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Abstract
An algorithm for real-time prediction of river stage dynamics using a Takagi-Sugeno fuzzy system is
presented in this paper.  The system is trained incrementally each time step and is used to predict one-
step and multi-step ahead of river stages.  The number of input variables that were considered in the
analysis was determined using two statistical methods, i.e. autocorrelation and partial autocorrelation
between the variables.  Effectiveness of the identification technique was demonstrated by a simulation
study on the river stage of the Cilalawi River in Indonesia.  The numerical results of the Takagi-Sugeno
fuzzy modeling method were compared with the results of a conventional linear regression model.
Through inspection of the results it was found that the Takagi-Sugeno fuzzy approach was more accu-
rate in predicting one-step and multi-step ahead of river stage dynamics than the conventional multiple
linear regression approach.  The Takagi-Sugeno fuzzy system was able to make a proper fuzzy rule
from the training data set, which might be considered as one of the main drawbacks of the Takagi-Sug-
eno fuzzy system.  Yet, more substantial improvement certainly should be pursued through further
research to improve the forecast results at greater lead times.

Discipline: Agricultural engineering
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Introduction 

The design, planning, and operation of river systems
depend largely on relevant information derived from the
forecasting and estimation of extreme events.  Reliable
flood forecasts are particularly important for improving
public safety and mitigating economic damages caused
by inundations.  During the past few decades, a great deal
of research has been devoted to the modeling and fore-
casting of river flow dynamics.  Such efforts have led to
the formulation of a wide variety of approaches and the
development of a large number of models.  The existing
models for river flow forecasting may broadly be
grouped under two main categories namely, physically
based models and black-box models.  Due to the realistic
representation of watershed topography and ability to
capture the surface and ground water interaction, the
more reasonable method to predict a flood is the distrib-
uted and physically based model.  However, extensive
topographic, meteorological, and hydrologic data are

required to describe the runoff process and time is also
required to calibrate conceptual models (especially dis-
tributed models), which are important factors to be con-
sidered in their practical applications.  Thus, the
implementation and calibration of conceptual models can
typically present various difficulties4,6.  In this context
data-driven models, which can discover relationships
from input-output data without having the complete
physical understanding of the system, may be prefera-
ble.  While such models do not provide any information
on the physics of the hydrologic processes, they are in
particular, very useful for river flood forecasting where
the main concern is accurate predictions of a flood at spe-
cific watershed locations7.

The analysis and design of the Takagi-Sugeno fuzzy
system have been studied for decades since this system
was introduced11.  The Takagi-Sugeno model can be
implemented based on a neural network-driven fuzzy rea-
soning system.  It is also well known that the Takagi-Sug-
eno fuzzy system is very suitable for applications in
hydrological studies.  There are two reasons for using the
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Takagi-Sugeno fuzzy system for hydrological studies: (1)
the simplicity of the inference procedure, and (2) the pos-
sibility to incorporate a general condition on the physical
structure of the system into the fuzzy system.  Therefore,
during recent decades, a number of simulation studies
can be noticed1,3,4,8,12,13, which are dedicated to the
Takagi-Sugeno fuzzy system.  However, detailed studies
that compare the Takagi-Sugeno fuzzy model with the
traditional model for river stage estimation under limited
data, especially in developing and under-developed coun-
tries, are less available.  This study addresses this need
with a detailed comparison of two models in the context
of river stage estimation.  A Takagi-Sugeno fuzzy model
and linear regression model were trained incrementally
using the same data sets and were used to predict one-
step and multi-step ahead of river stage dynamics.

Takagi-Sugeno fuzzy system

The fuzzy inference system proposed by Takagi and
Sugeno, known as the TS model in fuzzy system litera-
ture provides a powerful tool for modeling complex non-
linear systems.  The basic idea of the Takagi-Sugeno
model is the fact that an arbitrary complex system is a
combination of mutually inter-linked subsystems5.  Sche-
matic representation of a Takagi-Sugeno fuzzy system is
shown in Fig. 1. 

Given properly defined input variables and member-
ship functions, the Takagi-Sugeno fuzzy rules for a sys-
tem considered herein are in the form of

(1)

where  denotes the ith fuzzy rule, 
 are the input (antecedent) variables, yi

are the rule output variables, Ai1, …, Aim are fuzzy sets
defined in the antecedent space, and ai1, …, aim, ai0 are the

model consequent parameters that have to be identified in
a given data set.  For a given input crisp vector

, the inferred global output of the Tak-
agi-Sugeno model is computed by taking the weighted
average of the individual rules’ contributions

(2)

where  is the degree of fulfillment of the ith fuzzy
rule, defined by

  i = 1, 2,…, c (3)

for the minimum and product conjunction operators,
respectively.  is the membership func-
tion of the antecedent fuzzy set . 

Study watershed and modeling 

1. The available data 
To illustrate the practical application of the Takagi-

Sugeno fuzzy system, the Cilalawi River Basin, located
in the West Java Province of Indonesia was used as a
research area.  The climate of the catchment is generally
dry, except during the monsoon months from December
to April.  The annual precipitation is 3,000 mm in the
mountainous area and 2,500 mm in the lowland.  Nor-
mally, around 70% of the precipitation falls during the
rainy season whereas 30% falls during the dry season.
The location of the study area is shown in Fig. 2.  Water
resources in the study area are operated and managed by
Perum Jasa Tirta II, a public corporation formed in 1967.
There are three large multipurpose reservoirs from
upstream to downstream (Saguling, Cirata, and Jatilu-
hur) that regulate the water flow and are the main source
of water supply in Jakarta City and West Java Province
through the Tarum Canal.  The upper part of the Citarum
River has many tributaries, and one of the main tributar-
ies is the Cilalawi River.  The total drainage area of the
Cilalawi River Basin is approximately 60.17 km2.  The
river stages data of the Cilalawi River are available for
the hydrological year of 2002 with a sampling interval of
6-min. 

In this study, the performance of the Takagi-Sugeno
fuzzy system was examined on hourly intervals.  To
achieve this, the 6-min data series was converted into
average hourly data before proceeding onto the Takagi-
Sugeno fuzzy inference network.  The data were divided
into three independent subsets: 4,000 data sets for a train-
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Fig. 1.  Schematic representation of a Takagi-Sugeno model
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ing subset; 2,500 data sets for the verification; and 2,000
data sets for testing the model.

2. Selection of antecedent river stage inputs to the 
model 

One of the most important steps in the model devel-
opment process is the determination of significant input
variables.  The parameters that need to be selected in the
input variable are the number of river stage values at dif-
ferent intervals (of time) that have a significant influence
on the predicted river stage.  In this study, the number of
parameters corresponding to different antecedents was
determined by two statistical methods, i.e. autocorrela-
tion function (ACF) and partial autocorrelation function
(PACF) between the variables.  The ACF and PACF are
generally used to gather information about the autore-
gressive process of the data series10.  The number of ante-
cedent river stages that should be included in the input
variables is usually determined by placing a 95% confi-
dence interval on the autocorrelation and partial autocor-
relation plots. 

The ACF and the corresponding 95% confidence
intervals of the river stage series for lag 0 to lag 20 are
presented in Fig. 3.  Similarly, the PACF and the corre-
sponding 95% confidence intervals of the river stage
series are presented in Fig. 4.  The ACF of Fig. 3 showed

a significant correlation at 95% confidence level interval
up to 14-h of river stage lag.  In addition, the PACF
showed significant correlation up to lag of 3 (3-h).
Results of correlogram plots of the data series shown in
Figs. 3 and 4 imply that incorporating the river stage val-
ues up to lag 3-h can best represent the process in the
catchment area under examination.  Therefore, in this
study, three antecedent values of river stage denoted by
RS(t-2), RS(t-1) and RS(t), respectively, were selected as
inputs for modeling the river stage. 

3. Identification of a Takagi-Sugeno fuzzy system
A Takagi-Sugeno fuzzy model can be identified

through a two step procedure: (1) identification of the
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Fig. 3.  Autocorrelation plot of the river stage series

Fig. 4.  Partial autocorrelation plot of the river stage series

Fig. 2.  Map of the river basin under consideration

: Autocorrelation coefficient,
: 95% Confidence band,
: 95% Confidence band.

: Partial autocorrelation coefficient, 
: 95% Confidence band, 
: 95% Confidence band.
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antecedent membership functions of the fuzzy sets in the
premise of each rule; and (2) identification of the parame-
ters in the consequence of each rule.  The antecedent
membership functions of a fuzzy rule define local region,
while the consequent describes the behavior within the
region via various constituents.

Computation of the antecedent membership func-
tions of the fuzzy sets was done using a grid partitioning
method, where each antecedent variable is independently
partitioned.  The derivation of membership functions
depends on the expert’s a priori knowledge about the
model under consideration.  However, no specific knowl-
edge is available for many systems and in such cases the
domain of the antecedent variables can simply be parti-
tioned into a number of equally spaced and equally
shaped membership functions2.  If the measured input/
output data of a process are available, the shape and loca-
tion of the membership functions can be created. 

In addition to the consequent parameters estima-
tion, a global least squares method is used.  Consider

 is a set of n input-output data
pairs of a system.  Let X denote the matrix whose ith row
is the input vectors  and let Y denote the vector column
having  as its ith component.  Let  denote the n × n
real matrix having the normalized degree of fulfillment

 as its jth diagonal element, where

(4)

Let  denote the vector of conse-
quent parameters of the i th rule.  In order to estimate the
off-set term , a unitary column I is appended to the
matrix X, to produce the extended matrix .
Then, the parameter vector  is calculated as the least-
square solution

(5)

For further details on alteration from the equation param-
eter optimization into the least squares estimation on
these techniques, we refer to Babuška2.

4. Examples of river stage estimation 
In order to demonstrate the effectiveness of the fuzzy

method, a data set from the Cilalawi River was used.
Based on ACF and PACF analysis, it was found that
incorporating the river stage values up to lag 3-h can best
represent the process in the catchment area under exami-
nation.  Therefore, the 3 antecedent values of river stage
(RS) denoted by RS(t-2), RS(t-1), and RS(t), respectively,
were selected as inputs for modeling river stage.  We then
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partition all inputs into two domains (i.e. low level and
high level) and a trapezoidal type membership function
was assigned for all fuzzy sets.  The membership func-
tions of river stage are shown in Fig. 5.  The number of
rules defined in this model is a product of the number of
membership functions in each input.  Therefore, the
model contains 8 (2 × 2 × 2) rules and the descriptions of
each rule are explicitly depicted in Table 1.

To demonstrate how to compute the output ( ) for a
given data, a sample inference is shown in Table 2 for
three given antecedent RS values of 234.9, 232.6, and
235.1 cm.  The inputs intersect the membership functions

at some membership levels, and fuzzy subsets of low and
high for RS(t-2), RS(t-1), and RS(t) are triggered.  In the
antecedent part of Table 2, membership values for each
fuzzy subset can be seen.  Then the membership values
from each rule are propagated to the consequents.  For
the first rule, each input yielded the fuzzy membership
values of 0.51, 0.53, and 0.50, respectively.  The fuzzy
prod operator then simply calculates the value of the
degree of fulfillment as 0.135 and fuzzy operation for this
rule is complete.  This operation is conducted for each
rule and the inferred global output of the Takagi-Sugeno
fuzzy system is calculated by the fuzzy mean weighted

(6)

ŷ

ŷ
0.135 228.32× 0.132 350.23× 0.117 1,111.5 0.115 1,512.7×–×+ +

 0.127+ 245.49 0.125 500.47 0.110 282.18 0.108 1,239.1 ×+×–×+×
0.135 0.132 0.117 0.115 0.127 0.125 0.110 0.108+ + + + + + +

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 237.29 cm= =

Table 1.  Fuzzy scaling rules for the model

RS(t–2) RS(t–1) RS(t) yi

Rule 1
Rule 2
Rule 3
Rule 4
Rule 5
Rule 6
Rule 7
Rule 8

Low
Low
Low
Low
High
High
High
High

Low
Low
High
High
Low
Low
High
High

Low
High
Low
High
Low
High
Low
High

y1= 0.13 × RS(t–2) – 0.66 × RS(t–1) + 1.47 × RS(t) + 5.7
y2= 0.98 × RS(t–2) – 0.24 × RS(t–1) + 2.97 × RS(t) – 522.4
y3= 0.72 × RS(t–2) + 4.26 × RS(t–1) + 8.93 × RS(t) – 2,148
y4= –7.47 × RS(t–2) + 5.45 × RS(t–1) + 4.14 × RS(t) – 1,999
y5= –0.53 × RS(t–2) + 0.64 × RS(t–1) + 1.18 × RS(t) – 56.3
y6= –1.09 × RS(t–2) – 3.27 × RS(t–1) + 14.59 × RS(t) – 1,913
y7= 1.23 × RS(t–2) – 5.41 × RS(t–1) – 4.38 × RS(t) + 1,717
y8= –1.37 × RS(t–2) – 4.47 × RS(t–1) + 0.36 × RS(t) + 2,516

Table 2.  A sample of the Takagi-Sugeno inference system

( )xiτ( )11
x

iAμ ( )22
x

iAμ ( )33
xiAμ

RS(t–2)=234.9

Rule 1

Rule 2

Rule 3

Rule 4

Rule 5

Rule 6

Rule 7

Rule 8

0.51×0.53×0.50 = 0.135

0.51×0.53×0.49 = 0.132

0.51× 0.46×0.50 = 0.117

0.51×0.46×0.49 = 0.115

0.48× 0.53×0.50 = 0.127

0.48×0.53×0.49 = 0.125

0.48× 0.46×0.50 = 0.110

0.48×0.46×0.49 = 0.108

228.3

350.2

1,111.5

–1,512.7

245.4

500.4

–282.18

1,239.
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0.51

0.51
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0.48
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RS(t–1)=232.6 RS(t)=235.1 ŷ = 237.29
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5. Multiple linear regression model development
Multiple linear regression analysis is a method used

to model the linear relationship between a dependent
variable and one or more independent variables.  The
objective of the multiple linear regression analysis is to
determine the values of the parameters of the regression
equation and then to quantify the goodness of fit in
respect of the dependent variable.  For further details on
this technique, we refer to Snedecor and Cochran9.  The
derived linear regression model for river stage estimation
is as follows:

(7)

where  is the predicted variable, 1.360 is the intercept,
(7.900, 0.149, and –0.598) are the regression coefficients,
and  are independent variables referring to the
river stage values.  Multiple linear regression analysis
was developed and tested with the same data sets used for
the Takagi-Sugeno fuzzy model, and the developed
regression was referred to as a trained model.  Then the
predictive ability of the model was validated and tested
with the same data sets used to test the Takagi-Sugeno
fuzzy model, thus making the model results comparable,
and referred to as validated and tested models.  The vali-
dated and tested models are indicative of the model capa-
bility to simulate the river stage dynamics since the data
are independent of the data used for model development.

6. Model performance
The performances of the models developed in this

study were assessed using various standard statistical per-

formance evaluation criteria.  The statistical measures
considered were coefficient of correlation (CORR), mean
absolute percentage error (MAPE), and root mean square
error (RMSE).  Statistical performance measures are
listed in Table 3.

Results and discussion

The available data set was divided into three sets
called training, verification, and testing data sets.  A grid
partition method was used to create the initial member-
ship function matrix using trapezoidal functions for each
of the input variables.  We selected three membership
functions for the river stage at t-2, t-1, and t, respectively,
with the number of membership functions for each input
fixed at 2.  As the parameters in the premise membership
functions are adjusted, the grid evolves.  After computing
the gradient vector of the parameters of the membership
functions, the model employed an optimization technique
to adjust the parameters to reduce some error measures
(usually defined by the sum of the squared difference
between actual and desired outputs).  Since this model
consists of two membership functions for each input, the
river stage estimation can be performed using 8 rules. 

To ensure the accuracy of the developed river stage
dynamics based on Takagi-Sugeno fuzzy and multiple
regression models and to survey the spread of the values,
the observed and predicted results using the developed
models are compared in Fig. 6.  The line of best fit using
the plotted points was calculated using the regression.  In
each of the scatter diagrams, the closer the points fall on a
straight line, the more accurate the tested model was.  In

ŷ 1.360 7.900x1 0.149x2 0.598x3–+ +=

ŷ

x1 x3–

Table 3.  List of the performance measures

Statistical parameter Expression

Coefficient of correlation (CORR)

Mean absolute percentage error (MAPE)

Root mean square error (RMSE)

 and  are the observed and predicted stages at time t respectively,  and  are the mean of the observed and 
predicted river stages, and n is the number of data points.
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addition, the values of the performance indices of the
Takagi-Sugeno and multiple linear regression models
during the training, verification, and testing stages are
shown in Table 4.  As displayed in Fig. 6 and Table 4, it is
obvious that although the results obtained by Takagi-Sug-
eno and multiple linear regression models were rela-
tively successful, the Takagi-Sugeno fuzzy model gives
the best fit to the observed results and produced better
prediction of river stage than the developed empirical
equations.

A more detailed comparison shows that in the train-
ing phase, the Takagi-Sugeno fuzzy model improves the
multiple linear regression forecast by reductions of about
8.11 and 6.37% in MAPE and RMSE values, respec-
tively.  MAPE measures the absolute error as a percent-
age of the forecast, and RMSE evaluates the residual
between observed and predicted river stage.  In addition,
the improvement of the forecast result regarding the cor-
relation coefficient (CORR) value during the validation
phase was approximately 1.06%.  CORR evaluates the

60 80 100 120 140 160 180 200
60

80

100

120

140

160

180

200

Testing

a. Takagi-Sugeno Fuzzy model b. Multiple linear regression

Observed (cm)
60 80 100 120 140 160 180 200

60

80

100

120

140

160

180

200

Testing

Observed (cm)

Pr
ed

ic
te

d 
(c

m
)

Pr
ed

ic
te

d 
(c

m
)

50 100 150 200 250 300 350 400
50

100

150

200

250

300

350

400

Training

Observed (cm)
50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

Training

Observed (cm)

Pr
ed

ic
te

d 
(c

m
)

Pr
ed

ic
te

d 
(c

m
)

60 80 100 120 140 160 180
60

80

100

120

140

160

180

Verification

Observed (cm)
60 80 100 120 140 160 180

60

80

100

120

140

160

180

Verification

Observed (cm)

Pr
ed

ic
te

d 
(c

m
)

Pr
ed

ic
te

d 
(c

m
)

Fig. 6.  Scatter plots of observed and predicted river stage during the training, verification, and testing periods
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linear correlation between the observed and predicted
river stage.  In the verification phase, the Takagi-Sugeno
fuzzy model improves the multiple linear regression fore-
cast by reductions of about 37.67 and 12.11% in MAPE
and RMSE values, respectively.  In addition, the improve-
ment of the forecast result regarding the CORR value dur-
ing the verification phase was approximately 1.04%. 

As the next task, a multi-step ahead testing is per-
formed.  Although all models have been trained and veri-
fied, it is desirable to investigate their performance in
multi-step ahead prediction.  In this particular case, the
predicted outputs at time t+i were recursively used to pre-
dict the river stage at t+i+1, for any value of step i.  At
1-h (t+1) lead-time, it was obvious that Takagi-Sugeno
fuzzy and multiple linear regression models do not pro-
vide estimations deviating significantly from the actual
values (Table 4).  The Takagi-Sugeno fuzzy model
improves the multiple linear regression forecast result by
reductions of about 33.53 and 47.21% in MAPE and
RMSE values, respectively.  In addition, the improve-
ment of the forecast result regarding the CORR value was
2.08%.  In the forecast of 2-h (t+2) lead-time, the Takagi-
Sugeno fuzzy model was shown to be more efficient
where the model enforces the predictions to follow more
precisely the observed reality.  This is supported by the
reasonably lower values of performance indices com-
pared to the traditional multiple linear regression.  The
Takagi-Sugeno fuzzy model improves the multiple linear
regression forecast result by reductions of about 32.25
and 25.41% in MAPE and RMSE values, respectively, at
2-h lead-time.  In addition, the improvement of the fore-
cast result regarding the CORR value was 1.05%.
Finally, at 3-h (t+3) lead-time, the forecast results of the
traditional linear regression approach start to deviate
from the actual data, and it was clearly less effective than
the Takagi-Sugeno fuzzy model.  At 3-h lead-time, the
Takagi-Sugeno fuzzy system still shows good perfor-
mance where the CORR, MAPE, and RMSE results were
0.95, 4.71, and 4.50, respectively, which were better than
those obtained by the multiple linear regression approach

(0.94, 5.70, and 6.64, respectively).  The Takagi-Sugeno
fuzzy model improves the multiple linear regression fore-
cast results by reductions of about 17.37 and 32.23% in
MAPE and RMSE values, respectively.  In addition, the
improvement of the forecast result regarding the CORR
value was 1.06%.  The main advantage of Takagi-Sugeno
fuzzy models over linear regression models is that they
can inherently detect and incorporate non-linear relation-
ships between input variables.  Another purported advan-
tage of Takagi-Sugeno fuzzy models is the ability to
recognize the relationship between input and output data
sets without specifying an a priori relationship. 

To get a brief picture of the general performance of
the constructed models, partly produced hydrograph plots
of the observed river stage and the one-step ahead, two-
step ahead and three-step ahead river stage predictions in
advance are shown in Fig. 7.  Overall results of the fore-
casts indicate that as the time step increases further on,
both models tended to provide shifted (late) predictions.
Fig. 7 clearly shows that although the river stage hydro-
graphs of the Takagi-Sugeno fuzzy and multiple linear
regression models do not deviate significantly at 1-h lead
time, at 2-h and 3-h lead times, the multiple linear regres-
sion predictions start to move away from the actual data.
The model appeared to generally over predict the lower
and under predict the higher river hydrographs for this
time period.  This trend also occurred in the Takagi-Sug-
eno fuzzy model; although the magnitude of the error
forecast was relatively lower than those of multiple linear
regression.  There are some reasons why both models
failed to obtain a good result.  Firstly, the worst forecast
particularly at larger lead-times was due to the error accu-
mulations.  The error on predicted river stage RS(t+1) for
hour (t+1) will definitely affect the forecasted river stage
RS(t+2) on the hour (t+2).  Similarly, the error on pre-
dicted river stage RS(t+2) for hour (t+2) will also affect
the forecasted river stage RS(t+3) on the hour (t+3).  In
this way, the error is accumulated as the lead-time
increases and this error accumulation is the obvious rea-
son for an increasing trend in error with increase in lead-

Table 4.  Performance of the Takagi-Sugeno model at different phases

Period Performance

Takagi-Sugeno fuzzy Multiple linear regression

CORR MAPE RMSE CORR MAPE RMSE

Training
Verification
Testing  t+1

t+2
t+3

0.95
0.97
0.98
0.96
0.95

2.15
1.34
1.15
2.56
4.71

7.49
3.12
2.65
4.11
4.50

0.94
0.96
0.96
0.95
0.94

2.34
2.15
1.73
3.78
5.70

8.00
3.55
5.02
5.51
6.64
376 JARQ  40 (4)  2006



Takagi-Sugeno Fuzzy System for the Prediction of River Stage Dynamics
time.  Secondly, there are some missing values in the data
series particularly the data used to train the network
which made the models very sensitive.  This caused the
models not to be able to predict the extreme high and low
values.  Therefore, our next task should be to give rather
more importance to the model’s ability in multi-step-
ahead predictions.  It would also be advisable to replace
the missing values in the data sets in future research.

Conclusions

This paper presents an algorithm for real-time pre-
diction of river stage dynamics using a rule based fuzzy
system.  A Takagi-Sugeno fuzzy system is trained incre-
mentally each time step and is used to predict one-step
and multi-step ahead of river stages.  The number of
input variables that were considered in the analysis was
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Fig. 7. Partly produced hydrograph plots of the testing results of 1-h, 2-h, and 3-h predictions 
in advance by Takagi-Sugeno fuzzy and multiple linear regression models
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determined using two statistical methods, i.e. autocorre-
lation and partial autocorrelation between the variables.
The research was illustrated through a case study of
developing a Takagi-Sugeno fuzzy model for river stage
prediction in the Cilalawi River of Indonesia.  Further, a
conventional linear regression model was developed with
the same data set and compared to the results of the Tak-
agi-Sugeno fuzzy modeling method.  It was shown that
the Takagi-Sugeno fuzzy approach was more accurate in
predicting river stage dynamics than the conventional
multiple linear regression approach.  In predictions up to
3-h ahead, the Takagi-Sugeno fuzzy system still shows
good performance where the CORR, MAPE, and RMSE
results were 0.95, 4.71, and 4.50, respectively, which
were better than those obtained by the multiple linear
regression approach (0.94, 5.70, and 6.64, respectively).
Therefore we conclude that the constructed Takagi-Sug-
eno fuzzy system can efficiently deal with vast and com-
plex input-output patterns, and has a great ability to learn
and build up an adaptive network-based fuzzy system for
prediction, and the prediction results provide a useful
guidance or reference for flood control operations.  Yet,
more substantial improvement certainly should be pur-
sued through further research to improve the forecast
results at greater lead times.
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