REVIEW Estimating Phosphorus Availability in Andosols Using Soil Biomass Phosphorus as an Indicator

Tomoko SUGITO* and Takuro SHINANO¹

Agro-environmental Research Division, NARO Hokkaido Agricultural Research Center (Sapporo, Hokkaido 062-8555, Japan)

Abstract

Andosols are widely distributed in upland fields in Japan and are characterized by a high phosphorus (P) retention capacity. Consequently, the efficiency of P fertilizers is low in Andosols, requiring a high rate of P fertilizer application. However, P resources are becoming depleted globally, and excess P accumulated in soil inhibits trace element uptake by plants, pollutes the environment, and triggers outbreaks of soil-borne diseases. Available P in upland fields in Japan is usually estimated using the Truog method, but the results do not correlate with plant P uptake in Andosols. Soil organic P is also not usually evaluated as available, but remains an important P source for plants. The P in microbes (biomass P) is particularly important, because P from dead microbes is released directly into the soil or easily decomposed. We found a significant correlation between biomass P and P uptake by kidney beans. Therefore, biomass P may serve as a reliable indicator of P availability in Andosols.

Discipline: Soil, fertilizers and plant nutrition

Additional key words: excess input of phosphorus, high phosphorus retention capacity, optimum phosphorus fertilizer application rate

Introduction

The average application rate of phosphorus (P) fertilizer to agricultural fields in Japan is about 120 kg P_2O_5/ha^{22} . This high P application rate is attributed to low P fertilizer use efficiency (about 20%) in Japan²⁶. This low efficiency is due to the characteristics of Andosols, which are widely distributed (about 50% by area) in upland fields in Japan.

Andosols have low bulk density²¹ and enhanced content of exchange complexes, such as allophane, imogolite, and aluminum-humus³². Due to the accumulation of active forms of aluminum and iron, Andosols have a high P sorption capacity²¹ and thus require a high P application rate. For example, the standard rate of P application for maize (*Zea mays*) grown in Andosols is 240 kg P₂O₅/ha, compared to 150 P₂O₅/ha in lowland soil.

Nishio²³ analyzed the relationship between P application rate and yield of major crops, and showed that yields of many crops did not increase at higher P application rates. Cordell et al.¹⁰ estimated that global P reserves may be depleted in 50-100 years, amid increasing global demand for P. The shortage of natural P resources might have limited exports of rock phosphate, and the rising price of P fertilizer has adversely affected farm management. In addition, the application of excessive P causes problems such as inhibition of trace element uptake³³, environmental pollution⁶, and outbreaks of soil-borne diseases¹².

Estimation of P availability

1. Methods for measuring the available P in soil

The application rate of P fertilizer is adjusted according to the amount of available P in soil. Inorganic P (Pi) extracted from soil is recognized as available P. Various methods have been proposed for measuring available P in soil, such as the Bray method Nos. 1 and 2³, the Olsen method²⁷, and extraction with water¹⁷.

Based on Japanese government recommendations, the Truog method³⁸ has been widely used in Japan for diagnos-

Present address:

¹ Director of Agricultural Radiation Research Center, NARO Tohoku Agricultural Research Center (Fukushima, Fukushima 960-2156, Japan)

^{*}Corresponding author: e-mail pokarin@affrc.go.jp

Received 1 December 2011; accepted 29 March 2013.

	Truog	Bray no.1	Bray no.2	Ca-Pi	Al-Pi	Fe-Pi
Sekiya ³⁰						
plant: wheat						
non-volcanic soil	-	-	-	0.99 **	0.25	-0.18
volcanic ash soil	-	-	-	0.81 **	0.45	0.10
Shoji et al. ³¹						
plant: oats						
peat soil	0.84 **	0.98 **	0.96 **	0.75 **	-	-
alluvial and diluvial soil	0.61 *	0.60 *	0.73 **	0.65 *	-	-
Andosol	0.26	0.76 **	0.83 **	0.51	-	-
Minami et al. ²⁰						
plant: oats						
non-volcanic soil	0.87 **	0.62 *	0.61 *	0.63 *	0.49	0.29
volcanic ash soil	0.26	0.34	0.47	0.31	0.75 *	0.29

Table 1. Correlation coefficients (r) between available P and plant P uptake

***P* < 0.01, **P* < 0.05

ing soil P fertility. As shown in Table 1, a significant correlation between Truog P and P uptake by oats (*Avena sativa*) has been demonstrated in non-volcanic soils^{20,31}. Shoji et al.³¹ analyzed the relationship between available P and P uptake by plants. Significant positive correlations (P<0.01 or P<0.05) were obtained between Truog P and plant P uptake in peat, alluvial, and diluvial soils³¹. These results suggest that Truog P is suitable for estimating available P in non-volcanic soils.

2. Problem in estimating P availability in Andosols

In Andosols, Truog P is not correlated with plant P uptake (Table 1). Several studies have examined which method is most appropriate for evaluating available P correlated with plant P uptake in volcanic soils. For example, Shoji et al.³¹ proposed P extracted by both Bray method Nos. 1 and 2³, Minami et al.²⁰ proposed aluminum-bound Pi, and Sekiya³⁰ proposed Ca-Pi as the best indicator of available P.

Kato et al.¹⁴ estimated available P in Andosol using the isotopic exchange method and compared the results to those obtained with chemical extract methods, namely, the Truog method and the Bray No. 2 method³. Both Truog P and Bray P were two to three times higher than P estimated by the isotopic exchange method, and neither correlated with plant P uptake.

Therefore, the results of numerous studies suggest that available P estimated by chemical extract methods, including the Truog method, is not a suitable indicator of plant P uptake. An improved method for evaluating soil P availability for plants is needed to determine optimum P fertilizer application rates for Andosols.

Soil microbial biomass P as an indicator of P availability in Andosols

1. Soil microbial biomass P as a P source for plants

Organic P accounts for 35–65% of total P in soil¹³. Inositole, the main form of organic P in soils, is much more abundant in soils (>30%) than microbes $(<10\%)^{34}$. However, the central component of the soil organic P cycle is thought to be related to P contained in soil microbes³⁴. Soil microbes not only decompose organic P, they also store P. Kouno¹⁵ estimated that P accounts for 5.9% of the elements in microbes. The average P content in soil microbes was calculated to be 80 mg P/kg of dry soil¹¹, and Brookes et al.⁵ calculated the mean annual flux of P through soil microbes in upland field soils in England to be 7 kg P/ha/ year.

Of microbial intracellular P, >60% is usually in the form of nucleic acids, 20% comprises acid-soluble P-esters, and 5% phospholipids³⁹. These P compounds are thought to exist mainly in the cell cytoplasm as Pi or on the cell membrane. Marumoto¹⁹ showed that the amount of available P released in soil by chloroform fumigation is closely related to the P content of soil microbes. Accordingly, the P in soil microbes may be released directly from cells when microbes die, or easily decomposed, and become readily available to plants^{5,34}. Kouno et al.¹⁶ estimated that the turnover time of biomass P (37 days) was about half that of biomass P should be both quantitatively and qualitatively assessed as an important P source for plants.

2. Soil microbial biomass P as an indicator of available P

Biomass P constitutes a key part of the soil P pool

	plant	Biomass P	NaOH P	NaHCO ₃ P	Resin P	Bray P
Saini et al. ²⁸						
Ustochrepts	sorghum	0.89 **	-	-	-	-
	chickpea	0.97 **	-	-	-	-
Ayaga et al. ²						
Andosol	maize	0.84 *	NS	NS	NS	-
Acrisol	maize	0.95 *	NS	NS	NS	-
Chen et al. ⁸						
Red soils ^a	ryegrass	0.94 **	-	-	-	0.96 ^b **

Table 2. Correlation coefficients (r) between biomass P or available P and plant P uptake

NS: not significant, **P < 0.01, *P < 0.05

- : not analyzed

^a Oxisoils, Ultisols, and Alfisols

^b Measured by Bray No. 1 method³

available for plants. Recent studies have reported significant correlations (P<0.01) between biomass P and P uptake by plants (Table 2), such as maize², sorghum (*Sorghum bicolor*) and chickpea (*Cicer arietinum*)²⁸, growing in fields with low soil P content. These findings suggest that microbial biomass is a key P source in upland soils with low P availability.

Chen et al.⁸ conducted pot experiments using red soils (Oxisols, Ultisols, and Alfisols) of various P fertility and found a significant positive correlation (P<0.01) between biomass P and P uptake by ryegrass (*Lolium* spp.). In a previous field experiment in Hokkaido, we also examined the relationships between P uptake by kidney bean (*Phaseolus vulgaris* cv. Taisho-kintoki) and biomass P and Truog P in an Andosol field where all treatments contained sufficient P³⁶. The P content of shoots at harvest correlated significantly (P<0.01) with biomass P but not with Truog P (Fig. 1). These results suggest that biomass P is an important P

source, irrespective of P availability in soil, and could serve as a reliable indicator of soil P availability for plants.

Future perspectives

Biomass P may be an important indicator of P fertility in Andosols, which exhibit high P fixation. If biomass P were used to evaluate soil P availability, the excess input of P fertilizer could be reduced. However, studies have shown a positive correlation between biomass P and P uptake in only a few plants, and field experiments are needed to test a wider array of species. The accuracy of biomass P as an indicator of P fertility may depend on conditions such as soil Pi contents, soil type, and the growing season of plants, and these conditions must also be tested in future research.

Biomass P is usually analyzed by the chloroform fumigation extraction method⁴. Although Sugito et al.³⁵ proposed a way to improve chloroform fumigation extraction

Fig. 1. Relationships of shoot P uptake by kidney bean (*Phaseolus vulgaris* cv. Taisho-kintoki) with biomass P and Truog P in an Andosol field

Pearson's correlation coefficients are shown, and regression curves and *r* values are shown only for the significant correlations (**P<0.01). Solid line: regression curve for 4-year data; dotted line: regression curve for 2004, 2005, and 2007. *n* = 6 in 2004, 9 in 2005 and 2007, and 12 in 2006.

for measuring biomass P in upland Andosol fields, the chloroform fumigation extraction method is laborious and timeconsuming. A simple method to estimate biomass C by measuring soil ATP was proposed²⁴, likewise one of substrate-induced respiration¹. However, it is difficult to estimate biomass P using this simple method because the biomass C/P ratio is not constant. For example, Brookes et al.⁵ reported that the biomass C/P ratio ranged from 10.6 to 35.9, while Sarathchandra et al.²⁹ reported values of 15 to 63. Consequently, a simple method to accurately estimate biomass P is needed.

Cole et al.⁹ conducted simulation experiments to identify the flow of P among soil components (Fig. 2). The results suggested that considerable amounts of P flow from soil water to soil microbes, from soil microbes to labile organic P, and from labile organic P to soil water (shown as shaded arrows in Fig. 2). Thus, increasing P uptake by microbes is likely to decrease P fixation in soil and change it to a stable inorganic form (shown as dotted arrows in Fig. 2). Increasing biomass P may increase the efficiency of P fertilizer^{2,25}, especially in soils with high P retention capacity, such as Andosols, meaning it is also important to establish a soil management method for increasing biomass P.

The application of organic matter, such as glucose¹⁶, crop residues¹⁸, and cow manure³⁷, increases biomass P. An exception was reported by Takeda et al.³⁷, who showed that biomass P was significantly (P<0.05) higher in soil to which residues of cereal rye (*Secale cereale*) had been applied than in the control (no residues applied), whereas the application of residues of rapeseed (*Brassica napus*) did not increase biomass P compared to the control. One reason seemed to be the difference in the ratio of C, nitrogen (N), and P in the two plant residues. Therefore, future research should also investigate how the ratios of C, N, and P in organic matter affect biomass P with a view toward devising methods of organic matter application that will increase biomass P.

References

- Anderson, J.P.E. & Domsch, K.H. (1978) A physiological method for the quantitative measurement of microbial biomass in soils. *Soil Biol. Biochem.*, 10, 215-221.
- Ayaga, G. et al. (2006) Enhanced biological cycling of phosphorus increases its availability to crops in low-input sub-Saharan farming systems. *Soil Biol. Biochem.*, 38, 81-90.
- Bray, R.H. & Kurts, L.T. (1945) Determination of total, organic, and available forms of phosphorus in soils. *Soil Sci.*, 59, 39-46.
- Brookes, P.C. et al. (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem., 14, 319-329.
- Brookes, P.C. et al. (1984) Phosphorus in the soil microbial biomass. *Soil Biol. Biochem.*, 16, 169-175.
- Carpenter, S.R. et al. (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. *Ecol. Applications.*, 8, 559-568.

Fig. 2. A tentative scheme of P flow among soil components The thickness of the arrow roughly represents the magnitude of P flow. Modified after Chauhan et al.⁷

- Chauhan, B.S. et al. (1979) Effect of carbon additions on soil labile inorganic, organic and microbially held phosphate. *Can. J. Soil Sci.*, **59**, 387-396.
- Chen, G.C. et al. (2000) Microbial biomass phosphorus and its significance in predicting phosphorus availability in red soils. *Commun. Soil Sci. Plant Anal.*, 31, 655-667.
- 9. Cole, C.V. et al. (1977) Simulation of phosphorus cycling in semiarid grasslands. *Ecology*, **58**, 1-15.
- Cordell, D. et al. (2009) The story of phosphorus: global food security and food for thought. *Global Environ. Change*, doi: 10.1016/j.gloenvcha.2008.10.009
- Díaz-Raviña, M. et al. (1993) Microbial biomass and its contribution to nutrient concentrations in forest soils. *Soil Biol. Biochem.*, 25, 25-31.
- Ghorbani, R. et al. (2008) Soil management for sustainable crop disease control: a review. *Environ. Chem. Lett.*, 6, 149-162.
- Harrison, A.F. (1987) Soil organic phosphorus: A review of world literature. CAB International, Wallingford, UK.
- 14. Kato, N. et al. (1995) The ability of chemical extraction methods to estimate plant-available soil P and a better understanding of P availability of fertilized Andosols by using isotopic methods. *Soil Sci. Plant Nutr.*, **41**, 781-789.
- Kouno, K. (1996) Formation of soil microbial biomass and its phosphorus flow in soil. *Jpn. J. Soil Sci. Plant Nutr.*, **67**, 716-725 [In Japanese].
- Kouno, K. et al. (2002) Turnover of biomass C and P in soil following incorporation of glucose or ryegrass. *Soil Biol. Biochem.*, 34, 617-622.
- Kuo, S. (1996) Methods of soil analysis. Part 3. Chemical methods. ed. Sparks, D.L., Soil Science Society of America Inc., Madison, WI.
- Kwabiah, A.B. et al. (2003) Response of soil microbial biomass dynamics to quality of plant materials with emphasis on P availability. *Soil Biol. Biochem.*, 35, 207-216.
- Marumoto, T. et al. (1982) Mineralization of nutrient from microbial biomass. *Soil Biol. Biochem.*, 14, 469-475.
- 20. Minami, M. et al. (1969) Studies on the estimation of upland soil fertility 1. On the availability of soil phosphorus. *Bull. Hokkaido Pref. Agric. Exp. Sta.*, **19**, 80-86 [In Japanese with English summary].
- Nanzyo, M. (2002) Unique properties of volcanic ash soils. *Global Environ. Res.*, 6, 99-112.
- 22. Nishio, M. (2002) Recent trend of chemical fertilizer con-

sumption in Japan. Jpn. J. Soil Sci. Plant Nutr., 73, 219-225 [In Japanese].

- Nishio, M. (2003) Analysis of the actual state of phosphate application in arable farming in Japan. *Jpn. J. Soil Sci. Plant Nutr.*, 74, 435-443 [In Japanese with English summary].
- Oades, J.M. & Jenkinson, D.S. (1979) Adenosine triphosphate content of the soil microbial biomass. *Soil Biol. Biochem.*, 11, 201-204.
- 25. Oberson, A. et al. (2001) Phosphorus transformations in an Oxisol under contrasting land-use systems: the role of the soil microbial biomass. *Plant Soil*, **237**, 197-210.
- 26. OECD eds. (2008) Nutrients. In Environmental performance of agriculture in OECD countries since 1990. OECD Publishing, Paris, France, 48-62.
- 27. Olsen, S.R. et al. (1954) *Estimation of available phosphorus in soil by extraction with sodium bicarbonate*. U.S. Department of Agriculture, Washington, D.C.
- Saini, V.K. et al. (2004) Comparison of crop yield, soil microbial biomass C, N, and P, N-fixation, nodulation and mycorrhizal infection in inoculated and non-inoculated sorghum and chickpea crops. *Field Crop. Res.*, **89**, 39-47.
- Sarathchandra, S.U. et al. (1984) Microbiological and biochemical characteristics of a range of New Zealand soils under established pasture. *Soil Biol. Biochem.*, 16, 177-183.
- Sekiya, K. (1970) Analysis methods for soil nutrient. ed. Kubota, T. Youkendo, Tokyo, Japan [In Japanese].

- 31. Shoji, S. et al. (1964) Comparison of methods of available soil phosphorus determination 2. Correlation between soil tests and "A" values. *Res. Bull. Hokkaido Natl. Agric. Exp. Sta.*, 84, 32-39 [In Japanese with English summary].
- 32. Shoji, S. et al. (1993) *Volcanic ash soils: genesis, properties and utilization*. Elsevier, Amsterdam, Netherlands.
- Singh J.P. et al. (1988) The mechanism of phosphorusinduced zinc deficiency in bean (*Phaseolus vulgaris* L.). *Can. J. Soil Sci.*, 68, 345-358.
- Stewart, J.W.B. & Tiessen, H. (1987) Dynamics of soil organic phosphorus. *Biogeochemistry*, 4, 41-60.
- Sugito, T. & Yoshida, K. (2006) Improvement of chloroform fumigation-extraction method for measuring soil microbial biomass phosphorus in Andosols. *Soil Microorg.*, 60, 11-15 [In Japanese].
- 36. Sugito, T. et al. (2010) Soil microbial biomass phosphorus as an indicator of phosphorus availability in a Gleyic Andosol. *Soil Sci. Plant Nutr.*, **56**, 390-398.
- Takeda, M. et al. (2009) Phosphorus availability and soil biological activity in an Andosol under compost application and winter cover cropping. *Appl. Soil Ecol.*, 42, 86-95.
- 38. Truog, E. (1930) The determination of the readily available phosphorus of soils. J. Am. Soc. Agron., 22, 874-882.
- Webley, D.M. & Jones, D. (1971) Soil biochemistry, Vol. 2. eds. McLaren, A.D. & Skujins, J. Marcel Dekker, New York.