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Abstract
The objective of the study is to evaluate the use of integration of spectral and textural features derived
from IKONOS imagery to identify agricultural land cover types in a mountainous case study area in
Pangalengan, West Java, Indonesia.  The study includes image preprocessing, development of an
image quantization method, calculation of textural measures, development of data sets and an accuracy
assessment.  Image preprocessing focuses on image registration and topographic normalization.  Topo-
graphic normalization is conducted to minimize the effect of illumination differences on surface reflec-
tance.  In this study, two image quantization methods, i.e. image segmentation and averaging filtered
were developed.  The image segmentation method classifies the image into several segmentations
based on a determination of the total number of pixels per class, while the averaging filtered method
classifies the image based on the average of the digital number values within a window size.  Four tex-
tural measures, inverse difference moment, contrast, entropy and energy, were calculated based on the
gray level co-occurrence matrix (GLCM).  The results indicate that a combination of spectral and tex-
tural aspects significantly improves the classification accuracy compared with classification with pure
spectral features only.  Image segmentation and averaging filtered methods can reveal more effectively
spatial forms of agricultural land cover types than using a 256 gray-level scale.  The overall accuracy
increased 11.33% when using the integration of spectral and multiple textural features of inverse dif-
ference moment (5×5) and energy (9×9). 
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multitemporal SAR data14, morphological processing12,23,

Introduction

Texture is an important characteristic for the analy-
sis of many types of images such as an image obtained
from aircraft or satellite platforms.  It is the visual effect,
which is produced by spatial distribution of tonal varia-
tions over relatively small areas2.  The concept of texture
can be investigated through its relationship with spectral
data; in fact, textural and spectral information can both be
present in an image or either one can dominate the other. 

Many researches have investigated the extraction of
textural features for mapping urban environments and
land use classification using neural networks1, several fil-
tering methods3,8,18,21,22,26,27, local standard deviation and
autocorrelation10, principal component and filtering13,
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and image segmentation7,14,20.  Their studies show that the
integration of spectral and textural features improve the
classification accuracy.

The objective of this study is to clarify the role of
integration of spectral and textural features derived from
IKONOS imagery for classification of agricultural land
cover types in a mountainous case study area of Panga-
lengan, West Java, Indonesia.  Two image quantization
methods were developed to calculate textural features.
Four textural measures, i.e. inverse difference moment,
contrast, entropy, and energy were applied based on gray
level co-occurrence matrix (GLCM).  The maximum
likelihood classification algorithm was used to classify
land cover types of the study area and finally more than
280 data sets were assessed.
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Study site 

This study was conducted in a part of one of the vil-
lages in Pangalengan sub-district, Margamekar Village,
in the south of Bandung, West Java, Indonesia, roughly
between longitudes 107o 25��107o 40� E and latitudes 7o

5��7o 20� S, measuring approximately 13.45 km2 (Fig. 1).
The climate of the study area is humid tropical with
annual precipitation averaging 1,250 mm every year28.
Generally, the highest rainfall consistently occurs
between December and March, and the lowest rainfall
occurs between July and August.  The topography is gen-
erally classified into 3 classes; flat to mildly undulating
(29%), undulating to hilly (33%), and hilly to mountain-
ous (38%). Elevation varies from 1,365  to 1,550 m
above mean sea level.  The major land cover types are
residential, lake water, fallow land, vegetables, and tea
plantation.  Cabbage, potato and tomato are dominant
vegetable types of the study area, while tea plantation
covers more than 30% of the total study area.

Data

An IKONOS satellite image is the main data used in
the study.  Table 1 shows the specification of the data.
Other data are a digital elevation model (DEM) with grid
size of 50 m collected for preprocessing and other image
analysis. 

Methods

1. Preprocessing data
Image preprocessing focuses on geometric correc-

tion and topographic normalization.  The IKONOS image
was projected onto a Universal Transverse Mercator
(UTM) with WGS 84 datum corresponding to other geo-
graphic data such as administrative boundaries and DEM
data.  Topographic slope may introduce radiometric dis-
tortion of the recorded signal19.  In some locations, the
area of interest might even be in complete shadow, dra-
matically affecting the brightness values of the pixels

Table 1.  IKONOS

Sensor Spectral bands

IKONOS Band-1/Blue: 0.45�0.52 µm
Band-2/Green: 0.52�0.60 µm
Band-3/Red: 0.63�0.69 µm
Band-4/NIR: 0.76�0.90 µm
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involved (i.e. spectral reflectance)11.  Therefore it is
important to reduce or remove topographic effects, espe-
cially in mountainous areas.  In this study, the study area
was assumed to be a lambertian reflectance model, this
means that the surface reflected incident solar energy uni-
formly in all directions, and that variations in reflectance
were due to the amount of incident radiation.  To mini-
mize the effect of illumination differences on the surface
reflectance in mountainous areas, the digital number of
spectral bands was calibrated using a normalized bright-
ness equation4.  This equation needed the information of
sun azimuth and elevation at the time of image acquisi-
tion, DEM and the original image.

2. Spectral reflectance measurement
In this study, characteristics of spectral reflectance

of land cover such as canopies of different vegetables, tea
plantation and fallow land were measured using a porta-
ble photometer type 2703.  The objective of this work is
to select an appropriate spectral band of the IKONOS
image for textural extraction.  The spectral intervals of
the photometer are 25 nm (400 to 675), 50 nm (700 to
750) and 100 nm (750 to 1,050).  Several measurements
were conducted while each measurement was collected
twice and afterwards the average observation was calcu-
lated.  All measurements were carried out in daytime
under clear atmospheric conditions.  Fig. 2 shows the
characteristics of spectral reflectance profiles for tomato,
long chili, tea plantation, fallow land, cabbage, and
potato.  In this case, the coverage condition of fallow land
shows no vegetation cover on its surface. 

According to the spectral reflectance profiles in Fig.
2, tomato, long chili, cabbage, and potato were classified
into a united vegetable class.  The spectral reflectance
values of this class were fairly low ranging from 0 to 10%
in the visible region.  These spectral reflectance profiles
correspond to spectral signatures extracted from the cor-
rected IKONOS image. 

3. Image quantization 
The gray level number is an important factor in the

computation of GLCM.  Therefore, in this study, the

ata specifications

Other specifications

Spatial resolution: 4 m
Sun azimuth: 108.66o

Sun elevation: 56.57o

Overpass time: 10:30 a.m.
Acquired on February  6, 2000
Processing level: Geo product
 d
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(meters in UTM Zone 48) (meters in UTM Zone 48)
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Fig. 1.  Location of the study area, part of Margamekar Village
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60

g

commonly used method of image quantization, stored in
a 256 gray level, and a proposed image quantization
method; image segmentation and averaging filtered, were
applied.  The image segmentation method classifies the
image into several segmentations based on the determina-
tion of total number of pixels per class, while the averag-
ing filtered classifies the image based on the average of
digital number values within a window size.  For exam-
ple, Fig. 3 shows image segmentation and averaging fil-
tered results using the histogram of band 4 of IKONOS.
Fig. 3A describes segmentation of the original 256 gray
level image into 8 classes with class 1 ranging from digi-
tal number 0�39, class 2 from 40�58, class 3 from 59�77,
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A. Histogram of spectral band 4 of IKONOS in a 256 
gray level 

B. Histogram of spectral band 4 of IKONOS after 
being segmented into 8 classes 

C. Histogram of spectral band 4 of IKONOS after being 
averaged using window size of 3 3

Fig. 3. Example of image quantization using band 4 of 
IKONOS image
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class 4 from 78�98, class 5 from 99�119, class 6 from
120�138, class 7 from 139�153, and class 8 from 154�
255.  Fig. 3B and 3C show the result of the segmentation
process and the histogram of the averaging filtered using
window size of 3×3 pixels, respectively. 

One image with a 256 gray level and 5 modified
gray level images; 2 images developed from image seg-
mentation and 3 images developed from averaging fil-
tered with window sizes of 3×3, 5×5, and 7×7, were used
to calculate textural information.

4. GLCM and textural measures
The commonly used method to calculate textural

information is based on GLCM (gray level co-occurrence
matrix).  The definition of GLCMs is as follows9.  Sup-
pose an image to be analyzed is rectangular and has Nx

resolution cells in the horizontal direction and Ny resolu-
tion cells in the vertical direction.  Suppose that the gray
tone appearing in each resolution cell is quantized to Ng

levels. Let Lx = {1, 2, ..., Nx} be the horizontal spatial
domain, Ly = {1, 2, ..., Ny} be the vertical spatial domain,
and G = {1, 2, ..., Ng} be the set of Ng quantized gray
tones.  The set Ly × Lx is the set of resolution cells of the
image ordered by their row-column designations.  The
image I can be represented as a function, which assigns
some gray tones in G to each resolution cell or pair of
coordinates in Ly × Lx; I: Ly × Lx !!!! G.  The texture-con-
text information is specified by the matrix of relative fre-
quencies P(i,j) with two neighboring pixels separated by
a distance d occurring on the image, one with gray level i
and the other with gray level j. 

Four texture measures were applied in this study;
inverse difference moment, contrast, entropy, and
energy2,12,15,17,24,25,27.  Inverse difference moment is alter-
natively called homogeneity.  Inverse difference moment
is calculated using the following equation:

0 625 650 675 700 750 850 950 1,050

th (nm)

files measured by a portable photometer
o
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(1)

Contrast is the difference between the highest and
the lowest values of a continuous set of pixels.  Contrast
is calculated using the following equation:

(2)

Entropy measures the disorder of an image.  When
the image is not texturally uniform, entropy is very large.
Entropy is calculated using the following equation:

(3)

Energy is also called the angular second moment or
uniformity.  Energy is calculated using the following
equation:

(4)

Inverse difference moment
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Fig. 4.  Input images for te
A: a 256 gray level, B: image segmentation in 4 cla
with 3×3 pixels, E: averaging filtered with 5×5 pix
In this study, 12 window sizes of 3×3, 5×5, 7×7, ...
21×21, 23×23, 25×25 pixels were tested.  The interpixel
distance in the co-occurrence matrix calculation was one
and the average of the 4 main interpixel angles was used
for the computations.  The textural features were
obtained by using band 4 of the IKONOS image.  The
reason for choosing band 4 for computing textural fea-
tures was due to the fact that this band had maximum
variability in terms of standard deviation and range of
gray level values compared with the other 3 bands.  In
addition, band 4 covers the near infrared which is useful
for determining vegetation types and vigor, biomass con-
tent, and delineating water bodies16.  These characteris-
tics can be beneficial to classify the land cover types over
the study area.

Results and discussion

Fig. 4 shows a portion of the study area in a 256
gray level (A), segmented into 4 classes (B) and 8 classes
(C), and averaging filtered using window sizes of 3×3,
5×5, and 7×7 (D, E, F), respectively.  Fallow land, which
is indicated by the area with a white border, was classi-
fied into the same segment with the water feature, in the
case of B.  But the performance of the segment class was
different when the whole image segmented into 8 classes
(C), where the fallow land consists of 2 segments, i.e.
segments with gray level values of 0�39 and 40�58.  The
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tural features calculation
ses, C: image segmentation in 8 classes, D: averaging filtered 
s, F: averaging filtered with 7×7 pixels.
x
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gray level value of the whole image was averaged using
window sizes of 3×3, 5×5, and 7×7 pixels as shown in
Fig. 4D, E, and F, respectively.  The figures show that the
performance of the spectral visualization is different from
each other. 

Fig. 5 shows examples of textural features calcu-
lated from a 256 gray level (A, B, C, D) and segmented
image (E, F, G, H) of band 4 of IKONOS.  There were
calculated 288 textural features.  The 355 data sets were
made consisting of one data set developed only using
spectral bands 1, 2, 3, and 4 of the IKONOS image, 288
data sets were developed using a combination of single
textural feature and all bands, and 66 data sets were
developed using a combination of multiple textural fea-

A 

B 

C 

D 

Fig. 5. Textural features derived from a 256 gray 
in 8 classes (E, F, G, H) with window size o

A & E: inverse difference moment, B & 
142
tures and all bands.  All data sets were used to classify
land cover into 5 classes, i.e. water, fallow land, vegeta-
ble field, tea plantation and residential areas using a max-
imum likelihood classification algorithm16.  Accuracy
assessment was conducted to compare the classification
result with the reference data that were assumed to be
true.  In other words, the accuracy assessment determines
the quality of the information derived from remotely
sensed data.   It can be quantitative with the purpose of
identifying and measuring map errors6.  It has been
shown that more than 250 reference pixels are required to
estimate the accuracy of a class within plus or minus 5%5.
In this study, 400 reference pixels were collected to assess
the accuracy of land cover classes over the study area.
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H 

vel image (A, B, C, D) and segmented image 
 3×3
: contrast, C & G: entropy, D & H: energy.
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(meters in UTM Zone 48)
Table 2.  The error matrix of classification result using spectral feature only

Classified as Reference data

Water Fallow Tea Vegetable Residential Total

Water 15 1 1 1 0 18
Fallow 1 67 2 10 10 90
Tea 0 2 55 10 1 68
Vegetable 1 6 3 124 13 147
Residential 2 6 2 9 58 77
Total 19 82 63 154 82 400

The overall accuracy is calculated with (15 + 67 + 55 + 124 + 58) / 400 = 79.75%
Fig. 6.  Classification result only using spectral feature of IKONOS image
143
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Table 3.  The overall accuracy of classification results (%) using single texture feature

No. Texture Image quantization method
window size A 256 gray level Segmentation Averaging filtered

4 classes 8 classes 3×3 5×5 7×7
IDM

1 3×3 86.57 87.43 89.71 90.29 89.43 89.43
2 5×5 81.14 87.43 80.57 88.86 88.57 90.86
3 7×7 78.29 80.86 78.00 86.86 90.57 90.51
4 9×9 77.71 79.14 77.43 86.29 89.14 90.86
5 11×11 79.43 78.00 80.86 79.71 79.50 89.75
6 13×13 81.43 78.28 80.86 79.71 80.50 90.00
7 15×15 81.71 78.57 81.43 79.71 80.75 80.00
8 17×17 84.29 80.86 83.71 83.71 81.71 81.72
9 19×19 86.57 80.86 86.57 83.43 82.57 83.71
10 21×21 88.28 81.71 88.00 84.86 86.00 86.29
11 23×23 88.28 81.43 88.00 86.00 87.71 88.29
12 25×25 88.00 82.00 87.43 88.00 88.00 88.00

CON
13 3×3 82.86 87.14 83.71 82.86 89.71 90.00
14 5×5 79.43 87.14 79.71 83.14 86.86 90.57
15 7×7 80.57 85.71 80.27 87.43 87.14 89.43
16 9×9 80.00 86.00 81.71 86.57 86.57 89.14
17 11×11 82.86 86.00 82.57 87.14 85.75 89.75
18 13×13 83.43 85.71 81.14 87.14 85.75 88.50
19 15×15 83.71 86.00 82.86 86.75 87.50 89.00
20 17×17 85.14 87.43 82.29 87.43 88.29 87.71
21 19×19 85.71 87.14 82.00 88.57 88.00 88.57
22 21×21 85.71 86.29 82.86 88.57 87.14 88.86
23 23×23 85.43 86.86 82.58 88.29 86.29 88.86
24 25×25 85.43 86.86 82.29 87.14 87.43 88.29

ENT
25 3×3 87.71 88.00 88.86 88.57 89.71 88.86
26 5×5 87.43 85.43 88.57 87.43 89.43 88.57
27 7×7 86.57 85.71 87.71 86.86 90.00 88.86
28 9×9 84.28 86.00 86.00 88.00 88.86 87.71
29 11×11 86.00 86.57 86.00 87.25 88.00 90.25
30 13×13 87.43 86.29 86.29 88.75 89.25 90.50
31 15×15 86.86 86.00 84.86 89.75 89.50 90.75
32 17×17 89.43 87.71 87.43 88.29 89.14 90.00
33 19×19 89.43 86.57 87.43 87.14 89.14 90.00
34 21×21 88.00 86.87 87.43 87.43 88.86 88.29
35 23×23 88.00 87.43 87.43 88.00 89.14 87.43
36 25×25 88.00 89.14 86.86 87.71 90.00 88.00

ENE
37 3×3 88.00 87.14 88.57 90.29 89.43 89.14
38 5×5 81.71 86.29 88.00 89.71 88.86 89.14
39 7×7 82.29 84.29 87.14 89.14 88.57 88.86
40 9×9 82.29 86.00 81.14 88.29 89.43 90.29
41 11×11 80.57 86.86 79.43 86.25 89.25 90.00
42 13×13 79.71 86.86 78.57 85.00 89.00 90.00
43 15×15 79.43 87.43 78.29 82.75 88.50 89.25
44 17×17 81.14 88.00 80.86 80.29 82.29 89.14
45 19×19 80.86 86.57 80.86 80.57 81.43 88.29
46 21×21 81.71 86.86 80.57 81.14 80.86 87.71
47 23×23 81.43 86.86 81.14 81.43 81.43 88.00
48 25×25 81.14 86.00 80.29 81.14 81.43 88.00

IDM: inverse difference moment, CON: contrast, ENT: entropy, ENE: energy.
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The overall classification accuracy of pure spectral
bands of IKONOS was 79.75% (Fig. 6).  The error matrix
of this classification is listed in Table 2.  Table 3 shows
the overall classification accuracies using the combina-
tion of spectral and single textural features derived from
IKONOS.  This table indicates that combining the spec-
tral and single textural features gives better accuracy than
using only the spectral images.  Quantization of the
image with averaging filtered windows of 7×7 pixels pro-
vides better overall classification accuracy than the oth-
ers, which ranges from 88�90%.  The use of entropy in
all window sizes and spectral features improves the over-
all classification accuracies more than using spectral fea-
tures only.  The overall classification accuracies with
window sizes larger than 15×15 do not improve signifi-
cantly for contrast (a 256 gray level, segmentation in 8
classes, averaging filtered with window size of 7×7),

Table 4.  The overall accuracy of classification result

    No. Data set Texture

1 Using 2 textures IDM + CON
2 IDM + ENT
3 IDM + ENE
4 CON + ENT
5 CON + ENE
6 ENT + ENE
7 Using 3 textures IDM + CON + E
8 IDM + CON + E
9 IDM + ENT + E
10 CON + ENT + E
11 Using 4 textures IDM + CON + E

IDM: inverse difference moment, CON: contrast, ENT

Table 5.  The overall accuracy of classifica
for image segmentation

    No. Data set Texture

1 Using 2 textures IDM + CON
2 IDM + ENT
3 IDM + ENE
4 CON + ENT
5 CON + ENE
6 ENT + ENE
7 Using 3 textures IDM + CON + E
8 IDM + CON + E
9 IDM + ENT + E
10 CON + ENT + E
11 Using 4 textures IDM + CON + E

IDM: inverse difference moment, CON: contrast, ENT
entropy (segmentation in 8 classes), or energy (segmenta-
tion in 4 and 8 classes).  The residential class, which is
relatively more heterogeneous than the other classes, has
the optimal window size of 3×3 pixels.  The tea planta-
tion class has the optimal window size of 3×3 to 15×15
pixels.

Classification with multiple textural features was
also conducted.  The classification results for selected
textural features showed high overall classification accu-
racy in Table 3.  Table 4 indicates that an increase in the
number of textural features does not contribute to
increasing the classification accuracy.  In the case of
image segmentation for 8 classes, the integrated multiple
textural features of inverse difference moment and energy
provided the highest classification accuracy of 88.75%,
which is not significantly different from using a single
textural feature (Tables 3 and 5).  However, the highest

 using multiple textural features for a 256 gray level

Overall accuracy (%)

83.25
85.75
85.50
83.75
82.00
84.50

NT 83.25
NE 81.50
NE 83.00
NE 81.50
NT + ENE 80.50

 entropy, ENE: energy.

on results using multiple textural features 

Overall accuracy (%)

4 classes 8 classes

84.00 81.75
85.25 86.50
84.25 88.75
84.25 82.50
85.25 81.50
85.75 86.25

T 82.75 80.75
E 83.75 82.25
E 83.75 85.75
E 84.25 80.25
T + ENE 83.50 80.50

entropy, ENE: energy.
s

:
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N
N
N
N
N
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classification accuracy of 91% was achieved when using
the inverse difference moment (5×5) and energy (9×9)
from an averaging filtered image with window size of
7×7 (Table 6).  Table 7 shows the best overall accuracy of
classification results for each image quantization method
using single and multiple textural features.  Fig. 7 is the
overall classification result of 91% using integration of
spectral and multiple textural features (Table 7, No. 3).
This combination improved significantly individual clas-
sification results of fallow land and residential classes
compared with only using spectral features.  Table 8

Table 6. The overall accuracy of classification result

    No. Data set Texture

1 Using 2 textures IDM + CON
2 IDM + ENT
3 IDM + ENE
4 CON + ENT
5 CON + ENE
6 ENT + ENE
7 Using 3 textures IDM + CON +
8 IDM + CON +
9 IDM + ENT +
10 CON + ENT +
11 Using 4 textures IDM + CON +

IDM: inverse difference moment, CON: contrast, EN

Table 7. The best overall accuracy of classification resul
multiple textural features

    No. Image quantization T

Single

1 A 256 gray level image ENT(17×17)
2 Image segmentation (8 classes) IDM(3×3)
3 Averaging filtered (7×7) IDM(5×5)

IDM: inverse difference moment, ENT: entropy, ENE: en

Table 8.  The error matrix of the best classific

Classified as

Water Fallow T

Water 19 0
Fallow 0 74
Tea 0 0
Vegetable 0 4
Residential 0 4
Total 19 82

The overall accuracy is calculated with (19 + 74 + 5
146
shows the error matrix of the best classification result. 
It can be explained that a pair class of fallow land

and residential areas contributed to misclassification of
class mixtures, therefore individual accuracy of these
classes were lower than other classes.  However, these
classes have been improved using integration of spectral
and textural features, with single or multiple features. 

Conclusions

This study demonstrated the effect of integration of

using multiple textural features for averaging filtered

Overall accuracy (%)

3×3 5×5 7×7

86.25 87.50 88.25
88.50 88.75 89.50
90.50 89.00 91.00
87.00 87.50 89.75
85.75 90.00 88.00
88.25 88.25 90.50

NT 86.75 86.50 87.75
NE 85.75 87.75 87.75
NE 88.25 88.00 90.00
NE 86.50 87.25 89.00
NT + ENE 86.00 86.25 88.75

: entropy, ENE: energy.

 for each image quantization method using single and 

ture (window size) Overall accuracy (%)

Multiple Single Multiple

IDM(21×21) + ENT(17×17) 89.43 85.75
IDM(3×3) + ENE(17×17) 89.71 88.75
IDM(5×5) + ENE(9×9) 90.86 91.00

rgy.

tion result using spectral and textural features

Reference data

a Vegetable Residential Total

0 0 0 19
2 4 5 85
9 4 1 64
2 140 4 150
1 5 72 82
4 153 82 400

 + 140 + 72) / 400 = 91.00%
s 

E
E
E
E
E

T
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spectral and textural features on classification accuracy
of agricultural land cover types in a mountainous area in
Pangalengan, West Java, Indonesia, using IKONOS

Fig. 7. The best classification result using spectral
(5×5) and energy (9×9)

Image quantization used is averaging filte
(meters in UTM Zone 48)

imagery.  The following conclusions were obtained.
(1) The use of integrated spectral and textural features

improved the classification accuracy more than in the

nd textural features of inverse difference moment

d with 7×7.
 a

re
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case of using spectral analysis only.
(2) Increase in the size of the window (from 3×3 to

15×15 pixels) improved the overall accuracy up to a
certain limit.  For all the features, the optimal window
size was identified to be between 5×5, 7×7, and 9×9
pixels.  Increase of window size beyond this showed
no significant contribution to improving accuracy of
classification. 

(3) The proposed image quantization methods brought an
improvement of providing better overall classification
accuracies than using a 256 gray level image. 
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