k	Cour	ntry	a2k	b2k	c2k	d2k	bT2k	$\beta TP2k$	βRG2k	$\beta PT2k$
1	AUS	-0.519	0.372	0.174	30.639		-0.128	0.006	0.030	66	NLI	D	1.443	6.178	0.168	19.972		-0.187	0.018	0.001
2	NZL	1.036	6.793	0.146	37.143		-0.179	0.018	-0.008	67	POI	_	-0.037	2.277	0.118	11.601		0.067	0.004	-0.003
3	XOC					1.260	-0.203	0.007	-0.006	68	PRT	Г	3.561	4.821	0.193	26.992		-0.188	0.000	-0.003
4	CHN	1.726	7.074	0.080	26.836		-0.003	-0.003	-0.009	69	SVF	κ.					-0.885	0.121	0.002	0.043
5	HKG									70	SVN	N					1.086	0.139	-0.005	0.011
6	JPN	-4.266	-2.698	0.122	21.657		-0.008	0.021	0.005	71	ESP)	-1.664	0.977	0.103	23.629		-0.094	0.008	0.012
7	KOR	-3.167	-1.708	0.190	19.964		0.134	0.012	0.000	72	SW	E	0.668	8.990	0.064	-6.959		0.251	-0.015	-0.001
8	MNG					0.391	-0.037	-0.005	0.017	73	GBI	R	5.531	10.351	0.155	22.226		-0.226	0.003	-0.008
9	TWN	1.135	4.941	0.062	36.497		0.033	0.000	-0.001	74	CHI	Е	3.100	5.810	0.206	18.880		0.034	0.004	-0.008
10	XEA					1.088	0.056	0.001	0.000	75	NO	R	12.487	16.063	0.134	6.083		-0.079	-0.068	0.009
11	KHM									76	XEI	F								
12	IDN									77	AL	В					1.817	0.013	0.009	-0.003
13	LAO									78	BGI	R					2.051	-0.063	0.011	0.020
14	MYS									79	BLF	R					2.407	0.103	0.037	0.038
15	PHL									80	HR	V					3.635	-0.012	0.014	-0.011
16	SGP									81	ROU	U	3.968	5.553	0.221	11.476		-0.037	-0.008	0.002
17	THA									82	RUS	S					3.157	-0.320	-0.005	-0.007
18	VNM									83	UKI	R					1.254	0.011	-0.028	-0.041
19	XSE	-5.987	-4.936	0.542	20.940		0.218	0.004	0.003	84	XEI	Е					-6.251	0.518	-0.051	0.087
20	BGD	-4.666	-3.186	0.548	16.379		-0.003	0.014	0.002	85	XEI	R					2.897	-0.206	0.019	0.017
21	IND	-4.571	-1.832	0.091	23.822		-0.061	0.015	-0.002	86	KAZ	Ζ					2.010	-0.298	-0.005	-0.017
22	NPL	2.802	3.929	0.215	39.403		-0.003	-0.004	-0.002	87	KG	Ζ					1.460	-0.238	0.006	-0.010
23	PAK					1.084	0.001	0.008	0.010	88	XSU	J					8.442	0.008	0.023	0.046
24	LKA									89	ARI	М					0.725	0.030	-0.010	0.028
25	XSA	2.012	3.011	0.407	44.241		-0.064	-0.001	-0.002	90	AZI	Е					3.027	-0.148	-0.001	-0.001
26	CAN					0.751	-0.002	0.012	0.008	91	GEO	С					1.320	-0.104	-0.002	0.009
27	USA					0.793	0.009	0.011	0.010	92	BHI	R					0.000	0.000	0.000	0.000
28	MEX	1.241	4.916	0.109	13.628		-0.140	0.007	-0.014	93	IRN	1					0.000	0.000	0.000	0.000
29	XNA									94	ISR						0.580	-0.312	0.026	0.030
30	ARG	3.648	5.595	0.085	34.570		-0.126	-0.004	0.002	95	ΚW	Т					-0.111	-0.263	-0.082	-0.011
31	BOL					0.292	0.058	0.001	-0.005	96	OM	Ν	5.690	8.187	0.185	33.763		-0.664	0.026	0.070
32	BRA	0.773	3.040	0.089	33.910		-0.123	0.008	-0.003	97	QA	Т					1.057	-0.008	0.004	-0.007
33	CHL	-1.864	1.192	0.197	30.090		0.103	0.010	0.000	98	SAU	J	5.979	9.866	0.385	24.149		-0.071	-0.003	-0.207
34	COL	1.811	2.693	0.260	25.059		0.033	-0.005	0.001	99	TUI	R	4.692	5.970	0.196	13.865		-0.017	-0.011	0.001
35	ECU					0.144	0.004	0.001	0.000	100	ARI	Е					0.741	-0.086	-0.059	-0.159
36	PRY	-4.704	-3.571	0.191	21.133		-0.004	0.017	-0.005	101	XW	ſS	6.243	8.043	0.109	34.412		-0.019	-0.013	0.013
37	PER	-2.357	-1.983	0.680	24.305		0.039	0.006	0.002	102	EGY	Y	-5.633	-1.300	0.158	29.350		-0.130	0.024	0.035
38	URY	-2.982	-0.653	0.119	32.514		-0.156	0.021	0.000	103	MA	R	10.366	11.079	0.473	22.455		-0.230	-0.018	0.012
39	VEN	0.715	0.481	0.371	8.485		0.010	-0.001	0.000	104	TUN	N	-0.575	1.001	0.087	36.721		0.001	0.002	0.020
40	XSM									105	XN	F	0.087	1.864	0.099	48.079		-0.038	0.001	0.113
41	CRI									106	CM	R					1.030	-0.076	0.003	-0.007
42	GTM	7.135	8.114	0.273	20.241		0.044	-0.015	-0.002	107	CIV	7								
43	HND					0.061	0.002	0.006	0.000	108	GH	A								
44	NIC									109	NG	A					-0.276	-0.209	-0.009	0.028
45	PAN									110	SEN	1								
46	SLV									111	XW	F					0.541	0.186	-0.001	-0.020
47	XCA									112	XCI	F					0.139	0.039	-0.010	-0.015
48	XCB									113	XA	С					0.992	0.043	0.002	0.001
49	AUT	7.966	10.902	0.140	15.543		0.048	-0.015	-0.014	114	ETH	ł								
50	BEL					3.480	-0.748	0.029	0.027	115	KEI	N					0.666	-0.008	0.004	0.009
51	CYP	4.902	6.198	0.455	25.709		-0.158	-0.005	0.013	116	MD	G								
52	CZE			0 -	a a	6.921	-0.107	-0.035	0.008	117	MW	/1					0.601	-0.163	-0.005	0.008
53	DNK	2.001	4.809	0.226	20.456		0.218	0.003	-0.002	118	MU	S								
54	EST	0		0.0-		3.508	0.046	-0.005	0.018	119	MO	Z					0.318	-0.144	-0.008	-0.005
55	FIN	8.651	14.607	0.051	31.953		0.009	-0.042	-0.009	120	TZA	<i>.</i>					0.344	0.178	0.005	0.010
56	FRA	6.473	11.901	0.116	17.412		-0.149	-0.007	-0.015	121	UG	A	20.255	20.055	0.005	04 1		0 =	0.0-	0.1-1
57	DEU	6.863	12.320	0.103	23.126		-0.048	-0.012	-0.013	122	ZM	в	30.325	38.066	0.095	26.153		-0.791	-0.034	0.150
58	GRC	-2.857	-1.558	0.267	10.585		-0.039	0.012	0.012	123	ZW	Е-	-12.675	-8.252	0.172	10.506	0.000	0.103	0.028	0.033
59	HUN	4.307	/.199	0.285	12.130		-0.087	-0.006	-0.006	124	XE0						0.338	0.305	0.000	0.003
60	IKL	-4.590	0.670	0.184	22.831		0.091	0.032	0.002	125	BW	A	7 474	11.070	0 175	25 7 4 5	0.012	-0.442	-0.017	-0.045
61	IIA	5.917	1.985	0.121	20.605	4 200	-0.266	-0.002	-0.002	126	NA	IVI	/.4/4	11.9/0	0.175	25.745	1 201	-0.318	-0.003	0.155
62	LVA					4.208	0.150	0.003	0.006	12/	ZA	г ~					1.391	-0.276	-0.023	-0.015
63						3.088	0.075	0.001	-0.006	128	- A50						0.041	0.032	0.001	0.016
64	LUX	4.045	2.205	0.221	15 700	1.296	-1.264	0.067	0.079	129	XIV	vv								
65	MLT	-4.945	-2.385	0.331	15./32		0.292	0.007	0.007											

Table 3. Parameters of maize yield functions

k	Country	a3k	b3k	c3k	d3k	bT3k	$\beta TP3k$	βRG3k	$\beta PT3k$	k	С	Country	a3k	b3k	c3k	d3k	bT3k	$\beta TP3k$	βRG3k	βPT3k
1	AUS	1.113	4.693	0.172	27.483		-0.138	0.008	0.006	66		NLD	9.712	20.170	0.110	33.482		-0.176	-0.005	-0.030
2	NZL	a (70		0.505		3.947	0.388	-0.002	-0.007	67		POL		10.005			2.445	0.193	-0.005	0.003
3	XOC	-2.652	-1.069	0.595	34.406		0.126	0.003	-0.002	68		PRT	5.341	10.885	0.203	33.208	6741	-0.046	-0.007	-0.006
4	HKG	2.805	1.134	0.107	20.019		-0.190	0.000	0.011	69 70		SVN					0./41	-0.406	0.005	0.007
6	IPN					-0 104	-0.020	0.005	0.000	70	' ' 1	ESP					4 288	0.048	-0.023	-0.012
7	KOR	2.963	6.457	0.570	16.434	0.101	-0.248	0.006	0.002	72		SWE						0.0.0	0.020	0.012
8	MNG									73	(GBR								
9	TWN	3.230	8.317	0.122	27.167		-0.037	-0.001	-0.001	74	. (CHE					2.905	0.364	-0.002	0.009
10	XEA	5.032	12.065	0.114	29.278		-0.065	-0.005	0.003	75]	NOR								
11	KHM					9.809	-3.028	0.016	0.003	76		XEF						0.045	0.000	-
12	IDN	2.024	2 1 2 2	0.251	45 921	2.806	-0.015	0.001	0.000	77		ALB					2.317	-0.065	0.008	0.007
13	MYS	-2.924	2.122	0.231	43.821	4 059	0.155	-0.002	-0.001	78 79		BUR					0.039	-0.018	0.021	0.040
15	PHL					0.837	-0.037	0.000	0.000	80		HRV					7.905	-0.352	-0.021	0.000
16	SGP									81]	ROU					1.088	-0.229	0.003	0.017
17	THA	6.580	8.545	0.204	33.702		-0.174	-0.002	0.004	82]	RUS					3.262	0.062	0.015	0.106
18	VNM	1.487	4.585	0.197	38.457		0.016	-0.001	-0.001	83	1	UKR					7.168	-0.326	0.021	0.016
19	XSE					3.263	-0.018	0.002	0.002	84		XEE					1.496	-0.824	-0.013	-0.004
20	BGD	0.047	7.0(2	0.072	56.001	23.925	-0.205	0.005	0.006	85		XER					4.208	-0.343	-0.003	0.010
21	IND	2.347	7.062	0.073	56.801	1 ((1	-0.136	0.004	0.002	86		KAZ					7.436	-0.233	0.053	0.106
22	DAK					5 125	-0.012	-0.001	-0.001	8/		KGZ					8.049	-0.233	0.006	-0.027
23 24	LKA					2.768	-0.014	-0.0012	0.003	89		ARM					8 224	-0.522	-0.024	0.092
25	XSA					0.156	0.342	-0.003	-0.009	90		AZE					12.685	0.020	0.018	0.093
26	CAN	0.986	6.817	0.076	37.412		0.239	-0.002	0.007	91	(GEO					-2.368	0.014	-0.013	0.009
27	USA					5.688	-0.091	-0.058	-0.018	92	1	BHR								
28	MEX					1.128	-0.017	0.002	0.000	93	1	IRN	23.043	30.545	0.141	32.314		-0.286	-0.026	-0.096
29	XNA									94	. 1	ISR					9.207	0.073	-0.178	0.957
30	ARG					2.796	-0.273	-0.007	0.011	95		KWT					19.716	0.393	-0.030	0.447
31	BOL	12.068	16 814	0.118	10 848	0./18	-0.060	-0.002	-0.003	96		OMIN					7 162	0.210	0 1 1 2	0.038
32	CHL	-19 328.	-11 559	0.118	26 599		-0.190	-0.017	0.025	97		SAU	12 189	19 352	0.126	42 119	7.402	0.210	-0.022	-0.038
34	COL	17.520	11.007	0.220	20.077	0.700	0.057	-0.002	0.000	99	, ,	TUR	12.109	17.552	0.120	12.117	2.782	-0.050	0.0022	0.014
35	ECU					0.751	-0.096	0.001	-0.001	100		ARE								
36	PRY	-0.122	1.241	0.140	29.017		0.014	0.001	0.003	101	2	XWS	-14.436	-11.834	0.153	26.095		-0.027	0.027	0.054
37	PER					0.823	-0.036	0.001	0.002	102]	EGY	12.520	17.693	0.175	32.800		-0.078	-0.010	-0.427
38	URY	10.320	18.902	0.157	43.899		-0.095	-0.015	-0.005	103]	MAR					0.000	-0.067	-0.008	0.014
39	VEN	4.934	7.372	0.191	30.785	0.004	-0.090	-0.003	-0.002	104		TUN					0.5(0	0.221	0.014	0.077
40	CPI					-0.094	-0.332	-0.04/	0.000	105		ANF CMP					0.560	0.231	0.014	0.077
42	GTM					0.540	-0.080	0.000	0.001	100		CIVIC	4 4 3 3	5 902	0 353	33 721	0.920	-0.032	-0.001	0.001
43	HND					0.277	0.012	-0.004	0.000	108	(GHA		0.002	0.000	001/21	0.377	0.015	-0.001	0.002
44	NIC					0.410	-0.027	0.001	0.000	109]	NGA					0.602	0.002	0.002	0.004
45	PAN	0.205	1.026	0.247	28.888		0.038	-0.001	0.000	110		SEN					0.555	-0.036	-0.020	0.004
46	SLV					1.284	-0.336	-0.017	0.001	111	2	XWF					0.524	-0.026	-0.004	0.001
47	XCA					1.430	-0.084	0.006	-0.002	112		XCF					0.175	0.054	-0.001	-0.002
48	AUT					0.135	-0.082	0.000	0.000	113	1	XAC etu					-0.062	0.046	-0.001	-0.002
49	AUI BEI					5 377	0.558	-0.007	0.000	114		ETH KEN					0 371	-0.031	0.002	0.006
51	CYP					5.511	-0.927	0.055	0.077	115	. 1	MDG					-0.049	0.107	-0.002	0.000
52	CZE					10.856	-0.879	0.027	0.018	117		MWI					4.527	-0.486	-0.042	-0.019
53	DNK									118]	MUS	-1.170	7.252	0.127	38.800		-0.018	0.010	0.001
54	EST									119]	MOZ					1.049	0.196	-0.011	0.005
55	FIN									120) '	TZA					0.731	-0.021	-0.009	-0.001
56	FRA	0 701	10 700	0.0.17	10 100	3.789	0.523	-0.054	-0.013	121	1	UGA					0.377	0.136	0.006	0.002
57	DEU	0.791	12.700	0.047	40.408		0.225	-0.003	0.000	122		ZMB					0.682	0.083	0.015	0.015
50 50	GKU	0.538	0.813	0.313	18.0/0	2 301	-0.189	0.010	0.008	123		ZWE XEC					-0.249	-0.1/9	0.009	0.016
60	IRL					2.371	-0.144	-0.009	0.023	124	1	BWA					-0.145	-0.095	0.002	0.002
61	ITA					4.452	-0.049	-0.030	-0.009	126		NAM					0.145	0.075	0.010	0.012
62	LVA									127		ZAF					1.141	-0.275	0.019	0.033
63	LTU									128		XSC					0.133	0.045	-0.009	-0.001
64	LUX					0.974	-0.859	-0.023	0.010	129		XTW								
65	MLT																			

Note: Trend in U.S., log(year-1930); otherwise, log(year-1950)

Table 4. Parameters of soybeans yield functions

k	Country	a4k	b4k	c4k d4k	bT4k	$\beta TP4k$	βRG4k	$\beta PT4k$	k	Country	a4k	b4k	c4k	d4k	bT4k	$\beta TP4k$	βRG4k	$\beta PT4k$
1	AUS				0.994	-0.214	0.006	0.009	66	NLD								
2	NZL								67	POL					3.038	0.014	-0.034	0.013
3	XOC				0.674	0.055	0.000		68	PRT								
4	CHN				0.674	0.057	-0.002	0.001	69 70	SVK					1.500	-0.253	0.000	0.019
5	IDN				0 3 2 2	0.061	0.003	0.002	70	SVN					3.282	-0.010	-0.025	0.002
7	KOR				0.322	-0.050	0.003	-0.002	72	SWE					0.971	0.029	-0.000	-0.003
8	MNG				0.191	-0.050	0.001	-0.001	73	GBR								
9	TWN				0.734	-0.097	-0.004	-0.001	74	CHE					0.265	0.287	-0.013	0.004
10	XEA				0.493	-0.001	0.000	0.000	75	NOR								
11	KHM				0.453	-0.073	-0.002	0.000	76	XEF								
12	IDN	1.483	2.236	0.116 26.194	ļ.	-0.014	-0.001	0.000	77	ALB					2.798	-0.018	-0.016	-0.009
13	LAO				3.470	0.192	-0.003	0.001	78	BGR					0.337	-0.208	0.003	0.014
14	MYS				1.367	-0.135	-0.004	-0.004	79	BLR								
15	PHL				0.301	0.031	0.000	0.000	80	HRV					1.693	-0.214	-0.010	-0.002
16	SGP				0.420	0.025	0.001	0.001	81	ROU					0.636	0.078	-0.004	0.01/
17	VNM	1 448	2 881	0.006 37.030	0.429	-0.023	-0.001	0.001	82 83	LIKR					1.000	-0.133	0.001	0.000
19	XSE	1.440	2.001	0.090 37.03	0 492	0.022	0.001	0.000	84	XEE					3 131	-0.278	-0.001	0.0012
20	BGD				1.580	0.000	0.000	0.000	85	XER					2.903	-0.303	0.007	0.012
21	IND				0.432	-0.016	-0.003	0.001	86	KAZ					2.013	0.015	0.024	0.024
22	NPL	0.406	0.862	0.231 37.579)	0.008	0.000	0.000	87	KGZ					2.792	-0.557	0.018	-0.052
23	PAK				0.390	-0.003	-0.001	-0.001	88	XSU					0.658	-0.080	-0.003	-0.011
24	LKA				2.227	0.063	0.006	0.001	89	ARM								
25	XSA				0.555	-0.122	-0.001	-0.001	90	AZE					-2.250	0.274	-0.001	0.051
26	CAN	0.249	1.010	0.169 26.387	1	0.124	-0.002	0.005	91	GEO					10.272	-0.371	-0.037	-0.023
27	USA				1.506	0.019	-0.018	-0.005	92	BHR					0 (51	0 227	0.015	0.077
28	MEA VNA				-0.139	-0.046	0.008	0.001	93	IKN					0.651	0.237	0.015	0.077
30	ARG				1 054	-0.242	-0.003	0.003	95	KWT								
31	BOL				0.696	0.232	0.000	0.000	96	OMN								
32	BRA	6.161	9.745	0.057 43.052	2	-0.097	-0.008	0.002	97	QAT								
33	CHL				0.207	-0.222	0.007	0.010	98	SAU								
34	COL				0.350	-0.106	-0.001	-0.002	99	TUR					2.281	-0.057	0.018	0.011
35	ECU				0.372	0.044	-0.006	-0.003	100	ARE								
36	PRY				0.478	-0.136	-0.001	0.002	101	XWS					0.440	0.011	0.019	0.028
37	PER				0.347	-0.146	-0.003	-0.002	102	EGY					1.971	-0.033	-0.010	0.286
38	UKY VEN				0.670	-0.086	0.012	0.008	103	MAK					-0.091	0.042	-0.008	0.026
40	XSM				0.038	0.004	0.000	0.000	104	XNF								
41	CRI				0.000	0.000	0.000	0.000	105	CMR					0.562	-0.038	0.001	-0.001
42	GTM				1.987	0.400	-0.002	0.000	107	CIV					0.851	-0.095	0.007	0.001
43	HND				1.520	-0.222	-0.004	0.002	108	GHA								
44	NIC				1.106	-0.201	0.006	-0.001	109	NGA	0.258	0.813	0.809	36.478		0.002	-0.001	0.002
45	PAN				-1.244	-0.071	0.001	0.000	110	SEN								
46	SLV				1.023	-0.073	-0.001	0.000	111	XWF	-0.051	0.548	0.156	27.861		0.022	-0.001	0.001
47	XCA				0.967	-0.663	-0.001	0.001	112	XCF					-0.921	-0.062	0.012	0.006
48	AUT				2 1 2 5	0.067	0.002	0.002	113	XAC					0.119	0.052	0.000	0.001
49 50	AUI BEI				2.123	-0.067	-0.002	0.003	114	EIH KEN					13.333	-0.213	-0.007	-0.010
51	CVP								115	MDG					-1 229	-0.190	-0.004	0.001
52	CZE				3.175	0.140	0.003	0.029	117	MWI					2.283	-0.090	-0.001	0.001
53	DNK								118	MUS								
54	EST								119	MOZ								
55	FIN								120	TZA					0.365	0.034	0.001	0.001
56	FRA				0.661	0.228	-0.020	-0.006	121	UGA					0.448	0.025	-0.004	0.000
57	DEU				-0.854	0.138	0.001	-0.020	122	ZMB					0.705	0.171	-0.012	-0.001
58	GRC				-1.381	-0.188	0.020	0.005	123	ZWE					0.879	-0.305	-0.012	-0.004
59	HUN				0.929	0.004	-0.001	0.008	124	XEC DWA					-0.166	-0.114	0.011	0.004
00 61		6 564	8 467	0 178 16 169	2	-0.054	-0.000	0.000	125	BWA NAM								
62	LVA	0.504	0.707	0.170 10.100	,	-0.034	-0.009	0.000	120	ZAF					0 896	-0.059	-0.021	-0.006
63	LTU								128	XSC					5.570	5.559	5.521	5.000
64	LUX								129	XTW								
65	MLT																	

Note: Trend in U.S, log(year-1920); otherwise, log(year-1950)

Fig. 7. Forecast crop yields of main production countries

The maize yields in mainland China are expected to be 5.89 t ha^{-1} in RCP8.5 and 5.98 t ha^{-1} in RCP2.6 scenarios, respectively, at the average of the 2040s. Those are 0.33 and 0.43 t ha⁻¹ higher than the yield of the baseline.

Figures 7(vii) and 7(viii) respectively depict soybeans yields in the U.S.A. and Brazil. Yields of soybeans in the U.S.A. are expected to increase steadily from 2.83 t ha⁻¹ in 2011 to 3.36 t ha⁻¹ in 2050 in the baseline. Climate change will push up soybeans yields in the U.S.A. Those under the climate scenario are expected to be 3.37 and 3.42 t ha⁻¹ in the 2040s, respectively, under RCP8.5 and RCP2.6 scenarios. However, it is anticipated that climate change will affect soybeans yields in the Brazil. Soybeans yields are expected to be 3.80 and 3.83 t ha⁻¹ respectively under RCP8.5 and RCP2.6 scenarios at the average of the 2040s, although that of the baseline is expected to be 3.94 t ha⁻¹ during those years.

2. Geographical analysis

By analyzing climate-change effects on crop yields geographically, differences in average yields for the four crops between RCP6.0 scenario and baseline during the periods 2021–2030 and 2041–2050 can be investigated. Figures 8(i) and 8(ii) respectively portray differences in rice yields between the baseline and RCP6.0 scenarios about the two periods. These figures suggest that yields of rice in low-latitude countries except sub–Saharan African (SSA) countries will be affected by climate change in the 2020s. However, the benefits of higher temperatures will cease to exist by the 2040s in SSA countries.

Figures 8(iii) and 8(iv) respectively present differences in wheat yields between the baseline and RCP6.0 scenario for the two periods. Figure 8(iii) shows that wheat yields in Eastern Europe are expected to be decreased by low temperatures in the 2020s. Climate change will probably affect wheat yields severely in these low-latitude countries. These figures suggest that wheat yields in southern Asian and SSA countries will decrease under the scenario.

Figures 8(v) and 8(vi) respectively depict differences in the yield of maize between the baseline and RCP6.0 scenario for the two periods. Figure 8(vi) shows that maize yields in southern Asia, Southeast Asia, Australia, the Middle East, Africa, and Latin America are expected to be affected by climate change under the RCP scenario in the 2040s. However, both figures show that maize yields in high–latitude countries are expected to be increased by climate change under the scenario.

Figures 8(vii) and 8(viii) respectively portray differences in soybeans yields between the baseline and RCP6.0 scenarios for the two periods. Figure 8(vii) shows that yields in Russia will be decreased by low temperatures and yields in low-latitude countries will be decreased by high temperatures in the 2020s. Figure 8(viii) shows that the higher temperatures decrease the soybeans yield in China.

Parry et al. (2004) demonstrated that cereal yields in Russia and European region will be decreased by climate change under several scenarios. However, the results of our research suggest that yields of the four crops in the region will be increase by climate change. Their model, as described by Parry et al. (1999), consists of two-stage yield estimation. First, the potential yields are obtained from crop models and are aggregated in each region. Second, the potential yields are estimated by linear or quadratic functions, the explanatory variables for which are temperature, rainfall, and CO2 concentration. Yield functions incorporating a crop model are used for this study. The difference in structure of the models used for yield estimation engenders the difference in results. Furthermore, as Rosenzweig et al. (2014) have reported, the differences in estimated cropmodel yields affect the differences in the results of this study from those of other studies.

Conclusion

Yield functions of rice, wheat, maize, and soybeans were obtained by estimating logistic functions or linear functions with a term of logarithmic time trend. These yield functions include climate factors as explanatory variables. Furthermore, the temperature and solar–radiation elasticities of yields were calculated using a crop model developed by Doorenbos & Kassam (1979) and the crop model was modified by introducing cubic spline interpolation and logistic functions. The results of productions will exhibit large oscillations if no such smoothing procedures are used. These elasticities of climate variables are inserted into yield functions, whereupon the worldwide effects of changes in temperature and solar–radiation to yield were analyzed.

Results of the trend analysis show that yields of the four crops under RCP8.5 are lower than those under RCP2.6, except for wheat in China. Higher temperatures lead to higher wheat yields in China. Specifically addressing the variance future yields, the magnitude of fluctuation of yields of some crops in some countries is expected to be greater than in others, as for wheat in China. The magnitude of yield fluctuation will increase if the relation between yield and temperature is kinked sharply at around the optimal temperature, as shown in Figure 5(ii), and if temperature varies in the band that is lower than the optimal temperature.

Results of the geographical analysis indicate that wheat and maize production in low-latitude countries are affected by climate change because the peak of yield to temperature is skewed to lower temperatures than those of other crops. The results suggest that yields in some countries are expected to be decreased by further rising temperatures. Production of rice in some countries, especially SSA coun-

Climate Change Effects on World-crop Production

(i) Rice in 2020s

(ii) Rice in 2040s

(iii) Wheat in 2020s

(iv) Wheat in 2040s

(v) Maize in 2020s

(vi) Maize in 2040s

Fig. 8. Difference in crop yields between baseline and RCP6.0

tries, is also expected to be affected by climate change.

These results were obtained assuming the lack of any adaptation technologies. Progress in bio-technologies is expected to shift the loci shown in Figure 5 to the higher temperature side. Changes in CO_2 concentration and evapotranspiration must also be considered for additional analyses. The yield estimates obtained from simulations shall be applied to the world food model.

Acknowledgements

We acknowledge the international modeling groups for providing their data for analyses, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the model data, the JSC/CLIVAR Working Group on Coupled Modeling (WGCM) and their Coupled Model Intercomparison Project (CMIP), and the Climate Simulation Panel for organizing the model data analysis activity. We appreciate technical support from the IPCC WG1 TSU. The IPCC Data Archive at the Lawrence Livermore National Laboratory is supported by the Office of Science at the U.S. Department of Energy.

We express our sincere to two anonymous referees for their constructive comments and warm encouragement.

This research was conducted as a project of the Economic Evaluation of Agricultural Mitigation and Adaptation Technologies for Climate Change of the MAFF of Japan and as a project of Development of Agricultural Technologies in Developing Regions to Respond to Climate Change of the JIRCAS.

References

- Doorenbos, J. & Kassam, A. (1979) *Yield response to water*, FAO irrigation and drainage paper 33, Food and Agriculture Organization of the United Nations, Rome, Italy, pp.193.
- Fischer, G. et al. (2012) *Global Agro-Ecological Zones (GAEZ* v3.0) *Model Documentation* Laxenburg, Austria & Food and Agriculture Organization of the United Nations, Rome, Italy, pp.179. (website at http://www.fao.org/fileadmin/user_upload/gaez/docs/GAEZ Model Documentation.pdf)
- Fischer, G. et al. (2002) Global agro-ecological assessment for agriculture in the 21st century: Methodology and results, International Institute for Applied Systems Analysis, Laxenburg, Austria & Food and Agriculture Organization of the United Nations, Rome, Italy, pp.119.
- Furuya, J. & Kobayashi, S. (2009) Impacts of global warming on agricultural product markets: stochastic world food model analysis. *Sustainability Science*, 4, 71-79.
- Furuya, J. & Koyama, O. (2005) Impacts of climatic change on world agricultural product markets: estimation of macro yield

functions. JARQ, 39, 121-134.

- Gottschalk, P. G. & Dunn, J. R. (2005) The five-parameter logistic: A characterization and comparison with the four-parameter logistic. *Analytical Biochemistry*, 343, 54-65.
- Harris, D. (1989) Comparison of 1-, 2-, and 3-parameter IRT models. *Educational Measurement: Issues and Practice*, 8 (1), 35-41.
- Hatch, M. D. (2002) C₄ photosynthesis: discovery and resolution. *Photosynthesis Research*, **73**, 251-256.
- Horie, T. et al. (1995) Effect of anticipated change in global environment on rice yields in Japan. *In* Climate change and rice, eds. Peng, S. et al. IRRI, Springer-Verlag, Berlin Heidelberg, 291-302.
- Jones, P. G. & Thornton, P. K. (2003) The potential impacts of climate change on maize production in Africa and Latin America in 2055. *Global Environmental Change*, 13, 51-59.
- Narayanan, B. G. et al. (2012) Guide to the GTAP database, Chapter 2, *GTAP 8 database documentation*, Purdue University, U.S.A., pp.20.
- Parry, M. et al. (1999) Climate change and world food security: a new assessment. *Global Environmental Change*, **9**, S51-S67.
- Parry, M. L. et al. (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. *Global Environmental Change*, 14, 53-67.
- Ray, D. K. et al. (2012) Recent patterns of crop yield growth and stagnation. *Nature Communications*, 3, 1293, 1-7.
- Rosenzweig, C. et al. (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. *PNAS*, **111**, 3268-3273.
- Rosenzweig, C. et al. (2013) The agricultural model intercomparison and improvement project (AgMIP) protocols and pilot studies. *Agricultural and Forest Meteorology*, **170**, 166-182.
- Rötter, R. & van de Geijn, S. C. (1999) Climate change effects on plant growth, crop yield and livestock. *Climate Change*, 43, 651-681.
- Sen, A. (1981) Poverty and famines: an essay on entitlement and deprivation. Oxford University Press, UK, pp.272.
- Shimoda, Y. & Tabe, H. (1990) Interpolation and approximation. Chapter 7, Handbook of numerical calculation, Editorial supervisor: Ohno, Y. & Isoda, K., Ohmsya, Tokyo, Japan, pp.701-708 [In Japanese].
- van Vuuren, D. P. et al. (2011) The representative concentration pathways: an overview. *Climate Change*, **109**, 5-31.
- Vedenov, D. & Pesti, G. M. (2008) A comparison of methods of fitting several models to nutritional response data. *Journal of Animal Science*, 86, 500-507.
- World Agricultural Outlook Board (1994) Major world crop areas and climate profiles. Agricultural Handbook, 664, United States Department of Agriculture, Washington, D. C., U.S.A., pp.279.
- Yokozawa, M. et al. (2003) Mesh climate data for evaluating climate change impacts in Japan under gradually increasing atmospheric CO₂ concentration. *Journal of Agricultural Meteorology*, **59**, 117-130.