Comparison of the Characteristics and Sex Pheromone of Etiella behrii (Zeller), a Newly Identified Pod Borer of Soybean in Indonesia, with E. zinckenella (Treit.)

Makoto HATTORI1, Sadao WAKAMURA2, Kazunori IGITA3, Koji YASUDA4 and TRIDJAKA5

1,2 Department of Insect Physiology and Behavior, National Institute of Sericultural and Entomological Science (Tsukuba, Ibaraki, 305–8634 Japan)
3 Biological Resources Division, Japan International Research Center for Agricultural Sciences (Tsukuba, Ibaraki, 305–8686 Japan)
4 Department of Environmental Biology, National Institute of Agro-Environmental Sciences (Tsukuba, Ibaraki, 305–8604 Japan)
5 Department of Entomology, Research Institute for Legume and Tuber Crops (Ballittan Malang, Malang, 65101 Indonesia)

Abstract
Recently, Etiella behrii has been identified as a pod borer of soybean in Indonesia. This species had been presumably confused with E. zinckenella due to their similarity in external characters. We, therefore, compared the characteristics and sex pheromone between the two Etiella species. They could be accurately discriminated based on some external characters at both larval and adult stages, without examination of their genitalia. Duration of developmental stage of the insects reared on an artificial diet was 8 days longer in E. behrii than in E. zinckenella at 25°C. Premating period was 3 days longer in E. behrii than in E. zinckenella. Other biological data concerning mating and oviposition were similar between the two species. The sex pheromone of E. behrii was found to be a mixture of (E)-9-dodecenyl acetate (E9-12:Ac), (Z)-11-tetradecenyl acetate (Z11-14:Ac), dodecyl acetate (12:Ac), and (E)-11-tetradecenyl acetate (E11-14:Ac). Z11-14:Ac and E11-14:Ac are the common components in the two species. E9-12Ac and 12Ac in E. behrii, and 14:Ac and Z9-14:Ac in E. zinckenella could be key components in reproductive isolation between the two species. Moreover, the optimum dose of the mixture for capturing E. behrii males was much smaller than that for E. zinckenella males.

Discipline: Insect pest
Additional key words: external character, biology

Introduction
Two Etiella pod borers, E. zinckenella and E. hobsoni have been recognized as serious pests of soybean in Indonesia7. Their comparative characteristics and geographical distribution in Java have been reported by Naito et al.7. The former is distributed all over Java and the latter’s distribution is restricted to West and Central Java7. Recently, we have observed that E. behrii was the predominant pod borer in soybean fields in East Java. All the individuals were identified as E. behrii in more than 100 larvae collected from soybean pods in Malang and Mojosari, East Java in both 1997 and 1998, although a few males of E. zinckenella were captured in sex pheromone traps. E. behrii had not been recognized as a soybean pest so far in Indonesia, although it had been recorded in Australia13,14. E. behrii and E. zinckenella had been presumably confused with each other in Indonesia due to their similarity in external characters13. It is

This study was carried out partly under the joint collaborative research project between the Japan International Research Center for Agricultural Sciences (JIRCAS), Japan and Research Institute for Legume and Tuber Crops (RILET), Indonesia.
*Corresponding author: fax +81–298–38–6085, e-mail hatto@nisas.afrc.go.jp
Received 2 February 2000, accepted 11 April 2000.
important to discriminate between these two species for determining the predominant species in individual regions and developing an effective method of control of these pests. The present report therefore aimed at reviewing and presenting some biological data and describing the sex pheromone of the two *Etiella* species. We provided some data concerning the characters of *E. behrii* to distinguish it from *E. zinckena*, in addition to genital characters\(^{13}\). A part of the present investigation had already been reported in other journals\(^{3,4,13}\). Biological data on *E. zinckena* were based on the Japanese population, as we could not obtain a sufficient number of insects in Indonesia for propagation for the experiment.

External characters

1) **Larva**

The ground color of the larval body in both species ranges from light brown to light greenish gray. However, the first and second thoracic segments of *E. behrii* larvae are dark red in color from the 1st to 5th larval instars before the maturing stage (Fig. 1: top). This character is the most outstanding feature for differentiating *E. behrii* from *E. zinckena* at the larval stages. At the maturing (wandering) stage, the dorsal surface of the larval body including the thoracic segments shows a faded red color in *E. behrii*, while a dark red color tinged with glossy purple in *E. zinckena*. The pattern on the prothoracic shield in the fifth (final) instar is also very different in the two species; a pair of large black patches is located posteriorly in the center in *E. behrii*, while several pairs of small ones are located in the prothoracic shield in *E. zinckena* (Fig. 1: top).

2) **Adult**

The two species are similar in external characters, but distinguishable by the presence of a transverse band across the wings in the anterior third part. The band shows an anterior curvature in the dorsal view in the rest-

Table 1. Composition of artificial diet for *Etiella* species

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>g / microplate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean powder</td>
<td>13.8</td>
</tr>
<tr>
<td>Dried brewer’s yeast</td>
<td>0.6</td>
</tr>
<tr>
<td>L-Cysteine hydrochloride monohydrate</td>
<td>0.12</td>
</tr>
<tr>
<td>myo-Inositol</td>
<td>0.12</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>0.2</td>
</tr>
<tr>
<td>Sorbic acid</td>
<td>0.086</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>0.024</td>
</tr>
<tr>
<td>Agar</td>
<td>0.38</td>
</tr>
<tr>
<td>Water</td>
<td>20.0</td>
</tr>
</tbody>
</table>
Table 2. Larval and pupal development, and fecundity of *E. behrii* and *E. zinckenella* reared on an artificial diet at 25°C under 16L:8D

<table>
<thead>
<tr>
<th>Species</th>
<th>Larval duration (day)</th>
<th>Pupal duration (day)</th>
<th>Pupal weight (mg)</th>
<th>No. of eggs laid</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. behrii</td>
<td>27.8 ± 1.40 (34)</td>
<td>14.9 ± 0.81 (15)</td>
<td>35.7 ± 3.92 (64)</td>
<td>128.1 ± 67.4 (15)</td>
</tr>
<tr>
<td>♀</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂</td>
<td>14.9 ± 0.64 (13)</td>
<td></td>
<td>39.5 ± 6.42 (52)</td>
<td></td>
</tr>
<tr>
<td>E. zinckenella</td>
<td>19.8 ± 1.99 (36)</td>
<td>13.8 ± 3.44 (18)</td>
<td>43.7 ± 5.57 (45)</td>
<td>122.3 ± 62.7 (35)</td>
</tr>
<tr>
<td>♀</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>♂</td>
<td>13.9 ± 2.59 (20)</td>
<td></td>
<td>46.0 ± 6.58 (50)</td>
<td></td>
</tr>
</tbody>
</table>

Each value represents mean ± SD. Numerals in parentheses indicate the number of insects used.

Development and fecundity

E. behrii was reared successfully on an artificial diet for *E. zinckenella* with slight improvement (Table 1) for more than 10 consecutive generations. Development and fecundity of the two *Etiosa* species reared on the artificial diet are shown in Table 2. Mean developmental period of the larval and pupal stages was longer in *E. behrii* than in *E. zinckenella*. Mean pupal weight of *E. behrii* was lower than that of *E. zinckenella*. Male pupa was generally heavier than the female one in *E. behrii*, as in *E. zinckenella*. Fecundity of the females was similar between the two species: a female laid more than 120 eggs in her lifetime.

Mating and oviposition

Mating and oviposition frequency of *E. behrii* and *E. zinckenella* at different ages and in the scotophase is shown in Fig. 2. The mating time tended to be later in *E. behrii* than in *E. zinckenella*. The former mated mainly from 3 to 7 h after light-off and the latter from 3 to 5 h at 25°C under a 16L:8D regime. Most of the moths copulated on the 5th to 8th days after emergence in *E. behrii*, while on the 2nd to 4th days after emergence in *E. zinckenella*. Thus, the premating period was 3 days longer in *E. behrii* than in *E. zinckenella*. The profiles of the frequency distribution of the oviposition time were almost the same in the two species: the largest number of eggs was laid during the 1st hour after light-off, with numbers decreasing thereafter. The daily oviposition frequency after mating showed a similar tendency in both species, although some *E. behrii* females lay eggs in the night when they mated.

Sex pheromone

Laboratory analysis and field experiments showed that the sex pheromone of *E. behrii* was a mixture of (E)-9-dodecenyl acetate (E9-12:Ac), (Z)-11-tetradecenyl acetate (Z11-14:Ac), dodecyl acetate (12:Ac), and (E)-11-tetradecenyl acetate (E11-14:Ac). Maximum attraction was obtained with a mixture of E9-12:Ac, Z11-14:Ac, 12:Ac and E11-14:Ac at the ratios of 10 : 90 : 0.7 : 6.3, respectively (Fig. 3). The sex pheromone of *E. zinckenella* has been found to consist of a mixture of 14:Ac, Z11-14:Ac, E11-14:Ac and Z9-14:Ac. As Z11-14:Ac and E11-14:Ac are the common components, 14:Ac and Z9-14:Ac in *E. zinckenella* and E9-12:Ac and 12:Ac in *E. behrii* may be key components in the discrimination between the two species. The optimum dose of the 4-component blends for *E. behrii* was found to be 5.35 or 10.7 μg/rubber septum, for capturing more males than virgin females (Fig. 4). This dose level is very low compared with that with 309–1,030 μg/septum (Z11-14:Ac and Z9-14:Ac) for *E. zinckenella* reported in Hungary. The amount of sex pheromone components extracted from *E. behrii* females was very small (<0.2 ng/female). It is considered that the reproductive isolation between the two species may be due to the difference in the quantity and quality of the sex pheromone.
Fig. 2. Mating and oviposition frequency of *E. behrii* and *E. zinckenella* at different ages and in the scotophase
Conclusion

E. behrii and _E. zinckenella_ can be reliably separated based on some external characters at both larval and adult stages, in addition to genital characters. Such information on external characters is useful for the discrimination of the sympatric two _Etiella_ species from the practical point of view. Furthermore, the sex pheromone traps provide species-specific tools for monitoring the population of each species. Distribution of both species in the tropical and subtropical regions could be clarified by extensive surveys based on discrimination by morphological characters and monitoring by sex pheromone traps in the future. In regions where _E. behrii_ is predominant, soybean damage by pod borers may be reduced by applying the mating disruption method with synthetic sex pheromone in a relatively small amount, as males of this species are very sensitive to the sex pheromone. Biological data associated with reproduction were similar between the two species, although the duration of the developmental stages and premating period was longer in _E. behrii_ than in _E. zinckenella_. Further studies are required to elucidate the factors that determine the predominance between these sympatric _Etiella_ species in soybean fields in East Java.
References

8) Naito A. & Harnoto (1987): Characteristics of *Etiosa hobsoni* (Butler), the newly recognized podborer of soybean in Indonesia, as compared with *E. zinckenella* (Treitschke). *JARQ*, 20, 154–160.

