## Mutagenic Effects of DNA Base Analogues on Agronomic Characters of Rice (*Oryza sativa* L.)

## Ву Кисні FUKUI

Department of Molecular Biology, National Institute of Agrobiological Resources (Yatabe, Ibaraki, 305 Japan)

## Introduction

Mutagenic effects of DNA base analogues were discovered in microorganisms in 1950s.<sup>2)</sup> The mechanism of their mutagenesis was elucidated as transition in DNA by the detailed experiments of phage  $T_4$ .<sup>4)</sup> Since then base analogues have become popular mutagens for induction of point mutations in microorganisms.

In higher plants, induction of point mutations has been also attempted using some base and nucleoside analogues such as 2aminopurine (AP), 5-bromouracil (BU) or 5-bromodeoxyuridine (BUdR) etc.<sup>5,7</sup>) because powerful mutagens such as ionizing radiations and alkylating agents have induced not only valuable mutations but also lots of deteriorative mutations like sterility or chlorophyll mutations which are thought to be mainly induced by chromosomal aberrations. Induction of growth type mutants has been reported in Arabidopsis.<sup>3,9)</sup>

For agronomic characters of cereal crops, however, there have been only a few reports<sup>6,8,11</sup> on induction of mutations by these substances. In this paper, we report the mutagenic effects of AP and BU on agronomic characters of rice and characteristics of the induced mutants. The value of these chemicals in mutation breeding is also discussed.

### Materials and methods

A rice cultivar, "Ginbozu" was used in this experiment. Air dried kernels were soaked in the AP or BU solution either saturated or half concentration of saturated solution for 7 or 14 days (Table 1). All the materials were washed thoroughly after the treatment and placed on the tray of the nursery. Fifty seedlings in each treatment were randomly selected and transplanted into the experimental paddy field. Two panicles from each  $M_1$ plant in the AP treatments and one from the BUs were randomly selected and harvested. Heading date and seed fertility of each  $M_1$ plant were recorded.

Table 1. Experimental design for the treatment

| Treatment<br>No. | Mutagen | Concentration<br>(s*) | Duration<br>(days) |
|------------------|---------|-----------------------|--------------------|
| AP-1             | AP      | 0.5s                  | 17                 |
| AP-2             | AP      | 0.5s                  | 14                 |
| AP-3             | AP      | <b>1</b> s            | 7                  |
| AP-4             | AP      | <b>1</b> s            | 14                 |
| BU-1             | BU      | 0.5s                  | 7                  |
| BU-2             | BU      | 0.5s                  | 14                 |
| BU-3             | BU      | <b>1</b> s            | 7                  |
| BU-4             | BU      | <b>1</b> s            | 14                 |

\* Saturated solution at 25°C.

In the next  $M_2$  generation, 386, 200 and 45 lines were raised by one-panicle-one-line method from all the treatments of AP, BU and the original variety as the control, respectively. Fifty kernels were sown for each line in the nursery bed. Fifteen to eighteen plants from each line were selected randomly and transplanted into the experimental field. Chlorophyll mutations at the nursery stage and several agronomic characters, i.e. heading date, culm length, fertility etc. were recorded for all the plants including the control. One panicle was harvested from all these plants which were statistically determined to possess at least one varied character. One panicle was also harvested from the plants classified as normal for every character examined. For the  $M_3$  control, some panicles were harvested from the  $M_2$  control. Thus 696  $M_3$  progeny lines derived from the treated  $M_2$  plants (338 lines for the AP treatments, 358 lines for the BU treatments) and 19 lines for the  $M_3$  control were raised. The same methods as used for the  $M_2$  generation were used to raise and examined the plant materials both in the nursery and the experimental field.

Chlorophyll mutations were determined by naked eyes. While quantitative variants on heading date, culm length etc. were identified by the following criterion. That is, a plant having a character(s) whose value(s) fell out of the confidence limits ( $\alpha = 0.01$ ) set up by the following formula according to the character distribution in the control was classified as a variant of the trait.

#### $X \pm s \sqrt{F(N+1)/N}$

- N: Number of the plants in the control
- F: F value,  $\alpha = 0.01$ ,  $n_1 = 1$ ,  $n_2 = N-1$

A critical rate of 0.01 was adopted for all the characters in both generations.

For both the  $M_2$  and  $M_3$  generations, the same method was used to decide variants. Only the  $M_2$  variants that segregated the same variation also in the  $M_3$  generation were regarded as the mutants of the trait.

#### Results

# 1) Plant injury observed in the M, generation

The  $M_1$  plants both in the AP and BU treatments showed slightly disturbed distribution in heading date. This tendency was clearer in the BU treatments than in the APs as shown in Fig. 1. Most of them were in the direc-



Fig. 1. Distribution of heading date in the M<sub>1</sub> generation for each treatment

Table 2. Seed fertility of the M<sub>1</sub> plants

| Treatment No. | Average seed<br>fertility (%) | Number of<br>panicles tested |
|---------------|-------------------------------|------------------------------|
| Cont.         | 83.8                          | 100                          |
| AP-1          | 82.6                          | 99                           |
| AP-2          | 81.2                          | 92                           |
| AP-3          | 80.5                          | 95                           |
| AP-4          | 82.9                          | 96                           |
| BU-1          | 75.6                          | 50                           |
| BU-2          | 78.2                          | 50                           |
| BU-3          | 80.8                          | 50                           |
| BU-4          | 79.1                          | 50                           |

tion toward late heading, although few of them showed earlier heading than any of the plants in the control. Seed fertility of the  $M_1$ plants is shown in Table 2. Average fertilities of all the treatments were not better than that of the control. BU-1 treatment showed the lowest average fertility of 75.6%, which was 8.2% below that of the control. The BU treatments had a severer effect for sterility than the AP treatments.

Disturbance of heading date and decrease of the seed fertility observed in the treated population can be explained mainly by the inhibitory effect of AP and BU on DNA synthesis. Various physiological disturbances related to inhibition of the nucleic acid metabolism are also one of the main causes. Chromosomal aberration which was reported in animal cells1) should also be taken into account. Both injurious effects on seed fertility and heading were very slight compared with the ones caused by the alkylating agents such as EI or EMS10) and ionizing radiations in the practical doses. For example, 5 kR of gamma rays induced sterility in about 40% of M<sub>1</sub> rice plants.<sup>12)</sup>

#### Variations induced in the M<sub>2</sub> generation and their progeny test

Table 3 shows the distribution of heading date of the  $M_2$  plants in each treatment. All the frequencies of the variants induction ranging from 0.67 to 4.87% exceeded that of the control. Average variation rate of the BU treatments was 2.77% and was more than twice as much as that of the AP treatments. The AP treatments showed about the same induction frequency of variants for both directions of earliness and lateness, while the BU treatments induced early heading ones much more frequently. The earliest ones of all the variants for heading date were 7 days earlier than the average heading date of the control and the latest one was 18 days later than it. Distribution of the variants was not so widened as often shown in the  $M_2$  population treated by ionizing radiations or alkylating agents in general.

Table 4 shows the result of the progeny test carried out in the M<sub>3</sub> generation. The emergence of the M3 variants for heading date was much more frequent among the plants in the M<sub>3</sub> lines derived from the M<sub>2</sub> heading date variants than the progeny plants in the M<sub>3</sub> lines from the normal M2 plants in heading date. This tendency was especially clear in the AP treatments and one of the BU treatments. Some of the M2 plants which were classified as normal for the heading date also segregated a few number of the heading date variants in the M<sub>3</sub> generation. The average variant frequency of the M3 lines derived from the M<sub>2</sub> normal-heading plants was 9.4%, whereas it was 28.7% among the M3 progeny lines from the M<sub>2</sub> variants for heading date. The difference between the variation frequencies was highly significant (significant at 0.1% level). Segregation frequency of the variants in a M3 line also showed a conspicuous difference between the M3 line from M2 variants and that from M<sub>2</sub> non-variants. Average segregation rate of the variants in a M<sub>3</sub> line

| Table 3. F | requency | distribution ( | of | heading | date | for | each | treatment | in | the | $M_2$ | generation |
|------------|----------|----------------|----|---------|------|-----|------|-----------|----|-----|-------|------------|
|------------|----------|----------------|----|---------|------|-----|------|-----------|----|-----|-------|------------|

| Treat-<br>ment No. | Au<br>30 | ig.<br>31 | S<br>1 | ept.<br>2 | 3  | 4   | 5   | 6   | 7   | 8   | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | No. of M <sub>2</sub> plants<br>observed |
|--------------------|----------|-----------|--------|-----------|----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|------------------------------------------|
| Cont.              |          |           | 1      | 1         | 8  | 26  | 91  | 144 | 214 | 102 | 24 | 4  | 2  |    |    |    |    |    |    |    |    |    |    |    |    |    | 647                                      |
| AP-1               |          | 4         | 1      | 7         | 20 | 17  | 267 | 544 | 467 | 299 | 73 | 8  | 6  | 1  | 0  | 0  | 1  | 1  |    |    |    |    |    |    |    |    | 1766                                     |
| AP-2               |          |           | 1      | 4         | 49 | 136 | 359 | 450 | 356 | 180 | 31 | 3  | 6  | 2  | 2  |    |    |    |    |    |    |    |    |    |    |    | 1566                                     |
| AP-3               |          | 1         | 0      | 1         | 32 | 88  | 371 | 348 | 553 | 690 | 44 | 7  | 3  | 0  | 1  | 0  | 1  | 2  | 0  | 1  | 0  | 1  |    |    |    |    | 1644                                     |
| AP-4               | 2        | 0         | 1      | 7         | 17 | 50  | 284 | 323 | 670 | 246 | 64 | 17 | 5  | 2  | 4  | 0  | 0  | 1  | 2  |    |    |    |    |    |    |    | 1692                                     |
| BU-1               |          |           | 1      | 8         | 20 | 54  | 156 | 697 | 281 | 102 | 20 | 6  | 3  | 2  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  | 1  | 801                                      |
| BU-2               |          |           | 1      | 3         | 19 | 47  | 153 | 180 | 175 | 127 | 21 | 6  | 0  | 0  | 0  | 3  | 0  | 1  | 0  | 0  | 1  |    |    |    |    |    | 729                                      |
| BU-3               |          |           |        | 17        | 54 | 86  | 128 | 198 | 149 | 79  | 13 | 2  | 1  | 1  | 1  | 0  | 0  | 2  |    |    |    |    |    |    |    |    | 731                                      |
| BU-4               | 1        | 1         | 7      | 20        | 54 | 89  | 104 | 203 | 160 | 80  | 10 | 3  | 1  | 3  | 2  | 0  | 0  | 0  | 1  |    |    |    |    |    |    |    | 739                                      |

Vertical lines show the confidence limits at a critical rate of 0.01.

| Treatment<br>No. |                         | $M_2$              |                            | $M_3$     |                |             |                         |                            |  |  |  |  |  |  |  |
|------------------|-------------------------|--------------------|----------------------------|-----------|----------------|-------------|-------------------------|----------------------------|--|--|--|--|--|--|--|
|                  | Number of plants tested | Number of variants | Variation<br>frequency (%) | Nu<br>lin | mber<br>es tes | of<br>sted* | Number of variant lines | Variation<br>frequency (%) |  |  |  |  |  |  |  |
| Cont.            | 647                     | 4                  | 0.62                       | 57        | N              | 57          | 3                       | 5.3                        |  |  |  |  |  |  |  |
| AP-1             | 1766                    | 21                 | 1.19                       | 106       | N              | 92          | 5                       | 5.4                        |  |  |  |  |  |  |  |
| Party card       |                         |                    |                            |           | Α              | 14          | 6                       | 42.9                       |  |  |  |  |  |  |  |
| AP-2             | 1566                    | 15                 | 0.96                       | 1         | N              | 1           | 0                       | 0.0                        |  |  |  |  |  |  |  |
|                  |                         |                    |                            |           | Α              | 0           |                         |                            |  |  |  |  |  |  |  |
| AP-3             | 1644                    | 11                 | 0.67                       | 101       | N              | 99          | 5                       | 5.1                        |  |  |  |  |  |  |  |
|                  |                         |                    |                            |           | A              | 2           | 2                       | 100.0                      |  |  |  |  |  |  |  |
| AP-4             | 1692                    | 24                 | 1.42                       | 103       | N              | 89          | 18                      | 20.2                       |  |  |  |  |  |  |  |
|                  |                         |                    |                            |           | Α              | 14          | 6                       | 42.6                       |  |  |  |  |  |  |  |
| BU-1             | 801                     | 15                 | 1.87                       | 93        | N              | 83          | 12                      | 14.5                       |  |  |  |  |  |  |  |
|                  |                         |                    |                            |           | Α              | 10          | 5                       | 50.0                       |  |  |  |  |  |  |  |
| BU-2             | 729                     | 9                  | 1.24                       | 45        | N              | 43          | 0                       | 0.0                        |  |  |  |  |  |  |  |
|                  |                         |                    |                            |           | Α              | 2           | 0                       | 0.0                        |  |  |  |  |  |  |  |
| BU-3             | 731                     | 22                 | 3.01                       | 92        | N              | 77          | 7                       | 9.1                        |  |  |  |  |  |  |  |
|                  |                         |                    |                            |           | A              | 15          | 3                       | 20.0                       |  |  |  |  |  |  |  |
| BU-4             | 739                     | 36                 | 4.87                       | 110       | N              | 81          | 6                       | 7.4                        |  |  |  |  |  |  |  |
|                  | 1.25                    |                    |                            |           | A              | 29          | 3                       | 10.3                       |  |  |  |  |  |  |  |

Table 4. Variation frequencies of heading date in the  $M_2$  generation and their progeny test

 $^\circ$  N: Lines derived from the plants of normal heading in the  $M_2$  generation.

A: Lines derived from the variants for heading date in the M<sub>2</sub> generation.

| Treatment<br>No. |                         | $M_2$              |                            | $M_3$      |               |             |                         |                            |  |  |  |  |  |  |
|------------------|-------------------------|--------------------|----------------------------|------------|---------------|-------------|-------------------------|----------------------------|--|--|--|--|--|--|
|                  | Number of plants tested | Nember of variants | Variation<br>frequency (%) | Nu<br>line | mbei<br>es te | of<br>sted* | Number of variant lines | Variation<br>frequency (%) |  |  |  |  |  |  |
| Cont.            | 642                     | 13                 | 2.03                       | 57         | N             | 57          | 3                       | 5.3                        |  |  |  |  |  |  |
| AP-1             | 1428                    | 52                 | 3.64                       | 106        | N             | 89          | 28                      | 31.5                       |  |  |  |  |  |  |
|                  |                         |                    |                            |            | Α             | 17          | 9                       | 53.0                       |  |  |  |  |  |  |
| AP-2             | 1342                    | 57                 | 4.25                       | 1          | N             | 1           | 0                       | 0.0                        |  |  |  |  |  |  |
|                  |                         |                    |                            |            | A             | 0           | -                       |                            |  |  |  |  |  |  |
| AP-3             | 1401                    | 65                 | 4.64                       | 101        | N             | 84          | 19                      | 22.6                       |  |  |  |  |  |  |
|                  |                         |                    |                            |            | Α             | 17          | 4                       | 23.5                       |  |  |  |  |  |  |
| AP-4             | 1424                    | 62                 | 4.35                       | 103        | N             | 85          | 15                      | 17.6                       |  |  |  |  |  |  |
| 9979 C           | -                       |                    |                            |            | A             | 18          | 5                       | 27.8                       |  |  |  |  |  |  |
| BU-1             | 699                     | 34                 | 4.86                       | 93         | N             | 81          | 22                      | 27.2                       |  |  |  |  |  |  |
| 67070° 875       | 0222020                 |                    |                            |            | Α             | 12          | 8                       | 66.7                       |  |  |  |  |  |  |
| BU-2             | 680                     | 23                 | 3.38                       | 45         | N             | 44          | 10                      | 22.7                       |  |  |  |  |  |  |
| 202              |                         | 1000               |                            |            | A             | 1           | 0                       | 0.0                        |  |  |  |  |  |  |
| BU-3             | 703                     | 26                 | 3.70                       | 92         | Ν             | 89          | 6                       | 6.7                        |  |  |  |  |  |  |
| 200              | 1.4.5                   |                    |                            |            | Α             | 3           | 3                       | 100.0                      |  |  |  |  |  |  |
| BU-4             | 704                     | 50                 | 4.26                       | 110        | N             | 106         | 12                      | 11.3                       |  |  |  |  |  |  |
|                  |                         |                    |                            |            | A             | 4           | 1                       | 25.0                       |  |  |  |  |  |  |

Table 5. Variation frequencies of culm length in the M<sub>2</sub> generation and their progeny test

\* N: Lines derived from the plants of normal culm length in the  $M_{\rm 2}$  generation.

A: Lines derived from the variants for culm length in the  $M_2$  generation.

from the  $M_2$  variant was 52%, whereas that in a  $M_3$  line from the  $M_2$  non-variant for heading date was 8%.

Table 5 shows the variation frequencies for culm length in the M2 generation and the result of the progeny test in the  $M_3$  generation. In the M<sub>2</sub> generation, emergence of the variants ranged from 3.4 to 4.9% and all of them exceeded that of the control. In the case of culm length, contrary to the heading date, much difference was not found in variation frequencies nor the spectrum of the variation between the AP and the BU treatments. Both treatments induced the short culm variants much more frequently than the long culm ones. Average culm length of the control plants was 74 cm and the lower and upper confidence limits were 62 and 85 cm, respectively. Culm length variation of the M2 plants ranged from 20 cm in the shortest to 90 cm in the longest.

In the progeny test, the same tendency as in heading date was also recognized for culm length, that is far more variants emerged in the M<sub>3</sub> lines derived from the M<sub>2</sub> variants than in the M3 lines from the M2 non-variants for culm length. The average frequency of the variation induction for culm length within the M<sub>3</sub> lines derived from the M<sub>2</sub> culm length variants was 41.7%, whereas it was 19.3% for the M<sub>3</sub> lines derived from the M<sub>2</sub> normal plants in culm length (significant at 0.1% level). Some of the M3 lines which were derived from the M2 culm length variants showed biassed distribution in culm length toward the longer or shorter side of the confidence limit, although all the plants in the line stayed within the confidence limits. In most of these lines, environmental effects such as boarder effects of the experimental field etc. were avoided by the detailed examination of the adjacent lines and the control lines nearby.

Chlorophyll mutants including *albina*, *vi*ridis and striata and sterile mutants were induced only in low frequencies in every treatment.

#### Discussion

The AP and BU treatments induced variants in agronomic characters of rice at fairly high frequencies. The M2 variation frequencies of these chemicals calculated on the basis of the standard used in this experiment are reduced to less than a half of them when the results of the M3 generation is taken into account. However, it can be said that the mutation rate confirmed by the M<sub>3</sub> progeny test is not very low in comparison with results obtained by gamma ray irradiation for these characters using the same material and method.<sup>12)</sup> From the viewpoint of plant breeders, this point can be strengthened by the fact that there emerged a very few sterile and chlorophyll mutants in the M<sub>2</sub> population. Although some differences were observed, it can be said that the characteristics of mutation induction for agronomic traits were very similar in the AP and BU treatments. These results suggest that both the AP and BU treatments are likely to induce point mutations in rice by DNA transition. It seems to be a unique characteristic against ionizing radiations or alkylating agents.

It is worth noticing that the number of sterile plants among the M<sub>2</sub> population was much less than that in the progenies treated by the alkylating agents or ionizing radiation.<sup>10,12)</sup> For example, 76.7% of the variants obtained in the  $M_2$  generation after  $\gamma$ -ray irradiation (1 kR-30 kR) was reported to be sterile ones. This characteristic will be able to enhance the efficiency of mutation breeding. The AP and BU treatments seem to be quite promising for obtaining desired mutants in agronomic characters without accompanying any deteriorative mutation. It implies that the treatment by DNA base analogues shows a possibility of opening the door toward the direct use of mutants, which has been prevented mainly so far by the co-occurrence of both valuable and deteriorative mutations within a single plant. The limited extent of changes induced by mutagenic treatment is also favorable for the direct use of mutants in a practical breeding program. Such slight modification of a character without any change in other characters would be especially useful in the case of the breeding program for multilines of a variety.

Taking all the results obtained in the experiments into account, it can be concluded that the DNA base analogues have unique characteristics in inducing mutations and they look highly promising in mutation breeding programs aiming at the direct use of mutants.

#### References

- Bender, M. A., Bedford, J. S. & Mitchell, J. B.: Mechanisms of chromosomal aberration production. II Aberrations induced by 5-bromodeoxyuridine and visible light. *Mutation Res.*, 20, 403-416 (1973).
- Benzer, S. & Freese, E.: Induction of specific mutation with 5-bromouracil. Proc. Natl. Acad. Sci. USA, 44, 112-119 (1958).
- Brown, J. A. M. & Smith, H. H.: Incorporation and effects of thymidine analogues in gametophytic tissue of Arabidopsis thaliana. Mutation Res., 1, 45-53 (1964).
- Freese, E.: The specific mutagenic effect of base analogues on phage T<sub>4</sub>. J. Molec. Biol., 1, 87-105 (1959).
- 5) Fukui, K.: Studies on the mutagenic effects of DNA base and amino acid analogues in

higher plants. Thesis of Dr. Agr., Kyoto Univ. (1985) [In Japanese].

- Fukui, K. et al.: Studies on the utility of artificial mutations in plant breeding XXXIII. Mutagenic effects of base analogues in rice plant. Jpn. J. Breed., 23 (Suppl. 2), 52-53 (1973) [In Japanese].
- Hirono, Y. & Smith, H.H.: Mutations induced in Arabidopsis by DNA nucleoside analogues. Genetics, 61, 191-199 (1969).
- Inoue, M., Mori, S. & Hori, S.: Mutagenic effect of base analogues incorporated into rice. Jpn. J. Breed., 26, 110-120 (1976).
- Jacobs, M.: Studies on the genetic activity of thymidine-base analogue in Arabidopsis thaliana. Mutation Res., 7, 51-62 (1969).
- 10) Ko, T. B.: Studies on the mutations induced for agronomic characters in rice. Thesis of Dr. Agr., Kyoto Univ. (1971) [In Japanese with English summary].
- Yamagata, H. & Fukui, K.: Studies on the utility of artificial mutations in plant breeding XI. Mutagenic effects of BUdR in rice. *Mem. Coll. Agr. Kyoto Univ.*, No. 113, 25-37 (1979).
- 12) Yamagata, H. & Syakudo, K.: Studies on the utility of artificial mutations in plant breeding I.  $\gamma$ -ray sensitivity of rice and induced aberrant plants in the X<sub>2</sub> generation. Jpn. J. Breed., 10, 153-162 (1960) [In Japanese with English summary].

(Received for publication, December 19, 1984)

158