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Introduction

Soybean has been cultivated as an alternative crop 
in rice fields in many areas of Japan. However, there have 
been many reports of constraints in maintaining soybean 
yields and flooding injury in particular during the early 
growth stages has been recognized as a major constraint 
to soybean establishment and production17,28,36.

Oxygen deprivation by flooding is one of the factors 
reducing plant growth under flooding because flooding 

often interferes with oxygen and carbon dioxide ex-
change between plants and their aerial aerobic environ-
ment3,13,62. Accordingly, plants have adapted to hypoxic 
stress by activating anaerobic metabolism pathways. Un-
der hypoxic conditions, cells relying on external oxygen 
limit energy-hungry processes and alter their metabolism 
to increase the anaerobic generation of ATP by glycoly-
sis10. This shift is followed by the fermentation of pyru-
vate into major end products, ethanol and lactate, yield-
ing NAD+ to sustain anaerobic metabolism. Conversion 
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also been introduced, including Fourier transform ion cy-
clotron resonance mass spectrometry (FT-ICR/MS), liq-
uid chromatography-mass spectrometry (LC/MS), and 
nuclear magnetic resonance (NMR). Furthermore, capil-
lary electrophoresis-mass spectrometry (CE/MS) has 
been developed to detect charged compounds such as 
carboxylic acids, amino acids and nucleotides48,53,54,55,58. 
Metabolites related to anaerobic metabolism, which may 
be important in flooding conditions, are mainly charged 
compounds, whichCE/MS can measure. In this study, us-
ing CE/MS, metabolites that respond to flooding stress 
in soybean seedling tissues, except for cotyledons, were 
identified to evaluate their common metabolism under 
flooding stress.

Materials and methods

1. Growth conditions and treatment
Soybean seeds (Glycine max L. cv. Enrei) were ger-

minated in silica sand and grown until the 6th day after 
germination in a growth cabinet under illuminated con-
��������	
�������-2 s-1, 12-h light period/day) at 25°C 
and 70% relative humidity in a growth chamber. Two 
days after germination, the seedlings were flooded for 4 
days and samples were collected daily during the experi-
ment, which was performed in triplicate. Seedlings were 
separated into hypocotyls and roots after the cotyledons 
had been removed. To measure the metabolites, hypocot-
yls and roots were also frozen in liquid nitrogen, lyophi-
lized, and stored at -80°C until analysis.

2. Metabolite analysis
Quantification of metabolites was performed using 

the method described by Takahashi et al.58, Nakamura et 
al.35 and Miyagi et al.32. Hypocotyls and roots were 
ground in liquid nitrogen and added to ice-cold 50% 
methanol (20 μL mg-1 fresh weight) containing internal 
standards (100 μmol L-1 each L-methionine sulfone and 
piperazine-1,4-bis(2-ethanesulfonic acid)). After centrif-
ugation at 15,000 × g for 5 min, the supernatant was fil-
tered through a 5-kDa cutoff filter (Millipore, Bedford, 
MA, USA) and used for analysis.

The CE/MS system and conditions were as de-
scribed by Takahashi et al.58, Nakamura et al.35 and Mi-
yagi et al.32. The metabolites were separated and detected 
by a CE/MS system using Agilent ChemStation software 
(Agilent Technologies, Waldbronn, Germany). Anionic 
compounds were determined by separation at -20 kV on a 
polyethylene glycol-coated capillary (DBWAX, J&W 
Scientific, Folsom, CA, USA, 100 cm × 50 μm i.d.) with 
a running buffer containing 20 mM ammonium acetate 
(pH 6.8) at 20°C. The sheath liquid composed of 5 mM 

from pyruvate to acetaldehyde by pyruvate decarboxyl-
ase and from acetaldehyde to ethanol by alcohol dehydro-
genase is essential for ethanol fermentation during flood-
ing and oxygen deprivation10,15,24.

Besides the major fermentation end products, lac-
tate and pyruvate, oxygen deficiency is associated with 
the elevation of alanine (Ala), GABA, succinate, and oc-
casionally malate9,10,15,49,59,61. Extrapolation suggested that 
a high rate of fermentation increases the demand for car-
bohydrates and that the supply of carbohydrates would be 
important for survival under prolonged hypoxic condi-
tions, because (1) the exogenous supply of sugars im-
proves the survival of flood-sensitive plants30,41,63, (2) hy-
poxic stress activates glycolytic enzymes29,30,50, and (3) 
inhibition of the synthesis of glycolytic enzymes de-
creases flooding tolerance57.

Soybean is generally intolerant of flooding stress. 
Flooding injury of soybean seeds before radicle protru-
sion, namely during seed imbibition, is caused by physi-
cal disruption of the rapid uptake of water and can be al-
leviated by using seeds with high moisture content37. The 
causes of flooding injury after radicle protrusion in the 
soybean, however, have not been well elucidated to date. 
In our previous report21,the growth of soybean seedlings 
under flooding conditions was similar to that under an-
oxia, and the level of protein related to fermentation was 
greatly upregulated during flooding. Furthermore, 
Hashiguchi et al.16 and Nanjyo et al.38 demonstrated that 
flooding of soybean seedlings affected the expression of 
certain proteins, involved not only in fermentation, but 
also glycolysis, suggesting that glycolytic and fermenta-
tive metabolism were also affected by flooding stress 
during germination. However, the influence of flooding 
stress on metabolites related to fermentation and glycoly-
sis remains unclear, although the expression of these pro-
teins was affected by flooding stress. Recently, tran-
scriptome studies revealed that hypoxia and flooding 
stress affected the expression of genes related to carbon 
metabolism, nitrogen metabolism, cell wall formation, 
and signal transduction, as well as transcription fac-
tors1,19,23,39. These reports suggested that many metabo-
lites are affected by flooding stress, making it necessary 
to elucidate the changes in numerous metabolites using a 
metabolomics technique which may enable a comprehen-
sive understanding of plant response to flooding.

Metabolomics analysis has emerged in recent years 
as a promising technology to identify metabolic networks 
in living cells11,40. Metabolomics studies have progressed, 
especially using gas chromatography-mass spectrometry 
(GC/MS), following enormous efforts to develop meth-
odological standards and informing numerous metabo-
lites in plants11,46. Other methodological applications have 
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Results and discussion

Root growth of soybean greatly decreases under 
flooding conditions16,20,47,52. This inhibition is one of the 
most common responses observed in higher plants to 
flooding stress and is likely related to the energy avail-
able from oxygen. The depression of energy-demanding 
processes including transportation, lipid metabolism and 
secondary metabolism is a known as a key oxygen-sav-
ing strategy, since it decreases oxygen consumption in 
cells5,13,14,45. Furthermore, oxygen concentration has been 
reported to influence metabolic activity in various tis-
sues such as stems, seeds, tubers, roots and fruits5. This 
involves a global depression in many energy-demanding 
processes, such as lipid, protein and phenylpropanoid 
synthesis13, meaning the inhibition of root growth is asso-
ciated with oxygen depletion and providing evidence that 
root growth is linked to oxygen availability. To investi-
gate the response mechanism of soybean to flooding 
stress, a proteome technique was used in our previous re-
ports16,20,52. Shi et al.52 reported that cytosolic ascorbate 
peroxidase2 is involved in flooding stress responses in 
young soybean seedlings using a proteomic technique. 
Hashiguchi et al.16 suggested, via proteome analysis, that 
flooding stress in soybean seedlings included not only 
hypoxic stress, but also other stresses such as those due 
to weak light, disease, and water stress. Furthermore, 
Komatsu et al.20 suggested that flooding stress directly 
affects plasma membrane proteins. Recently, in a tran-
scriptome study39, the expression of many genes related 
to photosynthesis, glycolysis, amino acid metabolism, 
hormone metabolism, protein degradation, metabolite 
transport, and cell wall metabolism was significantly af-
fected by flooding stress, which suggested that the latter 
affects many areas of metabolism. However, it is unclear 
which metabolic pathways were strongly affected, al-
though there was an impact on many biological process-
es. Thus, in this report, we evaluated the metabolic alter-
ation of soybean under flooding conditions to clarify the 
metabolic pathways significantly affected by this stress.

Germinated soybean seeds were subjected to flood-
ing for 1 to 4 days and sequential changes in metabolites 
of the seedlings were identified using CE/MS. Under 
flooding stress, 71 metabolites were identified in a time-
dependent manner (Tables 1 and 2). The data for metabo-
lite concentration were subjected to multivariate analy-
sis. PCA converts the complex concentration data into 
comprehensive matrix data sets. Plots of the first and sec-
ond PCA scores revealed that distinct clusters clearly 
corresponded to the differences in flooding treatment 
(Fig. 1). The first factor accounted for 62.2% of the total 
variance, and the data of control and flooding treatments 

ammonium acetate in 50% (v/v) methanol was applied to 
the capillary at 6 μL min-1 using an Agilent 1100 series 
isocratic HPLC pump equipped with a 1:100 splitter to 
stabilize MS analysis. To analyze cationic compounds, 
the samples were injected into an uncoated fused silica 
capillary (90 cm × 50 μm i.d.) with 1 M formic acid (pH 
1.9) as a running buffer and 0.1% formic acid in 50% 
(v/v) methanol as a sheath liquid. The applied voltage was 
set to 20 kV. Before injection of each sample, the capil-
lary was equilibrated for 5 min with the running electro-
lyte. The sample was injected with a pressure injection of 
50 mbar for 30 s (~30 nL) to analyze the anionic com-
pounds and for 3 s (~3 nL) to analyze the cationic com-
pounds. MS analysis for anionic compounds was per-
formed in negative ion mode, and for cationic compounds, 
in positive ion mode. The capillary voltage was ±3500 V 
and the flow of the drying nitrogen gas (adjusted to 
320°C) was 8 μL min-1. The concentration of each com-
pound was determined by measurement of the known 
concentrations of standard compounds using Agilent 
ChemStation software.

3. Sugar content
Total soluble sugars in the ethanol soluble fractions 

were determined using the method of Irigoyen et al.18. A 
portion (0.3 g) of root and hypocotyl was crushed in 5 
mL of 95% (v/v) ethanol, whereupon the insoluble frac-
tion of the extract was washed with 5 mL of 70% ethanol. 
All soluble fractions were centrifuged at 3,500 × g for 10 
min. The supernatants were used to determine the solu-
ble sugars. The extract (0.1 mL) was mixed with 3 mL of 
freshly prepared anthrone reagent (150 mg anthrone in 
100 mL of 72% sulfuric acid) and boiled for 10 min. The 
reaction was terminated on ice, the absorbance at 625 nm 
measured by a spectrophotometer (DU700; Beckman, 
Fullerton, CA, USA), and the soluble sugar concentration 
calculated using glucose as standard.

4. Statistical analysis
PCA was performed as usual using Pirouette soft-

ware (Infometrix, Woodinville, WA, USA) with mean-
center preprocessing. Data were visualized using the 
principal component score and loading plots. Each point 
on the scores plot represents an individual sample, and 
each point on the loading plot represents the contribution 
of an individual metabolite to the score plot. Biochemical 
components responsible for the differences between sam-
ples detected in the scores plot can accordingly be ex-
tracted from the corresponding loadings.
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sis when fermentative processes were induced60. Komat-
su et al.21 reported that the expression level of glycolysis 
and fermentation-associated proteins, UDP pyrophos-
phorylase, fructose-bisphosphate aldolase, and GA3P de-
hydrogenase were increased under flooding conditions in 
soybean. In this study, the amount of phosphoenolpyru-
vate (PEP), pyruvate and lactate, related to glycolysis and 
fermentation, transiently increased, but decreased 3 to 4 
days after flooding (Fig. 4, Table 2). Therefore, our re-
sults also suggested that fermentative processes might be 
induced in flooded soybean seedlings.

appears to be separated by this factor. Using loading data 
from the first factor, the scores of Ala, GABA, citrate 
(CA), isocitrate (ICA), fumarate (FA) and malate (MA) 
were positive and exceeded the loading score 0.1 (Fig. 2), 
indicating that these compounds display a high contribu-
tion in terms of the response to flooding. Sugar content 
decreased under both conditions, but the degree of reduc-
tion in sugar content was larger in flooding treatment 
than in control (Fig. 3). A previous report showed that the 
drop in oxygen concentration most likely caused in-
creased fluxes through sucrose degradation and glycoly-

Table 1. Abbreviationlist of metabolites changed under flooding stress

No. Abbreviation Metabolite name No. Abbreviation Metabolite name

1 Ala Alanine 37 6-PG 6-phospho-gluconate 
2 Ile+Leu Leucine+Isoleucine 38 E4P erythrose 4-phosphate
3 GABA �	��������������������� 39 R5P ribose-5-phosphate 
4 Val Valine 40 Ru5P ribulose-5-phosphate 
5 Gly Glycine 41 RuBP ribulose-1,5-bisphosphate 
6 Ser Serine 42 GMP Guanosine 5’-monophosphate
7 Gln Glutamine 43 GDP Guanosine 5’-diphosphate
8 Glu Glutamic acid 44 GTP Guanosine 5’-triphosphate
9 Arg Arginine 45 IMP Inosine 5’-monophosphate
10 Pro Proline 46 CMP Cytidine-5’-monophosphate 
11 Asn Asparagine 47 UMP Uridine 5’-monophosphate
12 Asp Aspartic acid 48 dTDP Deoxythymidine 5’-diphosphate
13 Lys Lysine 49 CDP Cytidine 5’-diphosphate
14 Met Methionine 50 UDP Uridine 5’-diphosphate
15 Thr Threonine 51 CTP Cytidine 5’-triphosphate
16 Phe Phenylalanine 52 UTP Uridine 5’-triphosphate
17 Tyr Tyrosine 53 2-OG 2-Oxoglutarate 
18 Trp Tryptophan 54 ACA cis-aconitate 
19 His Histidine 55 CA citrate 
20 Ornithine Ornithine 56 ICA isocitrate 
21 Citrulline Citrulline 57 FA Fumarate 
22 A Adenine 58 SuA Succinate 
23 G Guanine 59 MA Malate 
24 Adenosine Adenosine 60 AcCoA Acetyl-CoA 
25 Guanosine Guanosine 61 PEP phosphoenol pyruvate
26 C Cytosine 62 2,3DPG 2,3-Bisphospho-D-glycerate 
27 U Uracil 63 DHAP dihydroxyacetone phosphate
28 T Thymine 64 GA3P glyceraldehyde-3-phosphate 
29 Thymidine Thymidine 65 G6P glucose-6-phosphate 
30 Cytidine Cytidine 66 G1P Glucose-1-phosphate 
31 Uridine Uridine 67 FBP fructose 1,6-bisphosphate
32 Lac Lactate 68 Cinnamate Cinnamate 
33 PA pyruvate 69 Coumarate p-Coumarate 
34 3PGA 3-phosphoglycerate 70 Shikimate Shikimate 
35 Glycolate Glycolate 71 Glyoxalate Glyoxalate 
36 Glycerate Glycerate
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Days after germination 2 3 4 5 6

Days after flooding 0 1 2 3 4

	�����-1DW ± SE)
Ala Control 8.85 ±1.44 9.27 ±2.47 8.60 ±1.75 10.96 ±1.53 16.65 ±1.29

Submerge 44.10 ±3.78 63.34 ±4.15 67.73 ±4.40 68.65 ±7.40
Ile+Leu Control 7.58 ±1.43 6.93 ±1.71 6.04 ±1.23 6.99 ±1.02 12.77 ±0.21

Submerge 14.47 ±1.28 15.25 ±1.18 11.75 ±0.69 12.79 ±1.03
GABA Control 5.34 ±0.81 6.25 ±0.99 7.84 ±2.22 7.34 ±0.97 8.17 ±0.19

Submerge 21.46 ±3.80 55.22 ±7.71 34.98 ±3.00 53.51 ±9.50
Val Control 9.26 ±3.40 12.51 ±4.43 9.83 ±1.57 11.89 ±2.27 21.38 ±3.47

Submerge 10.85 ±1.39 17.97 ±3.94 12.09 ±1.49 16.65 ±1.89
Lac Control 0.68 ±0.28 0.76 ±0.15 1.26 ±0.16 0.48 ±0.20 0.30 ±0.10

Submerge 5.62 ±1.53 5.29 ±0.97 0.63 ±0.27 0.94 ±0.50
PA Control 0.94 ±0.24 0.77 ±0.14 1.11 ±0.29 0.97 ±0.19 0.65 ±0.26

Submerge 1.76 ±0.46 2.36 ±0.38 1.19 ±0.24 1.30 ±0.15
Gly Control 0.84 ±0.14 1.12 ±0.23 1.28 ±0.05 1.32 ±0.26 2.25 ±0.29

Submerge 6.28 ±2.56 8.06 ±2.61 3.40 ±0.32 4.74 ±0.49
Ser Control 8.06 ±0.77 9.38 ±1.68 9.75 ±2.05 10.01 ±1.16 14.40 ±0.89

Submerge 9.85 ±1.34 13.29 ±1.10 15.99 ±1.61 15.81 ±2.00
3PGA Control 0.33 ±0.16 0.25 ±0.16 0.26 ±0.09 0.15 ±0.07 0.27 ±0.02

Submerge 0.28 ±0.15 0.51 ±0.17 0.37 ±0.22 0.76 ±0.18
Glycolate Control 0.50 ±0.15 0.46 ±0.17 2.58 ±0.79 0.77 ±0.61 0.30 ±0.17

Submerge 1.66 ±0.84 4.08 ±3.18 0.30 ±0.16 0.79 ±0.28
Glycerate Control 0.18 ±0.04 0.17 ±0.03 0.10 ±0.06 0.16 ±0.03 0.13 ±0.01

Submerge 0.13 ±0.04 0.20 ±0.04 0.09 ±0.02 0.13 ±0.03
Gln Control 1.14 ±0.24 1.37 ±0.28 1.42 ±0.18 1.33 ±0.06 1.73 ±0.22

Submerge 2.77 ±0.68 3.22 ±0.74 2.04 ±0.15 2.16 ±0.27
Glu Control 5.56 ±0.45 3.50 ±0.33 3.49 ±0.51 3.14 ±0.12 2.59 ±0.09

Submerge 10.95 ±1.94 9.11 ±1.20 12.49 ±1.54 11.09 ±1.59
Arg Control 3.38 ±0.86 2.33 ±1.19 2.26 ±0.91 1.26 ±0.14 1.93 ±0.26

Submerge 8.36 ±3.61 5.89 ±1.43 3.55 ±0.87 3.25 ±1.02
Pro Control 2.10 ±0.56 8.45 ±6.08 11.70 ±7.04 4.63 ±0.54 5.53 ±1.06

Submerge 8.43 ±2.13 9.03 ±0.57 6.82 ±1.46 9.06 ±1.27
Asn Control 0.64 ±0.26 0.92 ±0.45 0.55 ±0.37 0.59 ±0.43 0.77 ±0.45

Submerge 0.80 ±0.16 1.36 ±0.99 1.05 ±0.56 0.91 ±0.84
Asp Control 4.34 ±2.64 2.48 ±1.49 2.71 ±1.58 3.84 ±0.51 6.63 ±3.84

Submerge 0.80 ±0.41 1.93 ±0.49 4.52 ±0.91 4.27 ±1.57
Lys Control 6.03 ±0.85 5.63 ±0.26 5.39 ±0.37 6.43 ±0.07 8.22 ±1.10

Submerge 0.57 ±0.09 1.13 ±0.22 4.28 ±0.74 5.92 ±1.83
Met Control 0.76 ±0.26 0.50 ±0.28 0.33 ±0.05 0.82 ±0.12 1.81 ±0.23

Submerge 1.02 ±0.14 1.17 ±0.09 1.60 ±0.14 1.71 ±0.54
Thr Control 3.44 ±0.64 4.44 ±1.10 3.80 ±0.56 3.79 ±0.42 4.64 ±0.27

Submerge 5.33 ±0.47 5.68 ±0.88 4.64 ±0.18 5.16 ±0.90
Phe Control 3.57 ±0.64 3.56 ±0.97 3.24 ±0.72 4.21 ±0.28 6.38 ±0.19

Submerge 7.75 ±0.86 8.13 ±0.23 6.25 ±0.42 7.01 ±0.96
Tyr Control 1.27 ±0.40 0.38 ±0.18 0.28 ±0.06 0.40 ±0.14 1.46 ±0.73

Submerge 3.34 ±1.05 2.63 ±0.27 1.59 ±0.61 1.65 ±0.15
Trp Control 0.50 ±0.15 1.32 ±0.21 1.36 ±0.19 2.26 ±0.40 2.77 ±0.39

Submerge 0.75 ±0.07 1.07 ±0.14 0.85 ±0.13 0.81 ±0.04
His Control 7.71 ±1.47 14.03 ±1.82 13.99 ±2.09 15.51 ±2.84 17.54 ±2.12

Submerge 8.62 ±0.53 11.06 ±0.46 11.39 ±2.57 9.33 ±1.53

Table 2. Concentrationsat which metabolites changed under flooding stress
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Days after germination 2 3 4 5 6

Days after flooding 0 1 2 3 4

	�����-1DW ± SE)
6-PG Control 0.02 ±0.02 0.07 ±0.02 0.07 ±0.01 0.08 ±0.01 0.04 ±0.03

Submerge 0.11 ±0.10 0.16 ±0.10 0.04 ±0.03 0.02 ±0.01
E4P Control 0.08 ±0.02 0.05 ±0.02 0.16 ±0.09 0.05 ±0.00 0.02 ±0.00

Submerge 0.06 ±0.02 0.13 ±0.03 0.09 ±0.03 0.06 ±0.01
R5P Control 0.12 ±0.03 0.09 ±0.03 0.08 ±0.01 0.16 ±0.04 0.14 ±0.03

Submerge 0.12 ±0.02 0.19 ±0.05 0.10 ±0.03 0.10 ±0.01
Ru5P Control 0.19 ±0.02 0.18 ±0.02 0.17 ±0.01 0.19 ±0.02 0.19 ±0.01

Submerge 0.19 ±0.03 0.28 ±0.03 0.20 ±0.04 0.20 ±0.01
RuBP Control 0.02 ±0.01 0.04 ±0.01 0.03 ±0.02 0.01 ±0.00 0.05 ±0.03

Submerge 0.02 ±0.01 0.02 ±0.01 0.04 ±0.01 0.09 ±0.08
Ornithine Control 47.35 ±3.54 70.58 ±15.45 111.26 ±31.61 110.07 ±31.22 116.20 ±26.86

Submerge 48.16 ±7.74 67.38 ±9.10 67.17 ±14.29 67.29 ±9.25
Citrulline Control 0.07 ±0.04 0.12 ±0.05 0.09 ±0.00 0.07 ±0.02 0.09 ±0.04

Submerge 0.11 ±0.04 0.46 ±0.15 0.10 ±0.06 0.25 ±0.08
A Control 0.01 ±0.00 0.01 ±0.00 0.01 ±0.01 0.01 ±0.00 0.01 ±0.00

Submerge 0.00 ±0.00 0.02 ±0.02 0.01 ±0.00 0.01 ±0.02
G Control 0.01 ±0.01 0.01 ±0.00 0.02 ±0.01 0.01 ±0.00 0.02 ±0.00

Submerge 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00 0.02 ±0.00
Adenosine Control 0.11 ±0.01 0.11 ±0.01 0.17 ±0.09 0.12 ±0.01 0.11 ±0.01

Submerge 0.03 ±0.01 0.03 ±0.01 0.03 ±0.00 0.03 ±0.01
Guanosine Control 0.04 ±0.01 0.04 ±0.01 0.03 ±0.02 0.04 ±0.00 0.04 ±0.01

Submerge 0.02 ±0.00 0.03 ±0.01 0.04 ±0.00 0.04 ±0.01
GMP Control 1.40 ±1.01 2.13 ±1.75 1.17 ±1.17 4.12 ±3.77 0.48 ±0.24

Submerge 0.19 ±0.09 1.37 ±0.98 5.42 ±5.80 0.52 ±0.43
GDP Control 0.03 ±0.03 0.05 ±0.05 0.01 ±0.00 0.14 ±0.12 0.00 ±0.00

Submerge 0.24 ±0.29 0.07 ±0.03 0.02 ±0.01 0.01 ±0.01
GTP Control 1.34 ±1.43 0.13 ±0.04 0.12 ±0.11 0.03 ±0.03 0.77 ±0.94

Submerge 0.86 ±0.45 3.78 ±1.64 1.49 ±1.60 0.60 ±0.38
IMP Control 0.06 ±0.04 0.07 ±0.02 0.05 ±0.03 0.11 ±0.02 0.06 ±0.04

Submerge 0.06 ±0.05 0.08 ±0.03 0.03 ±0.01 0.04 ±0.00
C Control 0.03 ±0.00 0.04 ±0.01 0.04 ±0.00 0.04 ±0.01 0.04 ±0.01

Submerge 0.03 ±0.01 0.03 ±0.02 0.04 ±0.01 0.04 ±0.01
U Control 0.24 ±0.09 0.32 ±0.12 0.14 ±0.08 0.13 ±0.01 0.12 ±0.02

Submerge 0.16 ±0.07 0.07 ±0.04 0.14 ±0.04 0.15 ±0.05
T Control 5.67 ±0.05 6.66 ±1.50 5.58 ±1.18 2.81 ±0.03 2.43 ±0.12

Submerge 5.43 ±0.21 3.82 ±0.87 6.57 ±0.24 6.37 ±0.43
Thymidine Control 0.08 ±0.05 0.14 ±0.02 0.09 ±0.01 0.07 ±0.01 0.11 ±0.05

Submerge 0.11 ±0.04 0.21 ±0.06 0.08 ±0.05 0.11 ±0.02
Cytidine Control 0.02 ±0.01 0.02 ±0.00 0.02 ±0.00 0.01 ±0.00 0.02 ±0.00

Submerge 0.01 ±0.00 0.01 ±0.01 0.03 ±0.00 0.03 ±0.01
Uridine Control 0.08 ±0.07 0.12 ±0.06 0.11 ±0.07 0.03 ±0.02 0.13 ±0.05

Submerge 0.11 ±0.05 0.10 ±0.05 0.10 ±0.05 0.11 ±0.06
CMP Control 0.04 ±0.03 0.05 ±0.03 0.08 ±0.08 0.02 ±0.01 0.00 ±0.00

Submerge 0.02 ±0.01 0.02 ±0.01 0.02 ±0.00 0.02 ±0.01
UMP Control 0.33 ±0.23 0.44 ±0.13 0.21 ±0.13 0.39 ±0.10 0.25 ±0.19

Submerge 0.21 ±0.07 0.15 ±0.05 0.23 ±0.03 0.18 ±0.06
dTDP Control 0.01 ±0.01 0.01 ±0.01 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Submerge 0.01 ±0.01 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Table 2. -continued-
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Table 2. -continued-

Days after germination 2 3 4 5 6

Days after flooding 0 1 2 3 4

	�����-1DW ± SE)
CDP Control 0.07 ±0.01 0.04 ±0.02 0.02 ±0.02 0.02 ±0.00 0.01 ±0.01

Submerge 0.02 ±0.02 0.03 ±0.00 0.03 ±0.01 0.03 ±0.01
UDP Control 0.47 ±0.05 0.32 ±0.10 0.11 ±0.08 0.08 ±0.05 0.03 ±0.02

Submerge 0.24 ±0.06 0.28 ±0.06 0.22 ±0.09 0.28 ±0.12
CTP Control 0.20 ±0.14 0.04 ±0.04 0.02 ±0.02 0.02 ±0.01 0.03 ±0.03

Submerge 0.04 ±0.02 0.05 ±0.03 0.09 ±0.07 0.09 ±0.11
UTP Control 1.03 ±0.71 0.18 ±0.19 0.19 ±0.22 0.06 ±0.03 0.08 ±0.06

Submerge 0.63 ±0.48 0.63 ±0.39 0.40 ±0.36 0.42 ±0.51
2-OG Control 0.30 ±0.14 0.31 ±0.10 0.26 ±0.11 0.27 ±0.03 0.33 ±0.03

Submerge 0.75 ±0.36 1.03 ±0.38 1.97 ±0.09 1.59 ±0.36
ACA Control 0.17 ±0.04 0.09 ±0.06 0.04 ±0.02 0.05 ±0.02 0.05 ±0.02

Submerge 0.26 ±0.08 0.24 ±0.04 0.49 ±0.17 0.66 ±0.39
CA Control 12.12 ±4.02 2.13 ±1.23 2.13 ±0.87 0.69 ±0.34 0.45 ±0.37

Submerge 10.08 ±2.22 9.78 ±6.12 12.58 ±4.38 21.94 ±7.18
ICA Control 2.84 ±0.60 1.80 ±0.55 1.47 ±0.32 1.26 ±0.37 0.70 ±0.40

Submerge 6.83 ±2.20 14.58 ±5.89 7.88 ±1.43 7.58 ±2.24
FA Control 2.70 ±0.99 3.86 ±2.46 2.73 ±0.72 3.59 ±1.68 5.44 ±3.15

Submerge 2.35 ±1.27 4.38 ±2.38 19.57 ±8.16 24.60 ±20.69
SuA Control 1.34 ±0.58 1.07 ±0.34 1.25 ±0.16 1.22 ±0.34 1.49 ±0.79

Submerge 2.79 ±1.24 3.91 ±0.80 5.18 ±3.50 5.29 ±3.13
MA Control 44.02 ±13.12 18.89 ±6.48 20.28 ±2.60 26.32 ±7.20 30.11 ±13.46

Submerge 25.53 ±4.79 23.66 ±13.97 44.53 ±22.27 35.88 ±4.05
AcCoA Control 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00 0.00 ±0.00

Submerge 0.01 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00
PEP Control 0.16 ±0.03 0.09 ±0.04 0.05 ±0.02 0.03 ±0.01 0.08 ±0.01

Submerge 0.18 ±0.05 0.24 ±0.03 0.28 ±0.12 0.22 ±0.09
2,3DPG Control 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Submerge 0.00 ±0.00 0.01 ±0.00 0.00 ±0.00 0.00 ±0.00
DHAP Control 0.24 ±0.02 0.24 ±0.06 0.32 ±0.14 0.24 ±0.02 0.28 ±0.05

Submerge 0.24 ±0.03 0.43 ±0.22 0.70 ±0.18 0.63 ±0.13
GA3P Control 0.18 ±0.03 0.16 ±0.03 0.19 ±0.04 0.16 ±0.01 0.18 ±0.02

Submerge 0.11 ±0.02 0.15 ±0.05 0.25 ±0.06 0.18 ±0.05
G6P Control 3.30 ±1.50 4.54 ±0.57 3.22 ±0.25 4.57 ±0.64 4.87 ±0.38

Submerge 4.60 ±0.72 4.91 ±1.95 6.13 ±0.35 5.72 ±0.88
G1P Control 1.50 ±1.15 0.67 ±0.04 0.60 ±0.04 0.60 ±0.08 0.53 ±0.04

Submerge 1.26 ±1.09 1.73 ±1.51 0.46 ±0.11 0.35 ±0.02
FBP Control 0.15 ±0.02 0.16 ±0.01 0.20 ±0.08 0.27 ±0.07 0.22 ±0.04

Submerge 0.21 ±0.08 0.25 ±0.09 0.26 ±0.16 0.32 ±0.01
Cinnamate Control 0.20 ±0.08 0.18 ±0.03 0.20 ±0.04 0.21 ±0.02 0.05 ±0.03

Submerge 0.85 ±0.26 0.51 ±0.15 0.54 ±0.23 0.25 ±0.26
Coumarate Control 0.12 ±0.12 0.01 ±0.01 0.11 ±0.12 0.09 ±0.06 0.01 ±0.00

Submerge 0.10 ±0.12 0.06 ±0.05 0.13 ±0.15 0.05 ±0.06
Shikimate Control 0.17 ±0.09 0.13 ±0.06 0.28 ±0.08 0.11 ±0.01 0.17 ±0.08

Submerge 0.15 ±0.11 0.18 ±0.04 0.14 ±0.03 0.07 ±0.04
Glyoxalate Control 0.66 ±0.13 0.55 ±0.08 1.53 ±0.59 0.69 ±0.40 0.33 ±0.18

Submerge 0.87 ±0.49 1.87 ±1.25 0.64 ±0.28 0.54 ±0.19
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soybean. In our study, organic acids related to the TCA 
cycle accumulated and the TCA cycle could not be sup-
pressed in soybeans exposed to flooding conditions. Un-
der flooded conditions, Ala and GABA were reportedly 
the two major amino acids synthesized, while organic ac-
ids were also accumulated3. It has been suggested that the 
accumulation of these amino acids is a stress response 

CA, 2-oxoglutarate, FA, Ala and GABA, related to 
the TCA cycle, amino acid metabolism, and the GABA 
shunt, accumulated in response to flooding treatment 
(Fig. 4, Table 2). In our previous report22, the expression 
of the TCA cycle-related proteins malate dehydrogenase, 
aconitase, isocitrate dehydrogenase, and 2-oxoglutarate 
dehydrogenase were upregulated by flooding stress in 

Fig. 2. PCA loadings of metabolites with the first principal component (Factor 1) in soybean seedlings

Fig. 1. Sample scores for the first (Factor 1) and second 
(Factor 2) components provided by PCA analysis 
for the metabolites identified in soybean seedling 
extracts

 Each plot represents an individual sample. Open 
and closed circles in the figure represent control 
and flooding treatment, respectively.

 ● : Control, ● : Flooding.

Factor 1 (62.2% of total variance)

-0.8 -0.4 0.0 0.4 0.8 1.2

Fa
ct

or
 2

 (1
9.

3%
 o

f t
ot

al
 v

ar
ia

nc
e)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Metabolites

A
la

Ile
+L

eu
G

A
B

A
V

al
G

ly Se
r

G
ln

G
lu

A
rg Pr
o

A
sn

A
sp Ly

s
M

et
Th

r
Ph

e
Ty

r
Tr

p
H

is
O

rn
ith

in
e

Ci
tru

lli
ne A G

A
de

no
si

n
G

ua
no

si
ne C U T

Th
ym

id
in

e
C

yt
id

in
e

U
rid

in
e

La
c

PA
3P

G
A

G
ly

co
la

te
G

ly
ce

ra
te

6-
PG E4

P
R

5P
R

u5
P

Ru
B

P
G

M
P

G
D

P
G

TP IM
P

CM
P

U
M

P
dT

D
P

C
D

P
U

D
P

CT
P

U
TP

2-
O

G
A

C
A CA IC
A FA Su
A

M
A

A
cC

oA PE
P

2,
3D

PG
D

H
A

P
G

A
3P

G
6P

G
1P

FB
P

C
in

na
m

at
e

C
ou

m
ar

at
e

Sh
ik

im
at

e
G

ly
ox

al
at

e

Lo
ad

in
gs

-0.2

0.0

0.2

0.4

0.6

0.8

Fig. 3. Total soluble sugar content in soybean seedlings
 Error bars indicate the SE. Open circles and closed 

circles in the figure represent control and flooding 
treatments, respectively. FW, fresh weight.

 ●  : Control, ●  : Flooding.

Days after flooding

Su
ga

rs
 c

on
te

nt
 (m

m
ol

 g
-1
FW

) 

0 1 2 3 4 5
0

1

2

3



245

Evaluation of Metabolite Alteration under Flooding Stress in Soybeans

A
la

D
AF

0
1

2
3

4
5

�mol g
-1

DW

020406080

C
on

tro
l

Fl
oo

di
ng

G
A
B
A

D
AF

0
1

2
3

4
5

�mol g
-1

DW

010203040506070

C
on

tro
l

Fl
oo

di
ng

La
ct
at
e

D
AF

0
1

2
3

4
5

�mol g
-1

DW

0.
0

2.
0

4.
0

6.
0

8.
0

C
on

tro
l

Fl
oo

di
ng

C
itr
at
e

D
AF

0
1

2
3

4
5

�mol g
-1

DW

05101520253035
C

on
tro

l

Fl
oo

di
ng

2-
O
G

D
A

F
0

1
2

3
4

5

�mol g
-1

DW

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

C
on

tro
l

Fl
oo

di
ng

Fu
m
ar
at
e

D
AF

0
1

2
3

4
5

�mol g
-1

DW

01020304050
C

on
tro

l

Fl
oo

di
ng

M
al
at
e

D
AF

0
1

2
3

4
5

�mol g
-1

DW

020406080
C

on
tro

l

Fl
oo

di
ng

Py
ru
va
te

D
A

F
0

1
2

3
4

5

�mol g
-1

DW

0.
0

1.
0

2.
0

3.
0

C
on

tro
l

Fl
oo

di
ng

G
lu

D
A

F
0

1
2

3
4

5

�mol g
-1

DW

0246810121416
C

on
tro

l

Fl
oo

di
ng

PE
P

D
AF

0
1

2
3

4
5

�mol g
-1

DW

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

C
on

tro
l

Fl
oo

di
ng

Fi
g.

 4
. 

M
ap

pi
ng

 o
f t

he
 c

ha
ng

es
 in

 m
et

ab
ol

ite
s o

n 
th

e 
bi

os
yn

th
et

ic
 p

at
hw

ay
 

D
A

F 
m

ea
ns

 d
ay

s a
ft

er
 f

lo
od

in
g.

 T
he

 c
ha

ng
es

 in
 m

et
ab

ol
ite

s t
ha

t r
ep

re
se

nt
 a

 h
ig

h 
lo

ad
in

g 
sc

or
e 

(>
0.

1)
 a

re
 sh

ow
n 

on
 th

e 
m

ap
. A

lso
, t

he
 c

ha
ng

es
 in

 G
lu

-
ta

m
at

e 
(G

lu
) a

nd
 2

-o
xo

gl
ut

ar
at

e 
(2

-O
G

), 
w

hi
ch

 is
 a

 k
ey

 o
rg

an
ic

 a
ci

d 
re

la
te

d 
to

 n
itr

og
en

 m
et

ab
ol

is
m

12
, a

nd
 o

f p
ho

sp
ho

en
ol

py
ru

va
te

 (P
EP

), 
py

ru
va

te
 a

nd
 

la
ct

at
e,

 w
hi

ch
 a

re
 re

la
te

d 
to

 a
na

er
ob

ic
 m

et
ab

ol
is

m
10

, a
re

 sh
ow

n.
 E

rr
or

 b
ar

s i
nd

ic
at

e 
th

e 
SE

. D
W

, d
ry

 w
ei

gh
t.



246 JARQ  46 (3)  2012

T. Nakamura et al.

to study the activity and expression of the enzymes relat-
ed to Ala and GABA metabolism.

Conclusions

Soybean is susceptible to flooding stress during 
germination and the early vegetative and early reproduc-
tive growth stages17. To understand the response mecha-
nism of soybean to flooding stress, investigation of the 
metabolic response is one of the key issues. In this study, 
we clarified that the accumulation of Ala and GABA was 
one of the distinctive responses to flooding stress in the 
soybean. We simply investigated the response to flood-
ing stress of soybean in this study, and in future, must 
also elucidate the relationship between the results in this 
study and tolerance against flooding stress. Therefore, it 
will be necessary to select tolerant varieties or breeding 
lines and elucidate the differing mechanisms of tolerance 
to this stress. The results in this study suggested that the 
metabolism of organic acids in the TCA cycle, Ala syn-
thesis and the GABA shunt are significantly influenced 
by flooding stress during soybean germination.
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