Properties of Some Papua New Guinea Woods in Relation to Manufacturing Processes

By YASUSHI SUZUKI

Division of Wood Technology, Forestry and Forest Products Research Institute (Kukizaki, Inashiki, Ibaraki, 305 Japan)

In view of an increasing concern with the utilization of underutilized tropical woods, the Forestry and Forest Products Research Institute of Japan has carried out a series of studies on properties of woods of New Britain Island and on manufacturing of wood products from them. This paper presents the results obtained^{1,2)} in a summarized form.

Sample trees and test items

Sample trees were collected from two sites of the Island with the cooperation extended by the Department of Forests, Papua New Guinea, and a local commercial wood enterprise. The samples totalled 58 species or 89 trees (about 160 m³ of log volume). Of them, 42 species, 50 trees, with large diameter were used for the tests listed below.

- 1) Lumber processing
 - 11 Band sawing (sawn surface qualities and maximum feed speed applicable with slight wander)
 - 12 Kiln drying (drying defects, drying time and recommended drying schedule)
 - 13 Planing by rotating knife (cutting force, surface qualities and knife life)
 - 14 Gluing (dry and wet bond strength of the panels glued with various adhesives)
 - 15 Painting (curing time of a resin varnish on wood and crack of paint film under accelerated conditions)
 - 16 Bending by Thonet method (radius

of curvature applicable without bending failure)

- 17 Nailing (driving and withdrawal resistances, splitting tendency during nailing)
- 2) Veneer and plywood making
 - 21 Veneer cutting (lathe check, roughness of cut surface and some strength properties related to veneer cutting)
 - 22 Veneer drying (drying rate, tangential shrinkage and warping of veneer)
 - 23 Veneer gluing (glue bond qualities of the plywoods glued with various adhesives)

3) Manufacturing of boards

- 31 Particleboard (machinability in shaving, gluability and characteristics of board)
- 32 Hardboard (properties of board made under various sizing conditions)
- 33 Inhibition of cement hardening (compressive strength of cement-woodpowder block)
- 4) Pulping
 - 41 Fiber morphology
 - 42 Pulping (characteristics in pulping, properties of unbleached and bleached sulphate pulps)
- 5) Charcoal making (properties of charcoal)
- 6) Properties of wood as related to utilization

Table	1.	Wood	characteristics	of	42	species	

Sample No.	Species	1) Basic density	2) Color	3) Extrac- tives	4) Shrink age	5) Strengtl	6) Permea- bility	7) Stain	8) Deca
2	Alstonia scholaris	240	-	2	8	420	120	#	Ħ
15	Antiaris toxicaria	242	-	2	7	440	100	÷.	#
29	Pterocymbium beccarii	256		2	10	420	330	#	#
8	Octomeles sumatrana	267	+	2	10	530	30	т —	
16	Artocarpus incisus	280	2 T 2						#
	승규가 가지 못 못했다. 것 같은 것 같			3	11	460	80	#	#
1	Spondias dulcis	291	2	3	12	550	130	#	(-)
202	Spondias dulcis	301	-	3	9	530	150	-++-	##
218	Sterculia parkinsonii	301	-	2	9	550	120	+	111
22	Evodia elleryana	313		2	9	660	120	++-	++
217	Ailanthus integrifolia	315	-	2	11	630	140	11 -	##
204	Endospermum moluccanum	320		2	10	650	130	#	+++
12	Cryptocarya massoy	330	-	3	10	580	120	++	++-
21	Anthocephalus cadamba	347	$(1,1) \to (1,1)$	4	11	690	80	++-	++
6	Terminalia solomonensis	350	+	2	9	820	60	-	+
213	Parartocarpus venenosus	355		2	11	640	200	++	##
11	Calophyllum vexans	360	+	3	11	770	40		
28	Planchonella thyrsoidea	369	-	2	12	750	80	#	#
203	Sloanea insularis	372	-	4	11	750	60	+	+
27	Palaquium erythrospermum	379	+	3	13	690	90	_	+
212	Dysoxylum arnoldianum	381	-	3	10	690	200	+	+
7	Terminalia solomonensis	381	+	2	10	810	70		+
5	Terminalia solomonensis	382	+						
9				2	10	740	40	_	±.
	Elaeocarpus sphaericus	395		3	11	820	30		++
18	Eucalyptus deglupta	402	+	2	13	770	40	-	+
211	Amoora cucullata	419	++	4	14	760	50	-	
207	Litsea irianensis	427	1	4	11	790	120	+	++
30	Celtis kajewskii	464	2 2	2	11	1,040	110	#	
19	Eucalyptus deglupta	470	+	4	14	1,020	40	-	+
23	Pometia pinnata	480	+	4	14	1,010	30	-	-
3	Canarium indicum	484	+	3	12	940	70	+	+
20	Syzygium sp.	484	++	9	16	800	30	-	+
201	Dracontomelon puberulum	493	+	6	10	1,010	40	3 	
4	Terminalia calamansanai	493	+	4	13	1, 160	70		+
17	Eucalyptus deglupta	499	+	2	16	900	40		+
26	Pometia sp.	504	+	4	15	1, 100	40		
208	Castanospermum australe	510	++	16	11	800	50		-
205	Pimelodendron amboinicum	543	#	2	12	1,000	200	++	++
14	Dysoxylum gaudichaudianum	551	22	1	15	1, 200	150	#	+
220	Vitex cofassus	553	+	11	11	1, 030	150	- TT -	CONTRA Democra
219	Celtis luzonica	560	-	2	12	1, 280	120	+	+#
215	Neonauclea maluensis	565	+	4	12	1,000	60		100
209	Pterocarpus indicus	583	++						_
209	Burckella macropoda			15	8	1, 100	60	1997	_
		585	#	5	13	1, 230	70		-
13	Intsia bijuga	591	++	11	11	1,600	50		-
206	Garcinia latissima	593	-	8	15	1,060	100	2000	177
25	Pometia pinnata	600	++	6	14	1, 150	30		-
24	Pometis pinnata	601	+	6	17	1, 220	40		\rightarrow
210	Aglaia litoralis	613	++	7	12	1, 470	40		-
10	Homalium foetidum	673	++	4	14	1, 530	50	-	+
214	Maranthes carymbosa	798	+	1	19	1,630	80		

- Notes 1) Oven-dry weight / green volume (kg/m³)
 - Lightness of wood color at the part about 2/3 of radius from pith.
 + dark, + moderately dark, light
 - 3) The amount of extractives by successive extraction with 4 organic solvents (%)
 - 4) Volumetric shrinkage from green to oven-dry (%)
 - 5) Modulus of rapture in static bending (kg/cm²)
 - 6) Water absorption in radial direction (mg/cm²/day)
 - 7) Discoloration by blue stain
 - 8) Degree of decay by 3 test fungi
 - 61 Log qualities (interlocked grain, brittle heart, and split after bucking, water content, etc.)
 - 62 Physical properties (density, shrinkage and water absorption)
 - 63 Strength properties in static and impact bending
 - 64 Decay durability (weight loss of wood block attacked by various test fungi) and treatability
 - 65 Chemical components (lignin, holoand α -cellulose, ash, etc.)
 - 66 Solubilities in n-hexane, ether, aceton and methanol by successive extraction
 - 67 Chemical discoloration (iron stain, alkaline stain, acid stain and discoloration by exposure)

Small sample trees of 30 species were mostly subjected to the manufacturing tests for several kinds of board (particleboard, wet process hardboard, and dry process fiberboard) and to the pulping tests with mixed species.

Results

1) Wood color in relation to other properties

A part of the results obtained with the test item 6 is abstracted in Table 1. Although it is well known that many properties of woods are closely related to wood density, the lightness of wood color is taken as a convenient criterion for classifying logs in many cases in the course of marketing. The comparison made, therefore, between light-colored and dark-colored woods in Table 1 gave an apparent tendency that the former shows (1) less extractives by organic solvents, (2) higher permeability for liquid such as water, and (3) higher susceptibility to fungal attack such as decay and blue stain than those of the latter. Thus, the wood color can be regarded as a useful criterion in classifying logs of many different species with respect of these properties.

Table 2. Species grouping by density and lightness of color

Number of species							
Light color	Dark color	Total					
9	1	10					
11	13*	24*					
1	8*	9*					
21	21	42					
	Light color 9 11 1	Light Dark color Color 9 1 11 13* 1 8*					

* *Pometia* is counted as a species in each number with asterisk

By grouping 42 species tested in this study according to their basic density and lightness of color, Table 2 was obtained. It shows that the low density range is dominated by lightcolored woods whereas the higher density range is dominated by dark-colored woods, with the medium density range composed of both light and dark-colored woods.

2) Workability

Based on results of the test for sawing and processing of lumbers, easiness of machining, drying, gluing, etc., was estimated as shown in Table 3. No particular difficulties were observed with sawing, except a sample No. 214, a high density wood. In kiln drying, No. 1, 17, 18, 208, etc. were apt to collapse, No. 10, 215, etc. surface check, No. 20, 203,

178

Sample No.		1) Workability						2) Plywood making			Boa	ard m	3) aking	4) Pulping	Char-
	11	12	13	14	15	16	17	21	22	23	31	32	33	42	coal making
2 15 29 8 16 1 202 218 22 217	000×000000	00000 x 0000	001000000	00×0000000	000000000000000000000000000000000000000	×× ×× ×× ×× ×× ×× ×× ××	0000000000	0 × × × 0 × × 00 ×	0000 × × × 000	0 × × 0000 × 00	*** *** *** *** *** ***	0 × × 0 × 0 × × 00	0×000×0000	× × 000 × 0000	* * * * * * * * * *
204 12 21 6 213 11 28 203 27 212	0×00000000	1000000×00	00000×0000×	0000 00000	0000100000		0000100000	- × 00000000	1000×00000	x 0000 x	1000×0000×	10×0100×00	× × 0 00000	1000100000	× × × × × × × ×
7 5 9 18 211 207 30 19 23 3	00000100000	00000×0000	×00××10000	0000000××00	0000 × 0 × 0000	× × × × × × × × × × × × × × × × × × ×	00000100000	000 x 0 0 x 00	0000 × 10000	000 × 10000	0000 ×000	00×00 ×000	0×0×100000	0000 × ×0×0	× × × × × × × × ×
20 201 4 17 26 208 205 14 220 219	000000000000000000000000000000000000000	** * 000 * 00 * 0	×001010010	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* * 000	×× ×× ×× ×× ×× ×× ×× ×× ××	010001000	010×010010	0 000 ×0 0	x 00 00 x x	0 0 x x x 0 x x	0 000 x 0 x	x 00 x 0 x 0	×000×10×10	× × × × × × × O
215 209 216 13 206 25 24 210 10 214	0 00000 x x x	0000100001	01001×××0×	0×00000000	0000×000×0	× × × × × × × × × × × × × × × × × × ×	00×× 00××	110001010	× 101000111	0101×1010	0 0 × 00 × 0 × × ×	010×1××001	x 00 x x 00	× × 0 × × 0 ×	1000010010

Table 3. Workabilities and suitabilities for the products making

- Notes 1) Process No. 11: Band sawing, 12: Kiln drying, 13: Planing, 14: Gluing, 15: Finishing, 16: Wood bending, 17: Nailing
 - 2) Process No. 21: Rotary veneer cutting, 22: Veneer drying, 23: Veneer gluing
 - Process No. 31: Particleboard making, 32: Cement board making, 33: Wet process hardboard making
 - 4) Process No. 42: Sulphate pulping

 (), × or (×), ×× or (××) denote "suitable", "possible", "difficult" respectively.
 In veneer gluing, × and ×× indicate any difficulty in urea resin gluing, whereas (×) and (××) those in phenolic resin gluing.

208, etc. honey comb, and No. 20 and 208 required extremely long drying time. In planing, torn grain was observed with No. 20, 24, 25, 210, etc., raised grain with No. 17, 18, etc., and marked blunting of knife edge with No. 214.

Curing of coated varnish (an unsaturated polyester resin) in the finishing took especially long time with No. 20 and 207, and the extratcives responsible for this trouble were identified. Wood bending was generally difficult, but No. 23—26, and 215 were found to belong to the group with relatively easy bending. In driving common nail, it was recognized that the higher the wood density the more the occurrence of splits was.

3) Plywood making

As to the rotary veneer cutting, woods with medium density were judged best because of the easiness of cutting and veneer quality. However, No. 17-19 hardly gave good veneers in spite of their medium density, whereas No. 23-26 showed good test results in spite of their relatively high density. In veneer drying, the drying duration was influenced by water content/cm3 of green wood, etc., and the longest duration shown by No. 213 was more than twice of the shortest one shown by No. 11. Some species, including No. 202, showed somewhat large warping. As to the bond strength of veneer, light-colored woods such as No. 29, 213, 219 etc. when urea resin was used, and dark-colored woods like No. 4, 20, etc. when phenolic resin was used showed slightly low values.

4) Manufacturing boards

In the test for manufacturing particleboard, many troubles occurred when low density or high density woods were used as the raw material, showing greater differences among species in manufacturing easiness and quality of products than in the case of wet process hardborad. However, the material composed of different woods mixed at the rate of species components in the forest gave a good quality for the above two kinds of board, dry process fiberboard and fiber molding. Inhibited hardening of cement in the manufacturing of cement-woodpowder blocks occurred more frequently with light-colored woods.

5) Pulping and charcoal making

As no species showing particular difficulties for pulping by sulphate method was found, all species were regarded eligible to be used as the raw material for paper-making pulp. Sulphate pulp and neutral sulphite semi-chemical pulp produced from mixed species were also very good in their quality.

In charcoal making, it was made clear that hard charcoal for domestic or industrial use can be produced from woods with basic density higher than 550 kg/m^3 , and soft charcoal as the raw material for charcoal briquettes can be produced from other woods.

Conclusion

Regarding the industrial utilization of woods of New Britain Island, it may be concluded as follows:

Almost all species can be used for sawlogs, but light-colored woods should be treated to control fungus and insect damages immediately after the conversion. Tree species which aptly cause troubles in processing such as drying and so on may have a limited scope of

180

utilization, unless processing methods could be improved.

For plywood, species belonging to the group of medium density, dark-colored woods are generally suitable. Several species even among light-colored woods are also suitable. Low density woods can be used for core stock. Among the high density woods, those with good appearance are used for sliced veneer, and others are used for sawlogs.

Almost all species can be used as the raw material for making various kinds of board or for pulping as far as the mixed species are employed. However, attention must be called to the processing conditions or mixing rate of species in the manufacturing of particleboard and cement-woodpowder blocks when the species which aptly cause troubles are used. Charcoal making from high density woods having less utility value is considered to be able to establish a small scale local industry.

References

- Working group on utilization of tropical woods: Properties of some Papua New Guinea woods relating with manufacturing processes, I-V, Bull. Govt. Forest Exp. Sta., No. 292, 27, 97 (1977), No. 294, 1, 51 (1977), No. 295, 53 (1977).
- Working group on utilization of tropical woods: Properties of some Papua New Guinea woods relating with manufacturing processes, VI—IX, Bull. Forestry and Forest Products Inst., No. 299, 23, 85, 105, 151 (1978).

(Received for publication, February 6, 1980)