Rhizobial Nodulation of Alfalfa in Soils Conducive and Suppressive to Fusarium Disease

By YASUO SAWADA

Ecology Division, National Grassland Research Institute
(Nishinasuno, Tochigi, 329-27 Japan)

In general, effectiveness of root-nodule bacteria symbiotic to legumes is attributed to the growth of host plants and activity of the bacteria in nodulation process, and also to ability of nitrogen fixation of the bacteria after nodule formation. Although the nitrogen-fixing ability depends on genetic character of the bacteria, growth of the host plants and activity of the bacteria in nodulation process are closely related with physical, chemical, and microbiological environments of soil. There are less information, however, about possible interaction between rhizobial nodulation and other microorganisms rather than about physical and chemical properties of soil.

On the other hand, it has been recognized that establishment and persistency of legume pastures are difficult, in particular, in southern districts of Japan with warm and humid climatic conditions. As for the difficulty, so-called summer depression, it seems likely that incidence of soil-borne diseases is suggested to be one of the most important causes. It is also brought to the author's notice that pathogenic Fusarium oxysporum could be isolated from infected roots of alfalfa wilted in the first summer season in a field of our institute. The fungus F. oxysporum is known widely distributed in cropland and grassland soils in Japan, and to be one of the most important soil-borne pathogens throughout the country. Furthermore, a forma specialis of the fungus that is pathogenic to clover and alfalfa has recently been reported as a causal agent of legume depression in Japan.

From these evidences, it may be of great importance for persistency of the legumes, and also for effectiveness of symbiotic rhizobia in grasslands, to notice an interaction between root-infecting Fusarium disease and the growth or nodulation of the host legume. The present paper deals with the rhizobial nodulation of alfalfa affected by Fusarium disease. Experimental data were compiled mainly from the author's original paper.

Occurrence of Fusarium disease and nodule formation

Fusarium species can commonly be isolated from either root surface of various species of herbage grasses or plant residues in manured pasture soils, but not or rarely from forest and natural grassland soils. From this point, comparison of growth and nodulation of alfalfa seedlings was made with two soils taken from a sown pasture and a native grassland to examine whether occurrence of the root-infecting fungi affects the nodulation or not.

The sown pasture soil was taken from a 6-year grazing pasture in our institute where dominant vegetations were orchardgrass (Dactylis) and red top (Agrostis), and the native grassland soil from a Miscanthus and Arundinella grassland near the sown pasture. In this experiment, in order to eliminate a possible nutritional difference of the soils, seedlings were grown in each soil for 3 days before transplanting, together with closely adhering rhizosphere soil, onto Jensen's seedling-agar slant in a test-tube and inoculated with rhizobia. Data obtained are shown in Table 1.

With the sown pasture soil that was naturally infested by F. oxysporum, brownish dis-
Table 1. Growth and nodulation of alfalfa seedlings affected by different rhizosphere soils in an early stage of the growth*

<table>
<thead>
<tr>
<th>Rhizosphere soil</th>
<th>Fresh wt. shoot (mg per plant)</th>
<th>No. of nodules (per plant)</th>
<th>Discoloration of root</th>
<th>Root-infect, fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sown pasture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not-sterilized</td>
<td>32</td>
<td>1</td>
<td>+</td>
<td>F. oxysporum</td>
</tr>
<tr>
<td>Sterilized**</td>
<td>48</td>
<td>2.7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Native grassland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not-sterilized</td>
<td>56</td>
<td>2.5</td>
<td>±</td>
<td></td>
</tr>
<tr>
<td>Sterilized**</td>
<td>50</td>
<td>3.3</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

*Seedlings were grown on the different soils for 3 days before transplanting to seedling agar, on which they were grown at 26–19°C (15–9 hr/light-dark) for 4 weeks, inoculated with \(10^6\) rhizobia per plant. Figures are means of 5 replications.

**By steam, 100°C, 1 hr.

coloration of roots and poor nodulation were remarkably observed. The Fusarium species isolated here apparently caused root-infection of alfalfa seedlings in an inoculation test showing brown necrotic symptom. When soils were sterilized, healthy growth of roots and an increase in number of nodules were also exhibited. These results emphasize that occurrence of root-infecting fungus, *F. oxysporum*, eventually affects the nodule formation of susceptible varieties of the host legumes.

Nodule formation in disease-suppressive soil

It has been known that there are some soils suppressive to disease which are restrictive to progress of the disease, even when the pathogen has been introduced\(^4\). Such suppressive nature of the soils apparently results from complex microbiological interactions that provide biological control of the disease, though the causes are not well known today.

As to *Fusarium* disease, an example that is designated as legume-persistent grassland soil has recently been reported in Hokkaido by Araki et al.\(^1,2\).

In this respect, an experiment for nodule formation was conducted by comparing the soil suppressive (legume-persistent, Date soil) with the soil conducive (non-persistent, Hayakita soil) to *Fusarium* disease. Characteristics of the soils are given in Table 2. Disease-suppressive Date soil shows a finer texture and more bacterial plate counts than conducive Hayakita soil. In addition, according to soil-inoculation test with *F. oxysporum*, hyphal growth of the fungus that was observed on contact-slide glass, was consistently less in the suppressive soil as compared with the conducive soil. The soils placed in 400-ml beakers were moistened to approximately field capacity and limed prior to planting alfalfa.

From the results (Table 3), it was noted that almost no visible nodule was produced with the conducive soil showing discoloration of roots. Growth of the seedlings was also

Table 2. Analyses of experimental soils conducive(C) and suppressive(S) to *Fusarium* disease

<table>
<thead>
<tr>
<th>Soil</th>
<th>pH</th>
<th>C/N</th>
<th>Mechanical analysis</th>
<th>Microbial analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sand(%) Silt(%) Clay(%)</td>
<td>Fungi(10}(^6) Acti.(10}(^6) Bact.(10}(^6)</td>
</tr>
<tr>
<td>Hayakita(C)</td>
<td>5.5</td>
<td>13.9</td>
<td>86.3 9.1 4.7</td>
<td>31 1 7</td>
</tr>
<tr>
<td>Date(S)</td>
<td>6.3</td>
<td>11.8</td>
<td>70.1 21.3 8.6</td>
<td>5 1.3 31</td>
</tr>
</tbody>
</table>

pH, C/N, and mechanical analysis were compiled from data of Araki (1978).
Table 3. Growth and nodulation of alfalfa seedlings in a disease-conducive and a suppressive soil

<table>
<thead>
<tr>
<th>Soil</th>
<th>pH</th>
<th>Shoot (mg per plant)</th>
<th>Root (mg per plant)</th>
<th>Disease index</th>
<th>No. of nodules (per plant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducive soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not-inoculated</td>
<td>7.4</td>
<td>31</td>
<td>33</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>Inoculated</td>
<td>7.4</td>
<td>33</td>
<td>38</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Suppressive soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not-inoculated</td>
<td>7.5</td>
<td>53</td>
<td>38</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Inoculated</td>
<td>7.5</td>
<td>50</td>
<td>40</td>
<td>—</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Soils were limed, and inoculated with or without 10⁭ rhizobia per plant, grown at 26–19°C (15–9 hr/light-dark) for 3 weeks.

less than with the suppressive soil. Examination of infecting fungi on the roots showed that pathogenic F. oxysporum existed with both the conducive and suppressive soils. It seemed probably, therefore, that the root-disease caused by the fungus but not the fungus itself restricted the nodule formation in the conducive soil as previously shown in Table 1 for the pasture soil. On the other hand, it was noticeably indicated that suppressiveness of the disease and good nodulation could be seen with the suppressive soil though the pathogenic fungus existed.

According to the microscopic examination of well-washed root segments placed on water-agar plate, there appeared to be proportionately fewer Fusarium and more bacteria with the suppressive soil than with the conducive soil (Table 4, Plate 1). This evidence suggests that the bacteria multiplied on the root surface may, at least in part, possibly exhibit antagonism to Fusarium. Smith & Snyder also observed that rate of bacterial multiplication was great in a disease-suppressive soil rather than in a conducive soil.

In addition, there has recently been indi-

Table 4. Occurrence of Fusarium and bacteria on root surface of alfalfa grown in a disease-conducive and a suppressive soil

<table>
<thead>
<tr>
<th>Soil</th>
<th>Fusarium (%)**</th>
<th>Bacteria (%)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducive soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not-inoculated</td>
<td>31</td>
<td>53</td>
</tr>
<tr>
<td>Inoculated</td>
<td>38</td>
<td>31</td>
</tr>
<tr>
<td>Suppressive soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not-inoculated</td>
<td>22</td>
<td>75</td>
</tr>
<tr>
<td>Inoculated</td>
<td>6</td>
<td>78</td>
</tr>
</tbody>
</table>

*: The data correspond to Table 3
**: Percent frequency of occurrence on root segments
cated a further interesting problem that a
definite antagonistic interaction between root-
nodule bacteria and pathogenic fungi may be
present. Tu9,10 reported that rhizobial
nodulation reduced the severity of \textit{Fusarium} root-
rot in soybeans, and that, \textit{in vitro}, rhizobial
parasitism against root-rot fungi would be
expected. The present author also observed
that hyphal growth of \textit{F. oxysporum} was
suppressed by multiplying of rhizobia, \textit{R. meliloti},
in a mixed culture. Further study is needed,
however, on the pathogen-antagonist-soil com-
bination with special reference to bacterial
multiplication in the rhizosphere of host
plants.

Concluding remarks

In the present work, it was found that nat-
urally-infested \textit{Fusarium oxysporum} pathogen-
ic to alfalfa might eventually affect the
rhizobial nodulation. This fungus has usually
been recognized to be predominant in warm,
moist, and moderately acid pasture soils, and
be able to colonize on young roots of host
plants5). It must be worthy, therefore, as
mentioned by Araki et al.1), to notice the in-
cidence of \textit{Fusarium} disease with regard to
depression of legume pasture in Japan. Fur-
thermore, since severity of the disease caused
by \textit{F. oxysporum} is revealed to be gradually
progressive, it is possible to consider that
nodulation and effectiveness of rhizobia symbio-
tic to the legume may be affected more in a
later stage of the growth rather than in an
early stage.

The reasons why some soils are suppressive
to soil-borne disease, and others are conducive,
are undoubtedly complex and varied as sug-
gested by many workers9). However, it must
be considered important to support bacterial
multiplication, inclusive of inoculated rhizobia,
in a given soil.

Acknowledgments

The author is very grateful to Dr. T. Araki,
National Institute of Agricultural Sciences,
for permission to use analytical data of dis-
ease-conducive and suppressive soils, and also
to Mr. R. Sato, Hokkaido National Agricul-
tural Experiment Station, who provided the soils.

References

1) Araki, T., Sato, R. & Shimamuki, T.: Soil-
borne pathogens influenced on non-persist-
Soc. Jpn.}, 36, Abstract, 382 (1970) [In Japa-
nese].
2) Araki, T.: Some information about disease-
suppressive soils. \textit{Proc. 9th Symp. Soil-borne
Disease}, 35-41 (1978) [In Japanese].
3) Araki, T.: The present situation of soil-born
disease and their control in Japan. \textit{Jpn.
Pesticide Inform.}, 36, 5-13 (1979).
4) Baker, K.F. & Cook, R.J.: Biological control
of plant pathogens. Freeman, San Francisco,
5) Kawanabe, S. et al.: Control of summer de-
pression of pasture species. \textit{Bull. Nat'l.
Grassl. Res. Inst.}, 4, 30-50 (1973) [In Japa-
nese with English summary].
6) Sawada, Y.: Interaction of rhizobial nodula-
tion of alfalfa and root-rot by \textit{Fusarium
22, 19-26 (1982) [In Japanese with English
summary].
7) Smith, S.N. & Snyder, W.C.: Germination
of \textit{Fusarium oxysporum} chlamydospores in
soils favorable and unfavorable to wilt es-
tabliment. \textit{Phytopathology}, 62, 273-277
(1972).
8) Thornton, R.H.: Studies of fungi in pasture
soils. 1. Fungi associated with live roots, \textit{N.
9) Tu, J.C.: Prevention of soybean root nodu-
lation by tetracycline and its effect on soy-
bean root rot caused by an alfalfa strain of
\textit{Fusarium oxysporum}. \textit{Phytopathology}, 68,
10) Tu, J.C.: Evidence of differential tolerance
among some root rot fungi to rhizobial parasitism \textit{in vitro}. \textit{Physiol. Plant Path.}, 14,
11) Ui, T.: Soil-borne plant diseases and their
study of root-nodule bacteria. IBP Handbook
15, Blackwell, Oxford & Edinburgh, 75

(Received for publication, July 23, 1982)