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Abstract
The incidence of extreme rain is expected to increase with climate change and affect rice productivity 
in Japan.  This study aims to evaluate the impacts of long and heavy rain on Japanese rice total-factor 
productivity (TFP) by estimating causality functions.  We measured rice TFP by using the Törnqvist-
Theil and Malmquist indexes for dependent variables and predicted, the influences of future tempera-
ture and rain on rice TFP by the causality function associated with crop models and a hydrological 
model based on climate projections from the global-climate model (GCM).  The results initially 
showed no significant differences between Törnqvist-Theil and Malmquist indices in the effects of cli-
mate factors, although some differences emerged in the causality of socioeconomic factors.  Second, 
the effects of rain were always negative, and absolute TFP elasticity against rain was lower than tem-
perature via yield and quality, but poorly drained surface water as well as flooding reduced rice TFP 
by 2.5 to 4.5%.  Third, changes in predicted rainfall under future climate change caused annual rice 
TFP to fluctuate, and an impact of rain on TFP fluctuations exceeded that of temperature via yield and 
quality.  This is due to significant variations in annual rainfall, even though the measured elasticity 
against rain was low.  Based on these findings, the implications for research and policy-making are 
discussed.

Discipline: Agricultural economics
Additional key words:  global climate model, hydrological model, Malmquist index, total factor pro-

ductivity, Tönqvist-Theil index

Introduction

Rice production depends on climate conditions such as 
temperature, rainfall, solar radiation and atmospheric carbon 
dioxide concentrations.  Amid global warming, heavy rain 
is becoming increasingly frequent and serious in Japan 
(Nakakita et al. 2011).  The rainfall pattern is also supposed 
to change by future climate change, whereupon Japanese 
rice productivity will be affected by severe floods caused by 
heavy rain and poorly drained surface water from long rain.   
To sustain Japanese rice production under long term climate 
change and to consider countermeasures, an economic eval-
uation of the influences of rain on rice productivity is essen-
tial.

Long and heavy rain affects rice productivity in mainly 
two ways.  First, flood disasters reduce production, particu-

larly during ripening and harvest seasons.  Second, produc-
tion costs increase due to the poorly drained surface water 
in paddy fields, slowing down the reaping of the harvest 
machinery, while increasing farmers’ overtime work and 
rise in the break-down rate of agricultural machinery.  
Moreover, farmers need to spend more on repairing fields 
and pumping drainage water.  These costs are difficult to 
estimate by bottom-up methods calculating production and 
costs item by item.  Accordingly, to evaluate the influences 
of heavy rain, we focused on rice total factor productivity 
(TFP), which represents both production and cost changes.

Kunimitsu et al. (2014) evaluated the influences of cli-
mate and socioeconomic factors on Japanese rice TFP.  This 
analysis showed that the influence of climate conditions on 
TFP via the yield index was equivalent to that of socioeco-
nomic factors such as economies of scale.  However, there 
was insufficient consideration of paddy drainage in this 
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analysis, even though maximum rainfall during August to 
September was introduced as one of the causative factors.  
Since drainage conditions for floods are regulated by not 
only rainfall but also geographical situations and drainage 
systems, a hydrological model is needed to precisely quan-
tify the influences of floods on paddy fields.

The purpose of the present study is to evaluate the 
impacts of long and heavy rain in addition to a rise in tem-
perature on Japanese rice TFP by estimating the causality 
function of rice TFP.  Rice TFP is measured by the 
Törnqvist-Theil index (T-index) and Malmquist index (M-
index) to determine general effects.  Using these indices, we 
estimate the regression function of rice TFP and causative 
climate factors associated with crop-yield, crop-quality and 
hydrological models by applying panel data analysis.  Future 
TFP levels are subsequently predicted by this model accord-
ing to climate projections of the global-climate model 
(GCM), Model for Interdisciplinary Research On Climate 
(MIROC high-resolution version 3), for policy implications.

The structure of this paper is as follows.  The second 
section introduces previous studies and indicates scientific 
questions.  The third section explains methods and the 
fourth section shows data composition and sources.  The 
fifth section presents estimations and discusses future levels 
of rice TFP under climate change projected by MIROC.   
Based on these findings, the final section concludes with 
research and policy implications.

Literature review and scientific questions

TFP shows technological change and is calculated by 
the ratio of total output to total costs, as measured by the 
sum of each input factor weighted with the share rate of fac-
tor income.  Compared to the production function approach, 
the TFP index allows many causative factors for TFP 
changes to be taken into consideration and increases the 
flexibility of the functional form.

Using the TFP index, Denison (1979) analyzed causali-
ties in US industries and determined economies of scale as 
the most significant factors in TFP growth.  After his work, 
many studies analyzed agricultural TFP and defined several 
causative factors including economies of scale (Thirtle et al. 
2008), research and development (R&D) activities (Alene 
2010, Pratt et al. 2009), human capital (Astorga et al. 2011), 
soil quality (Jayasuriya 2003), and public facilities such as 
roads or irrigation and drainage facilities (Suphannachart & 
Warr 2010, Chen et al. 2008).

Salim and Islam (2010) considered climate change as a 
factor that affected TFP measured by the T-index and 
showed that the influence of long-term climate change on 
TFP in Australian agriculture was equivalent to that of R&D 
expenditures.  Nin-Pratt and Yu (2010) estimated the agri-
cultural TFP of 63 developing countries based on the M-

index, and found that agricultural TFP had been growing 
steadily over the past 20 years, particularly in Sub-Saharan 
African countries, However, they did not consider countries 
like China, Brazil and India.  Yamamoto et al. (2007) quan-
tified rice TFP by the M-index, and showed that regional 
gaps in TFP existed and did not converge over time in 
Japan.  Umetsu et al. (2003) measured chronological 
changes in Philippine rice productivity by the M-index and 
showed that rice productivity had improved following the 
green revolution and that such changes were different by 
region.  As such, numerous previous studies have been car-
ried out in this field, but few studies have evaluated differ-
ences between T-index and M-index with causative factors.  
Also, previous studies evaluating climate conditions as a 
causative factor in Japanese rice TFP are few, so it is impor-
tant to determine how climate conditions, particularly long 
and heavy rain, may affect Japanese rice productivity.

Methodology

1. Measurement of TFP
The T-index and M-index are major indices used to 

quantify TFP and show the technological progress of indus-
tries.  The T-index is a discrete approximation of the Devisia 
index and the most harmonized index with a trans-log type 
production function that is flexible for biased technological 
progress (Diewart 1976).  Analysts assume optimal behav-
ior of producers in the objective industry, when they apply 
this index to real data.  The annual TFP growth rate can be 
defined by the T-index as follows:

ln(TFPr,t / TFPr,t–1) = ln(yr,t / yr,t–1) – 
∑

i
[0.5(αi,r,t + αi,r,t–1)ln(xi,r,t / xi,r,t–1)] (1)

Here, the suffixes r, t, and i respectively show the region, 
year and input factors.  y is the total rice production, x is 
each input factor of production, i.e. farmland area, labor, 
capital stocks and intermediate inputs.  α is the annual pro-
duction elasticity of each input factor against production.  
This share rate corresponds to the cost-share rate, when the 
production function is homogeneous and farmers optimize 
their production.  To compare regional TFP levels, the ini-
tial value of TFPr,t0 (t0=1979) is calibrated in each region by 
removing t-1 terms in Eq. (1) as:

ln(TFPr,t0) = ln(yr,t0) – ∑
i

αi,r,t0 ln(xi,r,t0) (2),

where, t0 means the initial year of analysis.  yr,t0 and xr,t0 are 
both measured by the monetary unit to obtain a TFP value 
without dimension.  The chronological levels in regional 
TFP are then calculated by multiplying the growth rate of 
TFP calculated in Eq. (1) to the initial TFP of 1979 in Eq. 
(2).
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Conversely, the M-index is the geometric mean of out-
put-based technological gaps in two periods.  Technological 
gaps are measured by the distance from production of indi-
vidual decision-making units (or a specific region) to the 
production frontier, as observed by non-parametric proce-
dures such as the data envelopment analysis (DEA) (Fare et 
al. 1994).  This allows decision-making units to produce 
with relatively outdated technology.  In addition, the M-
index can treat multiple outputs with multiple inputs.  
However, measurement error tends to cause significant 
problems in the DEA used for this index as compared to 
other indices, and the original TFP level cannot be calcu-
lated reversely from this index.

Chronological changes in TFP by the M-index are 
defined as:

TFPr,t+1 / TFPr,t = 
dr,t (xt+1, yt+1)

dr,t(xt, yt)
 × 

dr,t+1 (xt+1, yt+1)
dr,t+1(xt, yt)

 
½

 (3),

where d(•) is the function used to measure the distance 
between the production frontier and production point, as 
represented by the output vector y and input matrix x.  
Hereafter, gothic characters show vectors or matrices.  A 
greater value than one in Eq. (3) indicates positive TFP 
growth from periods t to t+1 in region r.  The concrete val-
ues for d(•) in this equation are calculated by a linear-pro-
gramming method in DEA that constructs a piece-wise 
surface over data (Coelli 2008).  The initial value of TFPr,t0 
for the M-index is also calculated by the DEA method with 
cross-sectional data in the first year of the data period.  To 
compare the M-index and T-index, initial values of the T-
index of Hokkaido, where the cross-sectional M-index 
becomes the highest value of 1, is multiplied by the initial 
value of the M-index calculated as above in all regions.  The 
estimation coefficients of causative factors in the latter 
regression analysis are the same as the case of the raw initial 
M-index, because the same value is multiplied by the M-
index in all regions and regression functions for TFP causal-
ity are of the log-linear type.

2. Model for causalities in rice TFP
Based on previous studies (Kuroda 1989, 1995), we 

assume economies of scale and R&D investments to be the 
best candidates for causative factors to increase rice produc-
tivity.  In addition to these socioeconomic factors, rice TFP 
is also influenced by climate factors due to changes in har-
vest quantity, quality and drainage situations (Kunimitsu et 
al. 2014).  The regression model assumed here is:

ln(TFPr,t) = β0
 + β1ln(MAr,t) + β2ln(KKnt

 + KKpr,t) + 

β3POPr,t
 + β4ln(CHIr,t) + β5ln(CQIr,t) + 

β6ln(CRIr,t) + β7ln(CFIr,t) + εr,t (4)

where, MA, KKn, KKp and POP are socioeconomic caus-

ative factors and CHI, CQI, CRI and CFI are climate caus-
ative factors.  β’s are the parameters to be estimated, and ε 
is the error term.

MA is economies of scale represented by the average 
farm management area per management organization; KKn 
represents nationwide R&D capital stocks of the central 
government, universities and private companies, while KKp 
represents R&D capital stocks of the prefectural govern-
ment.  KKn is assumed to be pure public goods and uni-
formly improve rice TFP in all regions, so the same KKn is 
used for all regions without any r suffix, whereas KKp is 
assumed to represent local knowledge and influence only 
prefectural TFP.  POP is the population density within the 
area of inhabitable land, representing the influence of urban-
ization.  Labor costs and agricultural service prices would 
be higher in urban than rural areas due to competition for 
input factors both among industries and farmers producing 
different agricultural crops.  When such competition intensi-
fies, β3 becomes significant and negative.

CHI is the rice-yield index; CQI is the rice-quality 
index; CRI is the long-rain index representing poorly 
drained surface water in the crop fields; and CFI is the flood 
index caused by heavy rain.  CHI, CQI and CFI are esti-
mated by only climate conditions such as temperature, solar 
radiation and rainfall with crop-yield, crop-quality and 
hydrological models, respectively.  CRI is measured by total 
rainfall during August and September of rice maturing and 
harvest seasons.  By such treatments, no endogenous prob-
lems occur in the reverse interrelation between dependent 
and independent variables, because climate conditions (such 
as temperature and rainfall) are the basis for estimated cli-
mate factors and cannot be affected by TFP.

3. Socioeconomic factors
Socioeconomic factors, i.e. average farm management 

area per management organization, MA, and population den-
sity, POP, are directly obtained from the statistics, but KKn 
and KKp need to be estimated from annual R&D expendi-
tures.  We employed the perpetual-inventory (PI) method to 
quantify R&D capital stocks, based on a report by the 
Cabinet Office of Japan (2010).  This method fits circum-
stances where technology diffuses to producers with time 
lags (Lag) and is used and then abandoned after several 
years (N).  Such relationships are expressed by:

KKnt
 = Int–Lag

 + Int–Lag–1
 + •  •  • + Int–Lag–N (5),

KKpt
 = Ipt–Lag

 + Ipt–Lag–1
 + •  •  • + Ipt–Lag–N (6).

Here, In and Ip are R&D expenditures by sector.
The Cabinet Office of Japan (2010) showed that the 

time lag was approximately three years and durable years 
were about 10 years.  These years were measured by ques-
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tionnaires distributed to the managers of private companies.  
Based on the survey results, Lag=3 and N=10 are set in Eqs. 
(5) and (6).

4. Climate factors
The crop-yield model to estimate CHI is based on 

Kawazu et al. (2007) and newly estimated by the latest data 
(Table A1 in Appendix).  The model used here is:

CHIr,t
 / (SR7r,t

 + SR8r,t
 + SR9r,t) = a0

 + a1∙TM7r,t
 + a2∙TM72

r,t 
+ a3∙TM8r,t

 + a4∙TM82
r,t

 + a5∙TM9r,t
 + a6∙TM92

r,t
 + εr,t

  (7),

where, SR7, SR8, SR9 represent the average daily solar radi-
ation in July, August and September; TM7, TM8, TM9 are 
the average daily temperature in July, August and 
September; a’s are the coefficients to be estimated and ε is 
the error term.

In the estimation results of Eq. (7), a2, a4 and a6 became 
negative and showed non-linear relationships between yield 
and temperature.  Temperature increased rice yield until a 
threshold temperature of approximately 20.0°C in July and 
August, but after this level, higher temperatures decreased 
rice yield.  For temperatures in September, the estimated 
threshold value was too high to restrict rice yield, simply 
showing increases with diminishing marginal effects under 
actual circumstances.

The crop-quality model used to estimate CQI is also 
based on Kawazu et al. (2007).  This model assumes that 
extremely high temperatures and insufficient solar radiation 
cause rice quality to decline by causing a chalky color and 
cracked rice.  The equation is as follows and is newly esti-
mated in Table A2 of the Appendix:

CQIr,t
 = b0

 + b1∙SR7r,t
 + b2∙SR8r,t

 + 

b3∙ABS(TL78r,t – TL ) + εr,t (8).

Here, b’s are parameters and ε is the error term.  SR7 and 
SR8 are the average solar radiation in July and August, the 
critical months for maturing after heading time.  TL78 is the 
average minimum daily temperature during July and August.  
TL  is the threshold temperature, and is set at the best-fit 
estimation with respect to log likelihood values, as estimated 
by changing the threshold temperature by 0.01 from 18 to 
25°C.  At a temperature of 19.34°C (Table A2), estimations 
showed the highest log likelihood value.  This temperature 
exceeds the average minimum temperature in northern 
Japan, including Hokkaido, Aomori, Iwate, Miyagi, Akita, 
Yamagata, Fukushima and Nagano prefectures, but is lower 
than in other prefectures.  Accordingly, positive influences 
dominate in these prefectures, but negative influences are 
frequent in other prefectures under present circumstances.

The long-rain index, CRI, is measured by the sum of 
rainfall during August and September.  To quantify CFI that 

indicates floods during the maturity and harvest stages of 
rice in August and September, a hydrological model (dis-
tributed water circulation model) was used (Fig. 1).  The 
model used is based on Masumoto et al. (2009) and Yoshida 
et al. (2012).  CFI is measured as the total unit outflow per 
terrain mesh area during the typhoon season in August and 
September as follows:

Qout j
 = f (Eaj, RAINj, Qin, GEOj) (9),

CFIr,t
 = maxt ∑

jϵr
Qout j,day,t

 
 /AREAr (10),

where, f (•) shows the function that calculates outflow, Qout, 
from j-th terrain mesh.  Ea is the evapotranspiration, RAIN 
is the daily rainfall, and Qin is the inflow to the terrain mesh.  
GEO represents geographic structures, such as land use, 
land slope, the conditions of rivers and geology of each ter-
rain mesh, and is quantified by a geographical information 
system.  The maxt (•) function selects the maximum value of 
daily outflow to show the most severe floods in year t, and 
assumes that more outflow causes flood disasters to worsen.  
After calculating outflow for each mesh, only paddy meshes 
with paddy fields inside are selected and aggregated as the 
total outflow.  Subsequently, the maximum total outflow 
among total outflows in paddy meshes is selected and 
divided by the total area of the paddy meshes, AREA, in 
each prefecture to eliminate the regional scale effects.

The parameters of the hydrological model are the same 
as Kudo et al. (2013).  Typical outflow and rainfall relation-
ships are shown in Fig. 2.  These variables correlate, but 
some years show extreme values in either variable, because 
the steepness and use of land determine the rate of unit out-
flow against rainfall, which differs by region.  In general, 

Reservoir Operation

Water Allocation
Water Diversion

Return Flow

Diversion Weir

River

Reservoir

Snowfall/Snowmelt

Irrigation Channel
Irrigated Paddies

Rainfall
Evapotranspiration

Fig. 1.   Conceptual diagram of the hydrological (distributed 
water circulation) model Source: Yoshida et al. (2012)
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the slope of unit outflow against rainfall is steep in regions 
with a large catchment area.

Data

The data comprised panel data to estimate regression 
models.  Using panel data instead of individual regional data 
allows us to: (i) determine regional differences in rice TFP, 
(ii) increase the degrees of freedom for estimations and (iii) 
eliminate the effects of latent factors that equally change 
TFP for all regions (Kitamura 2005).  Data covered around 
38 prefectures and 31 years from 1979 to 2010, except 1993 
when serious damage from cold weather occurred and cost 
data were not observed in the statistics for the major rice-
producing prefectures.  The objective 38 prefectures are 
shown in Fig. 3.  Tokyo, Kanagawa, Yamanashi, Osaka, 
Nara, Wakayama, Saga, Nagasaki and Okinawa were 
excluded because rice production was relatively small and 
cost data in these prefectures were not published as official 
statistics.

Data to calculate the T-index and M-index were 
obtained from Cost Research for Rice Production (Ministry 
of Agriculture, Forestry and Fishery; MAFF).  All nominal 
values were deflated by the price index published in 

Economic Accounts for Agriculture and Food Related 
Industries (MAFF).  The farm management area per farm 
organization, MA, also came from Cost Research for Rice 
Production (MAFF).  R&D expenditures, In and Ip, were 
collected from the statistics of the Investigation Report on 
R&D Expenditures for Scientific Technology (Statistics 
Bureau of Ministry of Public Management, Home Affairs, 
Posts and Telecommunications, every year).  The data for 
climate conditions used in CHI, CQI, CRI and CFI were 
taken from the data of the Automated Meteorological Data 
Acquisition System (AMeDAS) from 1979 to 2010 (except 
for 1993 as with the other variables) (Okada et al. 2009).  
Table 1 shows the descriptive statistics of the variables.

For predictions, future climate conditions, including 
temperature, solar radiation and rainfall, were drawn from 
the downscaled outputs of the global-climate model, the 
high-resolution version of MIROC (K-1 Model Developers 
2004, Okada et al. 2009).  The greenhouse gas emission 
scenario used here was A1B, which represented balanced 
growth alongside rapid economic growth, low population 
growth and the rapid introduction of more efficient technol-
ogy in the Special Report on Emission Scenario (SRES) 
(Nakicenovic & Swart 2000).  In terms of socioeconomic 
factors, trends of R&D expenditures from 1966 to 2010 

0.00

1.00

2.00

3.00

4.00

5.00

0 25 50 75 100 125 150 175 200 225 250 275 300
Max Rain (mm/day)

[43] Kumamoto

CFI=1.06+0.005Rain

0.00

2.00

4.00

6.00

8.00

0 25 50 75 100 125 150C
FI

 (m
ill

io
n 

m
3 /d

ay
/k

m
2 )

C
FI

 (m
ill

io
n 

m
3 /d

ay
/k

m
2 )

C
FI

 (m
ill

io
n 

m
3 /d

ay
/k

m
2 )

C
FI

 (m
ill

io
n 

m
3 /d

ay
/k

m
2 )

C
FI

 (m
ill

io
n 

m
3 /d

ay
/k

m
2 )

C
FI

 (m
ill

io
n 

m
3 /d

ay
/k

m
2 )

C
FI

 (m
ill

io
n 

m
3 /d

ay
/k

m
2 )

C
FI

 (m
ill

io
n 

m
3 /d

ay
/k

m
2 )

C
FI

 (m
ill

io
n 

m
3 /d

ay
/k

m
2 )

Max Rain (mm/day)

[1] Hokkaido

CFI=-0.85+0.055Rain

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 25 50 75 100 125 150
Max Rain (mm/day)

[5] Akita

CFI=0.64+0.032Rain

0.00

5.00

10.00

15.00

20.00

0 25 50 75 100 125 150 175 200 225
Max Rain (mm/day)

[8] Ibaraki

CFI=3.4+0.041Rain

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0 25 50 75 100 125
Max Rain (mm/day)

[15] Niigata

CFI=1.66+0.050Rain

0.00

1.00

2.00

3.00

4.00

5.00

0 25 50 75 100 125 150 175 200 225 250
Max Rain (mm/day)

[23] Aichi

CFI=1.0+0.013Rain

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 25 50 75 100 125 150 175
Max Rain (mm/day)

[25] Shiga

CFI=0.69+0.013Rain

0.00

1.00

2.00

3.00

4.00

5.00

0 25 50 75 100 125 150
Max Rain (mm/day)

[33] Okayama

CFI=-0.15+0.020Rain

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 25 50 75 100 125 150 175 200 225
Max Rain (mm/day)

[38] Ehime

CFI=0.08+0.008Rain

Fig. 2.  Relationships between outputs of the hydrological model and rainfall
Note: The vertical axis is the maximum unit outflow estimated by the hydrological model and the horizontal axis shows 
the actual maximum rainfall during August and September for each year. The tangent of the approximate curve shows 
the geographical characteristics of the catchment area. Numbers in square brackets are prefectural codes designated by 
the Ministry of Internal Affairs and Communications.
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were assumed to continue until 2100.  The future values of 
MA were set until 2100, based on past MA trends in each 
region.

Empirical findings and discussion

1. Chronological change in TFP by regions
Figure 4 shows the chronological changes in actual 

rice TFP for each region, as calculated by the T-index and 

M-index.  Nine of a total 38 prefectures were selected to 
represent different locations in Japan1.  Northern regions, 
including Hokkaido, Akita and Niigata, marked higher pro-
ductivity than southern regions, because of differences in 
socioeconomic factors as well as climate conditions.

Chronologically, rice TFPs of most regions increased 
from 1979 to 2010, showing improvements in rice produc-
tivity.  The correlation coefficients of both indices exceeded 
0.7 for 27 prefectures, but 11 prefectures, i.e. Ibaraki, 

1  Nine prefectures, i.e. Hokkaido, Akita, Ibaraki, Niigata, Aichi, Shiga, Okayama, Ehime and Kumamoto, were selected from 9 represen-
tative regions classified by the “Agricultural Census” (Ministry of Agriculture, Forestry and Fishery). The rice-production areas in 
these prefectures except for Shiga are the largest within each region. Shiga, which is the second largest rice-production prefecture in the 
Kinki area, was selected rather than Hyogo, because Hyogo is next to Okayama that was selected for the Chugoku region.

Fig. 3.  Location of prefectures in the 9 regions studied
Note: Tohoku includes 6 prefectures: [2] Aomori, [3] Iwate, [4] Miyagi, [5] Akita, [6] Yamagata and [7] Fukushima. 
Kanto includes 6 prefectures: [8] Ibaraki, [9] Tochigi, [10] Gunma, [11] Saitama, [12] Chiba and [20] Nagano. Hokuriku 
includes 4 prefectures: [15] Niigata, [16] Toyama, [17] Ishikawa and [18] Fukui. Tokai includes 4 prefectures: [21] Gifu, 
[22] Shizuoka, [23] Aichi and [24] Mie. Kinki includes 3 prefectures: [25] Shiga, [26] Kyoto and [28] Hyogo. Chugoku 
includes 5 prefectures: [31] Tottori, [32] Shimane, [33] Okayama, [34] Hiroshima and [35] Yamaguchi. Shikoku includes 
4 prefectures: [36] Tokushima, [37] Kagawa, [38] Ehime and [39] Kochi. Kyushu includes 5 prefectures: [40] Fukuoka, 
[43] Kumamoto, [44] Oita, [45] Miyazaki and [46] Kagoshima. The remaining 9 prefectures, where polygons are white 
and numbers missing, are excluded because data for rice production cannot be obtained from statistical databases.

Hokkaido

Tohoku

Kanto
(Kanto/Tosan)

Hokuriku

Tokai

KinkiChugoku

Shikoku

Kyushu

Okinawa
(excluded for analysis
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Variables Contents Unit Average Std. Dev.
TFP_T Rice TFP (T-index) - 1.81 0.39
TFP_M Rice TFP (M-index) - 2.01 0.39
MA Mangement area per farm household ha/farmer 0.98 0.79
KKn Knowledge capital (nation wide) 100 billion yen 18.74 3.94
KKp Knowledge capital (Prefecture) 100 billion yen 0.43 0.24
CHI Rice yield per area (actual) ton/ha 4.93 0.52
CHI* CHI estimated by the crop growth model 

(Appendix)
- 4.95 0.53

CQI Percentage of the 1st grade rice (actual) % 67.64 20.06
CQI* CQI estimated by the crop quality model 

(Appendix)
- 67.64 9.07

CRI Long rain index representing illdrained 
surface water on the crop fields

100 mm/two months 5.80 2.36

CFI Flood index estimated by the hydrological 
model

10 million m3 /day /km2 2.44 2.53

SR7 Solar radiation in July MJ/m2 16.85 2.31
SR8 Solar radiation in August MJ/m2 17.33 2.20
SR9 Solar radiation in September MJ/m2 13.45 1.45
TM7 Maximum daily temperature in July Deg.C 23.71 2.00
TM8 Maximum daily temperature in August Deg.C 24.87 1.71
TM9 Maximum daily temperature in September Deg.C 21.12 2.03
TL78 Average minimum daily temperature during 

July and August
Deg.C 20.82 1.73

POP Population density (pop. per inhabitable area) 1000 people /km2 0.94 0.56
Note: CHI and CQI are the actual values used to estimate crop-growth and crop-quality models, and CHI* and CQI* are 
the fitted values of the estimations.  To estimate CHI* and CQI*, the fixed-effect models shown in Table A1 and A2 
were used with actual climate conditions, but the fixed-effect coefficients were not used to eliminate latent effects in the 
estimations.

Table 1.  Descriptive statistics of variables used to estimate TFP and CQI functions
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Fig. 4.  Rice TFPs by regions
Note: Prefectures selected from 38 regions to represent different locations.
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Tochigi,  Chiba,  Nagano, Gifu,  Kyoto,  Okayama, 
Yamaguchi, Kagawa, Ehime and Kumamoto, showed low 
correlations.  Differences between these indices are attribut-
able to measurement methods and background assumptions.  
Generally, the M-index ranks regions low in TFP, when 
such regions use extremely large amounts of a single input, 
and this index changes TFP of all regions even if only one 
region changes inputs.  Contrarily, the T-index tends to 
measure the average level of all inputs, and an influence of 
one regional change in inputs remains within own region.  
These features mean TFP in 11 prefectures showed different 
chronological paths for both indices.

2. Causality of rice TFP growth
Table 2 shows the estimation results of the TFP causal-

ity function (Eq. (4)).  In this table, there are four estima-
tions for each TFP index, i.e. the fixed-effect model with 
T-index (Model 1), the random-effect model with T-index 
(Model 2), the fixed-effect model with M-index (Model 3) 
and the random-effect model with M-index (Model 4).

Hausman-test statistics (χ2 value) suggested the fixed-
effect models (Models 1 and 3) were suitable.  Kunimitsu et 
al. (2014) showed similar estimation results for causality 
functions, and also selected the fixed-effect model.  In that 
estimation however, only nine regions were used, whereas 
here we used 38 regions.  Moreover, the crop-yield and 
crop-quality models used here were different from those 
used in Kunimitsu et al. (2014) and we also introduced pop-
ulation density as an explanatory variable in the model.  
Despite these differences, both results preferred the fixed-
effect models, showing the existence of latent factors other 

than climate and socioeconomic elements.
The signs of estimated coefficients were the same in 

both Models 1 and 3, with a little difference in the coeffi-
cient values of economies of scale (MA).  Climate factors 
took almost the same values as the estimated coefficients.  
However, R&D capital stocks and population density 
showed different degrees in terms of the estimated coeffi-
cients between both indices.  The estimated coefficient of 
R&D capital stocks with the M-index (Model 3) was 
approximately half of the T-index (Model 1).  The estimated 
coefficient of population density was insignificant in the T-
index, but significant in the M-index.  As explained earlier, 
the M-index is measured by comparing other regions 
whereas the T-index only refers to the previous year produc-
tivity.  Moreover, the growth rates of the M-index in 11 pre-
fectures, where correlation coefficients between both indices 
were low, were lower than that of the T-index.  These 11 
prefectures are famous for horticulture and fruit production.  
As explained in Kunimitsu (2013), differences between both 
indices in rice TFP were mainly attributable to variation in 
intermediate inputs including agricultural services.  In addi-
tion, the M-index tended to evaluate cross-sectional differ-
ences for each input factor.  In this sense, the M-index in 
this case probably considers the cross-sectional differences 
in intermediate inputs showing stronger diversity in agricul-
tural products of each prefecture.  In terms of climate fac-
tors, no significant differences in causality emerged, despite 
differences in socioeconomic factors.  Accordingly, predic-
tion of TFP by future socioeconomic factors depends on the 
indices measured, but prediction of TFP by future climate 
change shows similar results with either index.

T-index (Törunqvist-Theil index) M-index (Malmqist index)
Items Fixed Eeffect (Model 1) Random Eeffect (Model 2) Fixed Eeffect (Model 3) Random Eeffect (Model 4)

Coeff. t-statistics Coeff. t-statistics Coeff. t-statistics Coeff. t-statistics
Variables

Constant -0.814 -7.10 *** -0.783 -7.20 *** -0.025 -0.19 -0.361 -2.92 ***
ln(MA) 0.291 10.92 *** 0.282 12.00 *** 0.357 11.40 *** 0.271 10.78 ***
ln(KKn+KKp) 0.267 13.74 *** 0.281 15.45 *** 0.134 5.88 *** 0.150 7.28 ***
POP 0.035 0.65 -0.060 -2.01 ** -0.327 -5.23 *** -0.081 -3.00 ***
ln(CHI) 0.225 5.60 *** 0.227 5.72 *** 0.204 4.30 *** 0.219 4.75 ***
ln(CQI) 0.080 4.44 *** 0.083 4.61 *** 0.104 4.90 *** 0.107 5.07 ***
ln(CRI) -0.044 -3.61 *** -0.044 -3.66 *** -0.046 -3.26 *** -0.040 -2.89 ***
ln(CFI) -0.007 -1.96 * -0.007 -1.88 * -0.004 -0.93 -0.006 -1.36

Adjusted R2 0.83 0.57 0.67 0.35
Log likelihood 1182 1160 991 948
AIC -1.93 -1.89 -1.61 -1.60
Redundant Fixed Effects Test (F) 49.08 (p=0.00) 33.45 (p=0.00)
Hausman Test (χ2) 11.80  (p=0.10)  37.73 (p=0.00)

Note: Total panel observations were 1178 (38 prefectures × 31 years: 1979-92; 1994-2010). Variables are explained in Table 1. 
“***,” “**” and “*” respectively show that the estimation coefficients are significant compared to the t-statistic at 1, 5 and 10% 
levels.

Table 2.  Estimations of causative factors for TFP changes
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The estimated coefficient, β, corresponds to TFP elas-
ticity with respect to explanatory variables.  Most estimated 
signs were the same as Kunimitsu et al. (2014), but the esti-
mation values differed slightly due to differences in regional 
classifications and the variables used.  As shown by the esti-
mations of Models 1 and 3, the elasticity values with respect 
to economies of scale, MA, were 0.29-0.36, while the elas-
ticities of the yield index, CHI, were almost the same as MA.  
The impacts of CHI were substantially large2, but those of 
other climate factors were relatively small.

To see the impacts of temperature and rain on rice TFP 
via the above climate indices, we calculated TFP elasticities 
with respect to temperature via yield (CHI) and quality 
(CQI), and calculated TFP elasticities with respect to rain 
via poorly drained surface water (CRI) and flooding (CFI) 
(Figs. 5 to 7).  Only the results of the T-index are shown due 

to limited space but the M-index marked similar values 
because the estimated coefficients of climate factors were 
similar between both indices (Table 2).  Elasticity of TFP 
with respect to temperature via yield differed depending on 
the prefecture and year.  In general, prefectures in northern 
Japan such as Hokkaido, Aomori, Iwate, Miyagi, Akita, 
Yamagata, Fukushima and Nagano achieved positive effects 
of temperature via CHI until the early periods and subse-
quently showed negative effects with small values.  
However, all southern prefectures showed negative effects 
of temperature via CHI.  A similar tendency emerged in 
terms of the effects of temperature via quality.  The negative 
effects of temperature shown by these two indices are multi-
plicative where temperature exceeds the threshold value in 
both indices.

The TFP elasticity against long rain via poorly drained 

2  Theoretically, the elasticity of yield index, CHI, is one where only yield changes but production costs remain constant. However, in 
reality, when yield changes under climate change, production costs and prices also change with the adaptive behavior of farmers as 
well as the market, so the elasticity of CHI should be less than one.

-2

-1.5

-1

-0.5

0

0.5

H
ok

ka
id

o

A
om

or
i

Iw
at

e

M
iy

ag
i

A
ki

ta

Y
am

ag
at

a

Fu
ku

sh
im

a

Ib
ar

ak
i

To
ch

ig
i

G
un

m
a

Sa
ita

m
a

C
hi

ba

N
iig

at
a

To
ya

m
a

Is
hi

ka
w

a

Fu
ku

i

N
ag

an
o

G
ifu

Sh
iz

uo
ka

A
ic

hi

M
ie

Sh
ig

a

K
yo

to

H
yo

go

To
tto

ri

Sh
im

an
e

O
ka

ya
m

a

H
iro

sh
im

a

Y
am

ag
uc

hi

To
ku

sh
im

a

K
ag

aw
a

Eh
im

e

K
oc

hi

Fu
ku

ok
a

K
um

am
ot

o

O
oi

ta

M
iy

az
ak

i

K
ag

os
hi

m
a

1981-00 2011-2030 2041-2060 2081-2100

-1.6
-1.2
-0.8
-0.4

0
0.4

H
ok

ka
id

o

A
om

or
i

Iw
at

e

M
iy

ag
i

A
ki

ta

Y
am

ag
at

a

Fu
ku

sh
im

a

Ib
ar

ak
i

To
ch

ig
i

G
un

m
a

Sa
ita

m
a

C
hi

ba

N
iig

at
a

To
ya

m
a

Is
hi

ka
w

a

Fu
ku

i

N
ag

an
o

G
ifu

Sh
iz

uo
ka

A
ic

hi

M
ie

Sh
ig

a

K
yo

to

H
yo

go

To
tto

ri

Sh
im

an
e

O
ka

ya
m

a

H
iro

sh
im

a

Y
am

ag
uc

hi

To
ku

sh
im

a

K
ag

aw
a

Eh
im

e

K
oc

hi

Fu
ku

ok
a

K
um

am
ot

o

O
oi

ta

M
iy

az
ak

i

K
ag

os
hi

m
a

1981-00 2011-2030 2041-2060 2081-2100

-0.05
-0.04
-0.03
-0.02
-0.01

0

H
ok

ka
id

o

A
om

or
i

Iw
at

e

M
iy

ag
i

A
ki

ta

Y
am

ag
at

a

Fu
ku

sh
im

a

Ib
ar

ak
i

To
ch

ig
i

G
un

m
a

Sa
ita

m
a

C
hi

ba

N
iig

at
a

To
ya

m
a

Is
hi

ka
w

a

Fu
ku

i

N
ag

an
o

G
ifu

Sh
iz

uo
ka

A
ic

hi

M
ie

Sh
ig

a

K
yo

to

H
yo

go

To
tto

ri

Sh
im

an
e

O
ka

ya
m

a

H
iro

sh
im

a

Y
am

ag
uc

hi

To
ku

sh
im

a

K
ag

aw
a

Eh
im

e

K
oc

hi

Fu
ku

ok
a

K
um

am
ot

o

O
oi

ta

M
iy

az
ak

i

K
ag

os
hi

m
a

elasticity of TFP with respect to long rain via CRIelasticity of TFP with respect to heavy rain via CFI

Fig. 5.  Elasticity values for TFP (T-index) with respect to temperature via the crop-yield index (CHI)

Fig. 6.  Elasticity values of TFP (T-index) with respect to temperature via the crop-quality index (CQI)

Fig. 7.  Elasticity values of TFP (T-index) with respect to rainfall via long rain index (CRI) and flood index (CFI)
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surface water, CRI, was -0.044 and always negative, while 
TFP elasticity against heavy rain via flooding, CFI, was less 
than -0.02.  The low estimated coefficients meant TFP elas-
ticities against rainfall via CRI and CFI were lower than 
against temperature via CHI and CQI.  In particular, TFP 
elasticity against heavy rain via flooding was the lowest in 
absolute value terms.  This is because only limited areas of 
paddy fields are damaged by floods depending on the course 
of the typhoon.  Anyway, it is reasonable to accept a work-
ing hypothesis in which poorly drained surface water caused 
by a long rain mainly increased production costs.  The 
effects of floods from heavy rain are relatively minor and 
mainly result in a small decline in production with the small 
increase in costs due to pumping drainage water and repair-
ing fields.  In this sense, long term climate change affects 
rice TFP, not only by reducing the production amount via 
CHI, CQI and CFI, but also by increasing the costs via CRI.

3. Prediction of future rice TFP
Figure 8 shows chronological changes in future rice 

TFP, using Model 1 (T-index) and Model 3 (M-index) 
alongside the MIROC forecast results.  As shown by the 
increase in TFP level by the bold line, socioeconomic fac-
tors mainly explained the average chronological trends of 
TFP, whereas climate factors added a variation to those ten-

dencies and caused annual TFP level to fluctuate.  Predic-
tion lines of both models were similar, but the growth rate 
of Model 3 was slightly smaller than Model 1, because the 
estimated coefficient of R&D capital stocks was low in 
Model 3.

In prefectures of northern Japan, such as Hokkaido and 
Akita, the line for all factors was higher than that without 
considering climate factors, because temperatures in these 
regions remained under the threshold value.  The TFP from 
climate factors in other prefectures increased until the 
2020s, but the line was subsequently located below that for 
only socioeconomic factors.  This is because temperatures 
in these regions were beyond the threshold value for most 
years.  Conversely, the influences of rain via CRI and CFI 
were always negative and the contribution of rain to all 
causative factors, including socioeconomic factors, was -2.5 
to -4.5%.

Figures 9 and 10 show the standard deviations, as cal-
culated from the TFP levels with consideration of only cli-
mate factors to show the fluctuations in TFP.  Although TFP 
elasticity against temperature via yield and quality far 
exceeded that against rain, annual fluctuations in rain and 
floods also far exceeded that of temperature, as shown by 
these figures.  This occurred due to high variations in CRI 
and CFI as shown by the high standard deviation of these 
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Fig. 8.  Projection of TFP level (1979=1.0)
Note: To compare the two indexes in a single figure, the right-side vertical axis for the M-index was set 0.5 points higher 
than the left-side axis for the T-index.
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indices in Table 1.  Consequently, it is highly possible that 
annual fluctuations in rain may result in unstable rice TFP.

Implications and conclusions

The present study evaluated the impacts of long and 
heavy rain under long-term climate change on Japanese rice 
TFP by applying panel data analysis.  Based on the esti-
mated causality function associated with crop-yield, crop-
quality and hydrological models, future levels of rice TFP 
were predicted by using the projection results of MIROC.  
The estimation results showed the following points:

First, there were no significant differences in the 
effects of climate factors between T-index and M-index.  
This indicates that the prediction of rice TFP from future 
climate change does not differ due to measurement indices 
and remains fairly stable.  Contrarily, the estimated coeffi-
cients of R&D capital stocks and population density showed 
differences between both indices emerging.  Since the M-
index tends to evaluate cross-sectional differences for each 
input factor, such differences are probably attributable to 
cross-sectional differences in intermediate inputs showing 
the diversity of agricultural products in each prefecture.  
Agricultural research should consider such differences when 
either or both indices are used.

Second, TFP elasticity against temperature changed 

signs from positive to negative according to the region and 
year.  In northern Japan, a rise in temperature under future 
climate change increased rice TFP via yield and quality.  
However, a rise in future temperature reduced rice TFP in 
southern Japan.  Therefore, future temperature change is 
beneficial for rice TFP in northern Japan but harmful in 
southern Japan.  Compared to the effects of temperature, the 
effects of rain were always negative, and absolute TFP elas-
ticity against rain was lower than that against temperature 
via yield and quality.  Nevertheless, both poorly drained 
surface water caused by long rain on the fields and floods 
caused by heavy rain decreased rice TFP by 2.5 to 4.5%.

Third, changes in rainfall under future climate change 
cause annual rice TFP to fluctuate.  The influences of rain 
on TFP fluctuations exceeded those of temperature via yield 
and quality, even though the effect of rain measured by elas-
ticity was much lower than temperature.  This is due to high 
variation in annual rainfall compared to temperature.  
Considering these tendencies, it is important for the 
Japanese rice sector to mitigate the negative and unstable 
influences of rain to make its rice production more competi-
tive.  However, countering floods and poorly drained sur-
face water on the fields is difficult for farmers and 
government support is needed.  For example, consolidating 
drainage systems in fields would be helpful.

Limitations of this analysis and the remaining issues 

Fig. 9.  Standard deviations for TFP (T-index) caused by temperature change via the yield and quality indices (CHI and CQI)
Note: TFP values were calculated by using the estimated coefficients of CHI and CQI in Model 1 of Table 2.
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Fig. 10.  Standard deviations for TFP (T-index) caused by rainfall change via long rain and flood indices (CRI and CFI)
Note: TFP values were calculated by using the estimated coefficients of CRI and CFI in Model 1 of Table 2.

0.000

0.010

0.020

0.030

0.040

0.050

H
ok

ka
id

o

A
om

or
i

Iw
at

e

M
iy

ag
i

A
ki

ta

Y
am

ag
at

a

Fu
ku

sh
im

a

Ib
ar

ak
i

To
ch

ig
i

G
un

m
a

Sa
ita

m
a

C
hi

ba

N
iig

at
a

To
ya

m
a

Is
hi

ka
w

a

Fu
ku

i

N
ag

an
o

G
ifu

Sh
iz

uo
ka

A
ic

hi

M
ie

Sh
ig

a

K
yo

to

H
yo

go

To
tto

ri

Sh
im

an
e

O
ka

ya
m

a

H
iro

sh
im

a

Y
am

ag
uc

hi

To
ku

sh
im

a

K
ag

aw
a

Eh
im

e

K
oc

hi

Fu
ku

ok
a

K
um

am
ot

o

O
oi

ta

M
iy

az
ak

i

K
ag

os
hi

m
a

2011-30 2041-60 2081-100



Y. Kunimitsu & R. Kudo

JARQ  49 (2)  2015170

are as follows: Analyses of other agricultural products and 
other countries, evaluation of other causative factors such as 
human capital and public physical capital, and evaluation of 
the ripple effects of changes in rice TFP on whole econo-
mies are important issues that remain to be clarified in future 
studies.
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Appendix

Table A1 shows estimations of the crop-yield model 
using Eq. (7).  Panel data with 38 regions and 31 years 
(1979-1992, 1994-2010) were used for estimations.  The 
fixed-effect model showed statistical superiority over the 
random-effect estimations, as shown by Hausman statistics, 
adjusted R2 and other statistics.  The coefficients of temper-

Variable
Fixed Effect model Random Effect model

Coeff. t-statistic Coeff. t-statistic
Constant -385.888 -9.50 *** -265.469 -7.00 ***
TM7 16.519 7.59 *** 14.616 6.79 ***
TM72 -0.356 -7.61 *** -0.327 -7.05 ***
TM8 18.223 5.86 *** 15.654 5.06 ***
TM82 -0.410 -6.41 *** -0.357 -5.62 ***
TM9 7.265 2.84 *** 2.386 0.98
TM92 -0.116 -1.93 * -0.022 -0.37
Adjusted R2 0.694 0.133
Log likelihood 4172 4056
AIC -7.009 -6.874
Redundant Fixed Effects Test (F) 39.02 (p=0.00)
Hausman Test (χ2) 212.54 (p=0.00)

Note: Total panel observations were 1178 (38 prefectures × 31 years: 1979-92; 1994-2010).  The 
fixed-effect model was chosen to predict CHI* based on Hausman test statistics (p=0.00 shows 
p-value). “***,” “**” and “*” respectively show that significant estimation coefficients compared 
to the t-statistic at 1, 5 and 10% levels.

Table A1.  Estimations of the crop-growth model (CHI) in Eq. (7)

Variable
Fixed Effect model Random Effect model

Coeff. t-statistic Coeff. t-statistic
Constant 54.799 12.42 *** 56.377 12.39 ***
SR7 0.647 2.93 *** 0.604 2.75 ***
SR8 0.940 3.83 *** 0.916 3.77 ***
ABS(TL78-19.34) -6.703 -10.53 *** -6.914 -11.44 ***
DYR -39.063 -13.89 *** -39.460 -14.05 ***
Adjusted R2 0.48 0.22
Log likelihood -4794 -4821
AIC 8.21 8.19
Redundant Fixed Effects Test (F) 14.29 (p=0.00)
Hausman Test (χ2) 16.46 (p=0.00)
Note: Total panel observations were 1178 (38 prefectures × 31 years: 1979-92; 1994-2010).  ABS(•) 
is the function to calculate the absolute values.  DYR is the dummy variable that is one of the nega-
tive spikes, showing a rapid drop of -20% in a specific year and rapid recovery the following year, 
and 0 otherwise.  The fixed-effect model was chosen to predict CQI* based on Hausman test statis-
tics (p=0.00 shows p-value).  “***,” “**” and “*” respectively show that the estimation coefficient is 
significant compared to the t-statistic at 1, 5 and 10% levels.

Table A2.  Estimations of the crop-quality model (CQI) in Eq. (8)
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ature and quadratic temperature showed that rice yield 
changes from an increase to a decrease at temperatures 
around 20.0°C.  This tendency resembles the crop models 
developed by Iizumi et al. (2009) and Yokozawa et al. 
(2009) that analyzed more precise growth-processes of rice.  
Therefore, the model estimated here shows good perfor-
mance and can be used to estimate the yield index.  To esti-
mate CHI* for Eq. (4), the estimated coefficients of fixed 
regional constants were not used to show only climate 
effects and to exclude latent effects on production.  For the 
same reason, the future level of CHI is predicted by future 
climate conditions without using fixed-regional constants.

Table A2 shows the estimations of the crop-quality 
model in Eq. (8).  The fixed-effect model was shown to be 
statistically superior to the random-effect estimations, based 
on Hausman statistics, adjusted R2 and other statistics.  
Unfortunately, the adjusted R2 was approximately 0.5, 
showing limited scope to explain the estimations.  The esti-
mated coefficients showed a decline in rice quality due to a 
higher minimum temperature over the threshold temperature 
and longer periods of sunshine.  These tendencies in the 
coefficients correspond to the results of Kawazu et al. 
(2007).  Using these estimations, CQI for the causality func-
tion was calculated.  In the stage of the CQI estimation, 
only climate conditions were used and the fixed-regional 
constants were not used for the same reason in CHI.
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