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Introduction

 DNA is constantly damaged by both endogenous 
and exogenous factors8.  Endogenous factors include 
DNA replication errors, oxidative damages by reactive 
oxygen species generated mostly in organelles, and hy-
drolytic damage caused by hydrolysis of the glycosylic 
bond between purine bases and the DNA backbone re-
sulting in loss of purine bases.  Exogenous factors include 
alkylation damage caused by mutagens, ultraviolet (UV)-
induced damages such as the cyclobutane pyrimidine di-
mer (CPD) and the pyrimidine (6–4) pyrimidone dimer 
(the 6–4 photoproduct), and DNA single strand and dou-
ble strand breaks caused by ionizing radiation.  Efficient 
and accurate DNA repair mechanisms exist in plants to 
repair damaged DNA. A great variety of enzymes (e.g. 
nucleases, DNA polymerases, DNA binding proteins, he-
licases, and other accessory proteins) are employed in 
DNA repair mechanisms in a well-coordinated manner.  
The RAD2 family of nucleases plays a critical role in the 
incision of damaged DNA through their substrate-specif-

ic exo- and endonuclease activities38.  The RAD2 family 
of nucleases identified in animals and yeasts consists of 
three classes, XPG/class I, FEN-1/class II and EXO1/class 
III.  Members of the family are classified according to 
their molecular mass and the location of two highly con-
served nuclease domains called XPG-N and XPG-I.  
While the XPG-N domain is always situated near the N-
terminus, the position of the XPG-I domain varies among 
members of the RAD2 family (Fig.1).  The complete se-
quencing of the two plant genomes (rice and Arabidopsis) 
has revealed that higher plants have RAD2 homolog 
genes corresponding to each of the three previously de-
scribed classes15,28,39 (Table 1).  Interestingly, two novel 
nucleases, OsSEND-1 (Oryza sativa Single strand DNA 
endonuclease-1) and OsGEN-L (O.sativa GEN (XPG-like 
endonuclease)-like (OsGEN-L), have been isolated from 
rice as new RAD2 family members composing a new 
class in the RAD2 family (SEND-1/class IV)14,41.  These 
findings lead us to hypothesize that higher plants not only 
have DNA repair pathways similar to those found in ani-
mals or yeasts, but also plant-specific DNA repair path-
ways in which new RAD2 members are involved.  To 
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date, however, little is known about plant RAD2 family 
members.  In this review, we focus on research regarding 
the molecular basis of the RAD2 nuclease family and its 
function in higher plants.

XPG/class I

 Xeroderma pigmentosum G (XPG) has two nuclease 
activities: a magnesium-dependent single-strand DNA 
endonuclease activity17,45  and a structure-specific endo-
nuclease activity that cleaves at the 3’-side of the damage-
containing bubble structure of DNA formed during nu-
cleotide excision repair (NER)10,12,44 (Fig. 2(a)).  XPG also 

functions in transcription-coupled repair (TCR), an alter-
native NER pathway used to repair an oxidative-dam-
aged base (e.g. 8-oxoguanine (8-oxoG) and thymine gly-
col (Tg; 5,6-dihydroxy-5,6-dihydrothymine)). In TCR, 
XPG enhances the binding activity of mammalian NTH1 
(E.coli nth endonuclease III-like 1) proteins, a DNA gly-
cosylase possessing both DNA glycosylase and AP lyase 
activities against 5,6-dihydroxyuracil (DHU)3,21 and 
Tg6,32.  The yeast RAD2 protein (ScRAD2; Saccharomy-
ces cerevisiae RAD2) possesses similar nuclease activities; 
5’–3’ exonuclease activity16, single-strand DNA endonu-
clease activity16, and a structure-specific endonuclease ac-
tivity18.  An abnormal developmental phenotype and hy-
persensitivity to DNA damaging agent are observed in 
XPG deficient animals.  XPG knockout mice show hy-
persensitivity to UV, predisposition for skin cancer with 
extremely high frequency, and abnormal development 
such as small body size and short life span19.  The Droso-
phila mus201 mutant expressing a truncated DmXPG is 
hypersensitive to UV, X-rays, nitrogen mustard, and DNA 
alkylating agents such as methylmethanesulfonate 
(MMS)9,48,57.  In plants, Arabidopsis UVH3 (AtUVH3) 
was identified from a series of analyses of Arabidopsis 
radiation-sensitive mutants24 and was confirmed as a 
plant counterpart of the XPG gene39.  The uvh3/uvh3 ho-
mozygous mutant displays increased sensitivity to both 
UV-C and oxidative damage caused by hydrogen perox-
ide.  In addition, the uvh3/uvh3 mutant shows an early se-
nescence phenotype. These results indicate that AtUVH3 
is employed both during DNA repair and the normal de-
velopmental process in plants.

FEN-1/class II

 Flap endonuclease-1 (FEN-1) is a structure-specific 
nuclease possessing two nuclease activities: An endonu-
clease activity that removes 5’-flap structures of DNA 
and a 5’ to 3’ double-stranded DNA exonuclease activity.  
FEN-1 plays a critical role in the removal of flap struc-
tures containing damaged DNA in long-patch base exci-
sion repair (BER) as well as in the removal of RNA prim-
ers in Okazaki-fragment maturation during DNA 
replication1,20,38,42 (Fig. 2 (b)).  Several papers on FEN-1 
knockout animals have been published to date.  FEN-1 
knockout chicken cells are sensitive to MMS oxidative 
DNA damage40.  FEN-1 knockout mice abort during early 
embryogenesis33.  Mice harboring a mutation in FEN-1 
are predisposed to autoimmunity, chronic inflammation 
and cancers60.  A yeast deficient strain for Saccharomy-
ces cerevisiae RAD27, the yeast homologue of FEN-1 
gene, shows a temperature sensitive phenotype due to an 
accumulation of non-removed RNA primers in the lag-

Fig. 1. Comparison of eukaryotic RAD2 family proteins 
 The XPG domains (XPG-N domain and XPG-I do-

main) are indicated with hatching or stippling, re-
spectively.  Accession numbers for each protein se-
quence; HsXPG (CAA49598), DmXPG (AAD50779), 
ScRAD2 (CAA97287), SpRAD13 (CAA19011), 
ScRAD27 (P26793), SpRAD2 (CAB36991), HEX1 
(AAC32259), ScEXO1 (NP_014676), SpEXO1 
(NP_596050), HsGEN (NP_872431). DmGEN 
(BAC57447).  Accession numbers for plant RAD2 
family proteins are summarized in Table 1.
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ging DNA strand during replication30, hypersensitivity to 
DNA damaging agents, and a high rate of spontaneous 
mutations25,46,52.  FEN-1 is also suggested to be involved 
in homologous recombination (HR), an important DNA 
double-strand break repair pathway26,56.  There have been 
several reports about plant FEN-1 homologues.  A plant 

FEN-1 protein purified from the inflorescence of cauli-
flower (Brassica oleracea var. botrytis) possesses both 
5’-flap endonuclease and 5’ to 3’ exonuclease activities27.  
Two rice FEN-1 homologue genes (OsFEN-1a and Os-
FEN-1b) have been identified and their functional differ-
ences investigated by way of a functional complementa-

Fig. 2. Summary of cleavage sites of each RAD2 family protein 
 The arrows indicate the site of cleavage.  (a): A cleavage of the bubble structure of DNA containing thymine dimer by the 

XPG/class I protein.  (b): A cleavage of the 5’-flap structure of DNA by the FEN-1/class II protein. (c): A cleavage of the 
double strand DNA by the EXO1/class III protein.

Table 1.  Summary of plant RAD2 family members

Name Class Plant Chr. Nucleotide
Accession No.

Protein
Accession No.

Publication

OsUVH3 I Rice 3 – – Found in the rice genome sequence
AtUVH3 I Arabidopsis 3 AF312711 At3g28030 [39]
OsFEN-1a II Rice 5 AB021666 BAA36171 [27]
OsFEN-1b II Rice 3 AB080084 BAC98428 [29]
AtFEN-1 II Arabidopsis 5 NM_180546 At5g26680 Predicted from the Arabidopsis genome sequence 
OsEXO1 III Rice 1 AB179769 BAD60834 [15]
AtEXO1a III Arabidopsis 1 AY113038 At1g18090 Predicted from the Arabidopsis genome sequence 
AtEXO1b III Arabidopsis 1 AY140055 At1g29630 Predicted from the Arabidopsis genome sequence 
OsSEND-1 IV Rice 8 AB074260 BAB72003 [14]
AtSEND-1 IV Arabidopsis 3 NM_114749 At3g48900 Predicted from the Arabidopsis genome sequence 
OsGEN-L IV Rice 9 AB158320 BAD93194 [29]
AtGEN IV Arabidopsis 1 NM_100069 At1g01880 Predicted from the Arabidopsis genome sequence 
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tion assay using a yeast ∆rad27 null mutant28,30.  The 
OsFEN-1a recombinant protein possesses both 5’-flap 
endonuclease and 5’ to 3’ exonuclease activities; this nu-
clease activity is enhanced by rice proliferating cell nu-
clear antigen (OsPCNA) protein28,29.  Localization of Os-
FEN-1a and OsPCNA proteins during mitosis and meiosis 
has been analyzed using their specific antibodies29. They 
colocalize in the nuclei of cells undergoing interphase 
(G1, S and G2 phase) and telophase at M phase.  On the 
other hand, they localize close to the chromatin at the 
pachytene stage during meiotic prophase, suggesting 
their involvement in small amount of DNA synthesis and 
DNA recombination during meiosis.  

EXO1/class III

 Exonuclease-1 (EXO1) was originally purified from 
Schizosaccharomyces pombe as an exonuclease whose 
activity is increased during meiosis50.  EXO1 homologue 
genes are highly conserved in eukaryotes13,35,51,59.  The 
RAD2 domain of the human EXO1 protein possesses 
both 5’ to 3’ exonuclease and flap-structure specific en-
donuclease activities34,36(Fig. 2 (c)). EXO1 is suggested to 
function in DNA mismatch repair (MMR) since the inter-
action between the EXO1 protein and other DNA mis-
match repair proteins (MSH2, MLH1, MSH3 and MSH2) 
is confirmed2,43,47,51. Besides interaction with MMR pro-
teins, human EXO1 protein interacts with Werner syn-
drome protein (WRN)49 and RECQ111 helicases belong-
ing to RECQ family of helicases involved in DNA repair.  
EXO1 knockout mutants have been generated in mice and 
yeasts.  EXO1-/- deficient mice cells show a significant 
high mutation rate due to the reduction of MMR activi-
ty58.  Mice EXO1 mutant exhibits reduced survivability, 
sterility due to loss of chiasmata during meiosis, de-
creased class-switch recombination of immunoglobulin 
genes and changes in the characteristics of somatic hy-
permutation4,57.  Yeast EXO1 deletion mutants, on the oth-
er hand, display weak sensitivity to MMS, reduction in 
the processing of DNA double strand breaks during mei-
osis, and an increase in the frequency of meiotic crossing 
over in meiosis54.  It has also been suggested that EXO1 
may be involved in meiotic and mitotic recombination13, 
DSB processing37,53, Okazaki fragment processing52, and 
maintenance of telomeres and replication forks5,61.  Re-
cently, a plant homologue of EXO1 has been isolated from 
rice and termed OsEXO115.  OsEXO1 interacts with other 
rice DNA repair proteins: DNA polymerase λ (OsPolλ), 
replication protein A 70kDa subunit b (OsRPA70b), and 
replication protein A 32 kDa subunit (OsRPA32).  These 
four DNA repair genes (OsEXO1, OsPolλ, OsRPA70b, 
and OsRPA32) are highly expressed in meristems where 

DNA replication is active and not in non-proliferating tis-
sues such as mature leaves, implying their collaboration 
in DNA repair and replication15,31,55.

SEND-1/class IV

 Recently, two novel nucleases, OsSEND-1 and Os-
GEN-L, have been identified from rice14,41 (Fig. 1 and Ta-
ble 1).  OsSEND-1 was found as a gene with high homol-
ogy to other RAD2 family genes by searching rice 
expressed sequence tag (EST) clones14, while OsGEN-L 
was found through analysis of Ac-tagged rice lines41.  
They share the highest amino acid sequence homology 
each other in the XPG domains among rice RAD2 family 
members, and phylogenetic analysis using the XPG-I do-
mains of each RAD2 family member protein shows that 
they belong to class IV of the RAD2 nuclease family41.  A 
counterpart of OsSEND-1 is not found in any eukaryotes 
outside of the plant kingdom, suggesting that OsSEND-1 
is a plant-specific RAD2 family member.  Contrary to 
OsSEND-1, OsGEN-L homologue genes are found in 
plants and animals22,23.  Biochemical analysis of their re-
combinant proteins demonstrates that they possess nucle-
ase activities (OsSEND-1; single-strand DNA endonu-
clease activity14, OsGEN-L; flap endonuclease activity41); 
however their substrate specificity remains unidentified.  
OsSEND-1 and OsGEN-L show different expression pat-
terns in various rice tissues.  OsSEND-1 is strongly ex-
pressed in meristems and young leaves, weakly in pani-
cles, and not in mature leaves14.  OsGEN-L is constitutively 
expressed in roots, leaves and flower buds41.  During an-
ther development, OsGEN-L expression is up-regulated 
in the post-meiotic stages41.  RNA interference (RNAi) 
technology was performed to examine the function of 
OsSEND-1 and OsGEN-L.  OsSEND-1 is suggested to 
play an important role in DNA repair pathways. DNA 
damaging treatments such as UV-B irradiation, MMS 
and hydrogen peroxide induce OsSEND-1 expression14.  
The rice OsSEND-1-RNAi transgenic plants display 
shorter root length compared to that of wild type when 
they are cultivated on the solid MS medium containing 
MMS (ms in preparation).  On the other hand, repression 
of OsGEN-L expression by RNAi causes male sterility 
due to abnormal development of the microspore at the 
early uninucleate stage41.  Taken together, these findings 
suggest that these RAD2 members play important roles 
in DNA repair and other cellular events such as mi-
crospore development in rice. 

Conclusion

 Recent advances in plant genome sequencing have 
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revealed that plants have DNA repair genes functionally 
identical to animals as well as plant-specific DNA repair 
genes22.  Understanding the functions of these DNA re-
pair genes helps us answer the questions regarding when, 
where and how plants repair their damaged-DNA and 
whether plants have evolved a plant-specific DNA repair 
pathway.  In this review, the importance of members of 
the RAD2 nuclease family is emphasized because they 
play critical roles not only in incision of damaged-DNA 
among various DNA repair pathways, but also in devel-
opmental processes.  It has been suggested that three 
plant RAD2 classes (class I, class III and class IV) col-
laborate in the UV-damaged DNA repair pathway.  Plants 
utilize two different pathways, “photorepair” and “dark 
repair” (also termed NER), for repair of UV-damaged 
DNA8,22.  Comparison of gene expressions of plant DNA 
repair genes in nonproliferating organs versus proliferat-
ing organs by microarray analysis indicates that photore-
pair is the main UV-damaged DNA repair pathway in 
nonproliferating organs while NER is the primary UV-
damaged DNA repair pathway in proliferating organs31.  
The XPG protein functions in NER as described in the 
XPG/class I section (see above and Fig. 2(a)).  On the oth-
er hand, expression of both OsEXO1 and OsSEND-1 
genes is induced by UV irradiation14,15.  Neither of which 
complements ScRAD2 functions (unpublished data), indi-
cating a role for these genes in an alternative dark repair 
pathway (Fig. 3).  Recently, it has been reported that 
transgenic rice plants overexpressing OsSEND-1 and 
UV-damaged DNA binding protein 2 (UV-DDB2) had an 
enhanced tolerance for UV-B irradiation22.  This finding 
suggests that an overexpression of DNA repair genes 
could give plants increased resistance to genotoxic stress-
es caused by DNA damage, which increases crop yields 
under a harsh environment.  However, a detailed picture 
of the role of RAD2 family members in plant repair and 
developmental processes still remain unclear.  A deeper 
understanding of this important family and its functional 
partners could make a great contribution to the advance-
ment of agricultural technology. 
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