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Abstract
The buckwheat plant contains high levels of rutin (flavonol 3-O-rutinoside) in many organs, including 
its seeds, cotyledon, leaves, stem, and flowers.  The enzymes that catalyze the decomposition and 
synthesis of rutin in buckwheat are unique in terms of having relatively low Km values, indicating that 
buckwheat developed rutinosidase and glycosyl transferase enzymes specifically suited for rutin 
metabolism.  In Tartary buckwheat seeds, high levels of rutin content and rutinosidase activity cause 
strong bitterness, which may effectively protect the seeds from being eaten by animals.  The stress 
responses observed in buckwheat leaves suggests that rutin and rutinosidase are involved in enhancing 
the defense system against environmental stresses, including UV light, low temperature, and 
desiccation.  
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Introduction

Rutin is a glycoside of flavonoid widely distributed 
among plantae (Sando & Lloyd 1924, Couch et al. 1946, 
Haley & Basin 1951, Bandyuko & Sergeeva 1974, Fabjan et 
al. 2003).  Buckwheat also contains high level of rutin in 
nearly all organs, including seeds, cotyledons, leaves, stems, 
and flowers (Kalinova & Dadakova 2006).  Accordingly, 
buckwheat has been utilized as a rutin-rich food material 
and processed into various foods (Ikeda 2002, Kreft et al. 
2006).  In Japan, buckwheat is cultivated, not only for use in 
traditional foods, but also as an ingredient for health foods, 
because it contains several bioactive compounds such as 
rutin.  Rutin benefits human health in several ways: 
strengthening fragile human capillaries (Griffith et al. 1944, 
Shanno et al. 1946); antioxidative activity (Afanas’ev et al. 
1989, Afanas’ev et al. 2001, Jiang et al. 2007, Awatsuhara 
et al. 2010); antihypertensive activity (Matsubara et al. 
1985); anti-inflammatory activity (Afanas’ev et al. 2001); 

and alpha-glucosidase inhibitory activity (Li et al. 2009).  
From a plant growth perspective, plant flavonoids act 

to reduce environmental stress; e.g. via UV-B screening, 
antioxidant activity, and disease resistance (Harborne & 
Williams 2000).  

There are two major cultivated species of buckwheat: 
common (Fagopyrum esculentum Moench) and Tartary 
buckwheat (Fagopyrum tataricum Gaertn.).  Although the 
cotyledons and leaves of both contain considerable rutin, 
concentrations in the seeds of Tartary buckwheat are 
approximately 100-fold higher than those of common buck-
wheat.  In addition, Tartary buckwheat seed also contains 
high levels of rutinosidase activity (Yasuda et al. 1992, 
Yasuda & Nakagawa 1994, Suzuki et al. 2002).  Based on 
these properties, Tartary buckwheat represents a good model 
to study the physiological roles of rutin in buckwheat seeds. 

In this review, we summarize the possible physiologi-
cal roles of rutin in buckwheat, focusing on the accumula-
tion patterns and tissue-specific distribution of rutin during 
plant development, particularly during seed ripening, germi-
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nation, and vegetative growth.  The first part covers the 
purification and characterization of enzymes related to rutin 
metabolism, while the second part describes the accumula-
tion of rutin in organs, including cotyledons, leaves, and 
seeds, during different developmental stages.  The effects of 
stress on leaf rutin concentrations and rutinosidase activity 
are also discussed.  

Rutin Metabolism

1. Synthesis
Rutin comprises the aglycone quercetin and the disac-

charide rutinose and is accordingly assumed to be synthe-
sized via the 3-O-glycosylation of quercetin, followed by 
the rhamnosylation of isoquercitrin (Barber et al. 1963, 
1991) (Fig. 1).  In many plant species, glucosylation of fla-
vonoids is catalyzed by flavonoid glucosyltransferases such 
as UDP-Glc: flavonoid 3-O-glucosyltransferases (3GT). 
3GT has been the most well-studied glucosyltransferase in 
maize (Zea mays L.) (Futtek et al. 1988), barley (Hordeum 
vulgare L.) (Wise et al. 1990), and grape (Vitis vinifera L.).  
In common buckwheat, 3GT has only been characterized in 
cotyledons, from which it was purified 171-fold to homoge-
neity (final specific activity of 1.46 pkat per mg protein) 
(Suzuki et al. 2005a).  

The molecular weights of 3GT of common buckwheat 
are 56,000 and 58,600, as estimated by SDS-PAGE and gel 
filtration, respectively, suggesting that common buckwheat 
3GT is a monomer, like other 3GTs, while the optimal pH 
for 3GT activity is around 7.0 and substrate specificity for 
the sugar acceptor of common buckwheat 3GT varies 
among flavonoids.  The lowest reported Km is 27 μM for 
quercetin.  Compared to quercetin, common buckwheat 3GT 
has at least six-fold lower specificity for apigenin, kaemp-
ferol, luteolin, and naringenin.  This substrate affinity pro-
file contrasts to that of grape 3GT, which displays a high 
affinity; not only for quercetin, but also other flavonols, 
including kaempferol (Ford et al. 1998).  

With respect to sugar donors, common buckwheat 3GT 
has the lowest Km for UDP-Glc (1.04 mM).  This Km value 
resembles those of other 3GTs, such as grape, which also 
has a Km of 1.04 mM for UDP-Glc (Ford et al. 1998).  
Barber (1963) reported that both TDP-Glc and UDP-Glc are 
suitable sugar donors for rutin biosynthesis in the mung 
bean (Phaseolus aureus Roxb.), although the Km value for 
TDP-Glc markedly exceeded that of UDP-Glc.  Watanabe 
and Ito (2002) reported that common buckwheat seedlings 
contain several C-glycosyl flavonoids, including apigenin-
8-C-glucoside, apigenin-6-C-glucoside, luteolin-8-C-gluco-
side, and luteolin-6-C-glucoside.  These flavonoid 
compounds are synthesized just after germination, and grad-
ually decline thereafter.  In contrast, the rutin concentration 
increases as the plant develops. 

Understanding the mechanisms of rutin synthesis will 
mean examining the characterization of rhamnosyltransfer-
ase (RT) activity, which catalyzes the final step in rutin syn-
thesis.  Furthermore, the relationship between 3GT 
expression and RT activity, and its role in controlling rutin 
biosynthesis should be clarified, despite the lack of reports 
on RT characterization.  However, in flowers of common 
and Tartary buckwheat, cDNAs with high homology to 
plant rhamnosyltransferases have been identified in de-novo 
sequencing analyses using next-generation sequencers 
(Logacheva et al. 2011).  Our research group also obtained 
cDNAs from Tartary buckwheat root with high homology 
to RT.  In addition, a few studies have reported the expres-
sion of mRNAs related to the rutin biosynthesis pathway 
(Kim et al. 2013a, 2013b, Thwe et al. 2013).  The informa-
tion provided by these studies will aid future investigations 
into breeding rutin-rich varieties of Tartary buckwheat.  

2. Decomposition
The characterization of enzymes involved in rutin 

decomposition is also important to understand the roles of 
rutin in Tartary buckwheat.  Rutinosidase catalyzes the 
hydrolysis of the 3-glycoside unit of flavonols, which is 
speculated to be the precursor of rutin (Barber 1963, Barber 
& Behrman 1991) (Fig. 1).  Rutinosidase activity has been 
detected in a number of plants (Suzuki 1962, Yasuda & 
Nakagawa 1994, Suzuki et al. 2002, Baumgertel et al. 2003) 
and microorganisms (Hendson et al. 1992, Narikawa et al. 
2000).  The first report on Tartary buckwheat rutinosidase 
was an RDE purified from seeds (Yasuda & Nakagawa 
1994), while the second was f3g and also purified from 
seeds (Suzuki et al. 2002).  RDE and f3g have similar char-
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acteristics, with the exception of molecular weight and Km, 
and comprise at least two major isozymes.  The molecular 
weights of the two identified f3g isozymes are 58,200 (f3g 
I) and 57,400 (f3g II) on SDS-PAGE, and 89,000 for both 
isozymes on gel filtration.  The optimal pH, temperature, 
kinetic constants and Vmax for rutin and isoquercitrin are also 
highly similar for both f3g isozymes.  Although the optimal 
pH and temperature resemble those of RDE (Yasuda & 
Nakagawa 1994), the kinetic constants (RDE: Km values for 
rutin are 120 and 130 mM respectively for each of the iso-
zymes), while the molecular weights (RDE: 68,000 on SDS-
PAGE and 70,000 by gel filtration) of the latter differ 
markedly.

The sequences of the amino terminus of both f3g iso-
zymes are identical within the first 15 residues of f3g I and 
the first 10 residues of f3g II), and share an identity with 
other glycosidases, such as cyanogenic-beta-glucosidase 
(Trifolium repens L.) and thioglucosidase (Arabidopsis 
thaliana [L.] Heynh.).  F3g catalyze the hydrolysis, not only 
of rutin, but also isoquercitrin, although the Vmax value for 
isoquercitrin is only one-tenth of that for rutin, suggesting 
that isoquercitrin is the precursor to rutin (Suzuki 1962, 
Barber & Behrman 1991).  The finding that f3g catalyzes 
the hydrolysis of both rutin and isoquercitrin may relate to 
the catalytic control of rutin levels in the Tartary buckwheat 
plant.

Regarding the physiological role of rutin in common 
and Tartary buckwheat plants, Afanas’ev et al. (2001) 
showed that rutin complexed with transition metals effi-
ciently scavenges free radicals in vitro.  Another possible 
role of rutin relates to the anti-fungal activity of its aglycone 
quercetin component.  It was reported that the anti-fungal 
agent 3, 4-dihydroxybenzoic acid is formed when onion 
scale leaves brown due to the peroxidase-dependent oxida-
tion of quercetin (Takahama & Hirota 2000).  As common 
and Tartary buckwheat also exhibits peroxidase activity in 
seeds (Kondo et al. 1982, Suzuki et al. 2005c, 2006, 2010, 
2012) and leaves (Mikami et al. 2013), f3g might catalyze 
the first step in producing an anti-fungal agent in seeds dur-
ing germination.  

Rutin and rutinosidase activity in seeds, cotyledons 
and the leaves of common and Tartary buckwheat

To further investigate the physiological roles of rutin 
in common and Tartary buckwheat, we monitored the accu-
mulation and tissue-specific distribution patterns of rutin 
during Tartary buckwheat development (Suzuki et al. 2005b, 
2009).  In addition, because enzymes related to rutin biosyn-
thesis and decomposition also influence the function of 
rutin, we investigated their activities during the develop-
mental stages of germination (cotyledon), leaf expansion, 
and seed ripening in common and Tartary buckwheat.  

1. Seeds
Several reports have examined rutin concentrations 

and rutinosidase activities in seeds of common and Tartary 
buckwheat (Kitabayashi et al. 1995ab, Yasuda & Nakagawa 
1994, Ohsawa & Tsutsumi 1995, Suzuki et al. 2002, 
Morishita & Tetsuka 2002, Végvári et al. 2008).  The rutin 
concentration in Tartary buckwheat seeds ranges from 1,100 
to 1,950 mg/100 g dry weight, which is two orders of mag-
nitude higher than that found in common buckwheat.  Rutin 
content in common and Tartary buckwheat seeds increases 
after pollination and peaks in mature seeds (several days 
after pollination (Jianchun & Yu 1992, Suzuki et al. 2002).  
Jiang et al. (2007) investigated the rutin levels of three 
buckwheat species, common buckwheat, Tartary buckwheat, 
and F. cymosum, and concluded that seed rutin plays an 
important role in antioxidant activity.  During seed ripening, 
rutin concentrations, rutinosidase activity, and 3GT activi-
ties increase in seeds (Suzuki et al. 2002).  The rutinosidase 
activity in Tartary buckwheat seeds was sufficient to hydro-
lyze considerable rutin in the seeds within a few minutes.  
In Tartary buckwheat seeds, rutin is mainly distributed in 
the embryo, whereas nearly all rutinosidase activity occurs 
in the testa.  Therefore, rutin in embryos is physically sepa-
rated from rutinosidase activity by differences in organ dis-
tribution, a finding that matches a report by Mukasa et al. 
(2009).  

In embryos, cells actively divide during seed develop-
ment.  In such seeds, free radical- or UV light-induced DNA 
damage significantly influences plant development.  We 
have also shown that the levels of rutin and rutinosidase in 
Tartary buckwheat seeds influence the taste of seeds.  
Tartary buckwheat is traditionally known as ‘bitter buck-
wheat’ because the Tartary buckwheat flour grain is strongly 
bitter.  From these findings, we recently developed a new 
variety of Tartary buckwheat with rutinosidase activity 
approximately two orders of magnitude lower than that of 
ordinary varieties.  Analysis using this trace-rutinosidase 
variety has shown a relationship between the levels of rutin 
hydrolysis and bitterness.  As bitter foods are widely hated 
by humans and animals (Drewnowski et al. 2000, 
Drewnowski 1997, Hladik 1996), rutin and rutinosidase 
activity may be involved in plant defense against being 
eaten.  

2. Seedlings
The rutin concentration changes as common buck-

wheat seedlings grow (Troyer 1955, Watanabe & Ito 2002, 
Kim et al. 2004, Kim et al. 2006, 2007, Krahl et al. 2008). 
In seedlings, flavonoids other than rutin, including orientine 
and isovitexine, have also been identified.  Suzuki et al. 
(2007) investigated changes in rutin concentration, in addi-
tion to rutinosidase and 3GT activities, during the seedling 
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growth of Tartary buckwheat, and found that the rutin con-
centration gradually increased from 0 to 12 DAG.  Mature 
seeds also contain considerable rutin (approximately 2% of 
the dry weight), indicating that Tartary buckwheat cotyle-
dons comprise approximately 1.25% rutinose as rutinoside, 
which may serve as a source of carbohydrate nutrition dur-
ing germination and seedling growth.  However, the rutin 
concentration in Tartary buckwheat cotyledons increased 
following germination, indicating that rutin in Tartary buck-
wheat cotyledon is not used as a nutritional source during 
germination and cotyledon growth.  

Rutin was shown to deter larval feeding by certain spe-
cies of insects (Simmonds 2003).  In our study (Kim et al. 
2006), as rutin concentrations in mature cotyledons were 
relatively high, representing approximately 4% of the dry 
weight, rutin may have a role in preventing damage from 
insects.  In common buckwheat, rutin concentrations 
increase as the seedling develops.  For example, from 3 to 5 
DAG, the rutin concentration of cotyledons exposed to light 
exceeded that of those grown in darkness (Kim et al. 2006), 
while the rutin concentration in mature cotyledons (5 DAG) 
was roughly 4% of the dry weight.  The highest rutin con-
centration in cotyledons grown under light conditions 
emerged at 3 DAG, whereas the concentration peaked at 4 
DAG under dark conditions and did not diminish until 7 
DAG under light and dark conditions respectively.  In con-
trast, the 3GT activity began to increase just after germina-
tion, peaked at 4 DAG, and then rapidly decreased until 7 
DAG.  In this study, in these cotyledons, more than 50% of 
the rutin was observed in the upper epidermis of the cotyle-
dons.  

Several studies have demonstrated how rutin functions 
as a UV filter under light irradiation (Suzuki et al. 2002, 
Margna et al. 1990, Suzuki et al. 2005b).  However, both 
rutin concentration and 3GT activity were even elevated in 
common buckwheat cotyledons grown in darkness.  This 
finding suggests that in addition to UV screening, rutin may 
have other roles, such as enhancing the defense system 
against cold or desiccation stress in Tartary buckwheat 
leaves (Suzuki et al. 2005b), as described in the next sec-
tion.  

Suzuki et al. (2005a) also found that rutinosidase activ-
ity, which is localized in the testa, begins to decrease imme-
diately after germination.  At 4 DAG testae contained 80% 
of the rutinosidase activity compared to the testa at 0 DAG. 
From 0 to 4 DAG, the testa adheres to the cotyledon and 
husk.  From 5 DAG, both testa and husk are easily separated 
from the cotyledon, which exhibits relatively high surface 
rutinosidase activity (approximately 25% of that of the 
testa).  The rutinosidase enzymes found on the cotyledon 
surface were likely exported from the testa because the coty-
ledon itself contained little rutinosidase activity compared 
with the cotyledon surface.  In contrast, rutin was predomi-

nantly distributed in the epidermis of the cotyledon, where it 
may be hydrolyzed to quercetin by rutinosidase located at 
the cotyledon surface if the cotyledon is damaged.  When 
onion scale leaves brown, the anti-fungal agent 3,4-dihy-
droxybenzoic acid is formed by the peroxidase-dependent 
oxidation of quercetin (Takahama & Hirota 2000).  The 
rutinosidase activity on the cotyledon surface may play a 
similar anti-fungal role.  Based on these results, rutin and 
rutinosidase activity in Tartary buckwheat appear to have 
different physiological roles during cotyledon growth com-
pared to those in common buckwheat.  

3. Leaves
Common and Tartary buckwheat leaves contain rutin 

levels similarly high to those found in cotyledons.  In other 
plants, flavonoids are mainly located in the epidermis of 
leaves (Harborne & Williams 2000).  Rutin accumulation 
has also been detected in the leaves of common and Tartary 
buckwheat (Zhanaeva 1996, Kitabayashi et al. 1995ab).  
Suzuki et al. (2005b) examined the rutin concentration, and 
rutinosidase and 3GT activities in different stages of Tartary 
buckwheat leaves(L1=cotyledon, L2= senescent leaf, L3-
L6=mature leaf, and L7 and L8=young leaf) and found that 
the rutin concentration peaked in L7 leaves and decreased 
with increasing leaf age, reaching almost zero in yellow 
senescent leaves.  The rutin concentration on a dry-weight 
basis peaked in L8 leaves (>20% of the dry weight), the 
youngest, and gradually decreased with increasing leaf age.  
These results effectively match the report of Zhanaeva 
(1996), who found that the rutinosidase activity on a dry-
weight basis was higher in young leaves of common buck-
wheat, peaked in L6 leaves, and then gradually decreased.  
The 3GT activity showed a similar pattern to that of rutin 
levels, suggesting that 3GT plays a role in rutin synthesis.  

Rutin is mainly located in the epidermis of Tartary 
buckwheat leaves.  This localization matches a report by 
Zhanaeva (1996) on common buckwheat leaves and by 
Harborne and Williams (2000) on the leaves of other plant 
species.  Notably, more than half the rutin in Tartary buck-
wheat leaves is located in the upper epidermis, which rein-
forces the idea that rutin plays a role in UV screening.  

We have also investigated the effects of stress on rutin 
synthetic and degradative enzymes in Tartary buckwheat 
leaves.  An increased level of ambient UV radiation can 
adversely affect the growth of common buckwheat (Mateja 
& Barbara 2007, Ozbolt et al. 2008, Yao et al. 2006) and 
increase leaf rutin concentrations.  Kreft et al. (2002) 
showed that after long-term UV-B radiation, reducing the 
UV-B radiation level resulted in a lower rutin concentration 
in common buckwheat leaves and flowers than that found in 
plants continually exposed to ambient UV-B levels.  In a 
field test conducted by Yao et al. (2006), the rutin concen-
tration in leaves was increased by supplemental UV-B radia-
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tion.  These findings support the idea that rutin serves as a 
UV screen.  

To confirm the role of rutin as a UV screen, Suzuki et 
al. (2005b) performed stress treatments on Tartary buck-
wheat leaves using an experimental protocol designed to 
decrease experimental error due to differences in the grow-
ing stage or individual plant characteristics (Fig. 2).  At 28 
DAG, L7 leaves of field-grown Tartary buckwheat were 
harvested, and individual leaves were subjected to both 
stress and control treatments to minimize variability.  
Measurements of rutin concentration and rutinosidase activ-
ity revealed these parameters did not change immediately 
after stress treatments.  However, the rutin concentration 
increased significantly with UV-B radiation or desiccation 
treatment, but was not markedly altered by cold treatment.  

Many studies have reported that flavonoids function as 
a UV screen (Harborne & Williams 2000).  These observa-
tions are consistent with the increased rutin concentration 
found in common buckwheat leaves exposed to UV-B radia-
tion.  In common buckwheat, long-term UV-B radiation 
results in an increase in UV-B absorbing compounds (Kreft 
et al. 2002).  Rutin concentration is affected by humidity 
and irrigation and peaks in common buckwheat plants culti-
vated under dry conditions (Ghouzbdi et al. 2009), meaning 
it  may play a protective role against desiccation.  
Rutinosidase activity was also shown to increase signifi-
cantly in response to various stress treatments; a 363% 
increase was observed under UV-B radiation, 190% under 
cold treatment (-5 °C, 5 minutes), and 158% in response to 
desiccation, as compared to the control (Suzuki et al. 
2005b).  After UV-B radiation, the rutin concentration and 
rutinosidase activity increased concurrently. 

The increased rutinosidase activity results in an 
increase in quercetin and rutinose concentrations, and may 
serve to supply quercetin as a peroxidase substrate.  Under 
stress conditions, peroxidase plays an important role in 
defending plants against oxidative damage (Kolattukudy et 
al. 1992, Bradley et al. 1992).  Because quercetin is a suit-
able substrate for guaiacol peroxidase (Amako et al. 1994), 
quercetin, which is produced from rutin, may be used as a 
substrate of guaiacol peroxidase to prevent oxidative dam-
age to Tartary buckwheat leaves.  This reinforces the con-
cept that the stability of rutin against oxidative degradation 
far exceeds its aglycone quercetin (Afanas’ev et al. 1989).  

Future perspective

From the results described in this review, several pos-
sible roles of rutin in common and Tartary buckwheat are 
described, in protecting against UV and enhancing defense 
mechanisms against stress.  Further elucidating this mecha-
nism would be useful, not only for common and Tartary 
buckwheat but also other crop breeding to enhance stress 

tolerance, which will be promoted by the development of 
mutants with impaired rutin biosynthesis and/or for which 
rutinosidase activity is necessary.  
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Fig. 2.   Flowchart of environmental stress treatments in the 
study be Suzuki et al. (2005b)

An untreated leaf was used as a control. The stress-
treated leaf was left for 24 h at 22°C with adequate 
water. The rutin concentration and rutinosidase 
activity were measured after the main vein had 
been removed and the results of pieces 1 and 2 were 
compared (value of piece 1 of each sample = 100).
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