Behavior of the Early Products of Photosynthesis in C₃- and C₄-Plants

By Yoshio YAMADA

Faculty of Agriculture, Kyushu University

Since it is said, that the population of the world may double at the end of this century and the hunger problem should become more severe in the world, we hold ourselves responsible for the increase of the agricultural productivity to prevent this crisis.

Reclamation, irrigation and improvement of soil are the most important methods to get more production, especially in developing countries. Genetic methods and using fertilizers and pesticides are also very effective to increase production.

However, the yields may have already reached a zenith in the developed districts by those methods.

In these districts, increasing the efficiency of the photosynthesis in the leaves of the crop is one of the possible methods to raise agricultural productivity¹⁾.

Higher plants can be classified for the rate of net photosynthesis per unit leaf area at high light intensities in normal air into two groups such as efficient species (C₄-plants) and inefficient species (C₃-plants). During the last decade, there was great progress of the comparative studies on the photosynthesis between C_4 and C_3 -plants. Table 1 shows the various photosynthetic characteristics of these species, which were published by many workers²⁾.

It is a prerequisite to understand the intrinsic nature of the mechanism of photosynthesis and photorespiration to control them and to increase the net photosynthesis rate. The present paper is a synopsis which has been under study regarding the photosynthesis and photorespiration in C_{3-} and C_{4-} plants in our laboratory.

Metabolism of glycolate in C_3 -and C_4 -plants

The glycolate pathway proposed by Kisaki and Tolbert is believed to be a main mechanism of photorespiration³⁾, but another pathway of glycolate metabolism is claimed by Zelitch⁴⁾.

The influence of light and oxygen on the evolution of ¹⁴CO₂ from glycine-1-¹⁴C and glycine-2-¹⁴C were examined in the tomato (*Lycopersicon esculentum Mill.*, C₃-plant) and

able i. I notosynthetic characteristics of the Og- and Og-plan	lable	1.	Photosynthetic	characteristics	of	the	C3-	and	C4-plan
--	-------	----	----------------	-----------------	----	-----	-----	-----	---------

(adapted	fugne	Diada
lauableu	TUDIN	DIACKI

		(adapted from Black)
Characteristic	C ₃ -plants	C ₄ -plants
Kranz type of leaf anatomy	No	Yes
Compensation point (ppm CO ₂)	30—70	0—10
Saturation of net photosynthesis to the light intensity	1/2-1/3 of full sunlight	Tending to saturate at full sunlight
Maximum growth rate gr/dm ² /hr	0.5-2	4 5
Net photosynthesis rate mg CO2/dm2/hr	15—40	4080
Photorespiration	Present	Difficult to detect
Major carboxylation reaction	RuDP carboxylation	PEP carboxylation and RuDP carboxylation

Leaves	¹⁴ CO ₂ evolution 1rom glycine-1- ¹⁴ C	¹⁴ CO ₂ evolution from glycine-2- ¹⁴ C		
	% of total ¹⁴ C incorporated			
Light, O ₂ 21%: Tomato	12, 23	6.05		
Maize	4.08	1.52		
Light. O. 100% : Tomato	29.24	24.57		
Maize	5.40	1.09		
Dark, O. 21%: Tomato	35, 48	1.45		
Maize	59.10	4.81		

Table 2. ¹⁴CO₂ Evolution from glycine-1-¹⁴C or glycine-2-¹⁴C supplied to tomato and maize leaves and the influence of light and oxygen on the CO₂ evolution

Substrates were fed to tomato and maize for 60 min at 30°C

maize (*Zea mays L.*, C₄-plant) leaves to study whether the photorespiration occurred only by the glycolate pathway.

As shown in Table 2, a considerable evolution of ${}^{14}\text{CO}_2$ was detected from glycine-2-"C and it was accelerated by light and oxygen. And the influence of the addition of glycine on the evolution of ${}^{14}\text{CO}_2$ from glycolate-1-"C was examined in the tomato and maize leaves in the light. The evolution of ${}^{14}\text{CO}_2$ was strongly inhibited in the maize leaves but unexpectedly there was no effect in the tomato leaves. As proposed by Zelitch these results show that the mechanism of glycolate metabolism may exist in C₃-plants besides the glycolate pathway, which is accelerated by light and oxygen⁵⁰.

Fate of C_4 -dicarboxylic acid in C_3 -and C_4 -plants

The transfer of the C-4 of malate-4-14C to

PGA in the maize and tomato leaves was studied. This transfer occurred only in the maize leaves in the light⁶). To ascertain the light dependence of the transformation from aspartate-¹⁴C(U) via PGA was examined in the maize leaves. The activity in sugar increased with the increase of light intensity, and more than 45% of the activity supplied was recovered in sugar fraction at 30 k lux as shown in Table 3^{79} .

The transformation of the C₄ compounds to sugar was apparently light dependent reactions, but the large value cannot be explained by the C₄-pathway theory proposed by Hatch et al., and suggests the possibility of the incorporation of the three carbons except C-4 of C₄-compounds into sugar.

The effect of the oxygen on the sugar formation from C₄-dicarboxylic acid was studied in the maize leaves at 50 k lux. The sugar formation from malate-¹⁴C(U) under aerobic condition was 3 times larger than that under

Table 3. The effect of the light intensity on the sugar formation from exogenous $Asp^{-14}C(U)$ fed to the maize leaves

Data for each fraction were given as % of the total metabolized. 0.5μ Ci Asp-¹⁴C(U) was fed for 30 min to maize leaves in an atmosphere of CO₂-free air under several light intensities. Illumination was provided by a bank of 100-watt incandescent lamps

Light		Soluble fraction		Residue		Total	
k lux	CO_2	a.a. (% of to	org. a. otal ¹⁴ C incor	sugar porated)	a.a.	sugar	sugar
5.0	1.57	48.0	26, 5	15.6	4.4	4.0	19.6
12.5	0.98	53.9	11.1	21.0	5.6	8.6	29.6
25.0	0.20	37.0	16.9	31.0	7.3	7.2	38.2
30.0	0.70	47.9	8.8	43.3	3.1	1.8	45.1

Table 4. Metabolism of malate-¹⁴C(U) by maize leaves under aerobic and anaerobic conditions. The feedings were carried out for 30 min in the light. Illumination was provided by a 1,000-watt projection lamp. Light intensity was 50 k lux at the leaf surface

Metabolic intermediates	CO ₂ -free air	N ₂ gas
CO2	0.2	1.2
Sugar	43.8	13.2
Malate	28.6	46.5
Aspartate	3.6	5.7
Phosphate ester	0.2	-
Alanine	16.2	30.9
Glutamate	1.7	
Citrate	0.8	
Fumarate+succinate	2.0	1.5
Glycine+Serine	1.5	0.000
Glycolate	1.0	
Others	0.3	0.4

anaerobic condition as shown in Table 4. However in the case of malate-4-¹⁴C, there was no detectable difference of the sugar formation between two conditions. These results show that the three carbons except C-4 of C₄compounds were also utilized for the sugar formation in the normal air⁸.

Fate of C₃-compound in C₃-and C₄-plants

The sugar formation from alanine-1-¹⁴C under anaerobic condition was examined in the maize and rice (*Oryza sativa*, Cs-plant) leaves. Sugar was formed from alanine-1-¹⁴C in maize leaves but not in rice leaves under anaerobic condition.

As the TCA cycle does not work under this condition, ¹⁴CO₂ may not be evolved from TCA cycle. Accordingly the sugar formation from alanine-1-¹⁴C might occur via pyruvate \rightarrow PEP \rightarrow PGA by the backward glycolysis reaction, as the mesophyll cell in maize leaves has a characteristic enzyme to form PEP from pyruvate (Pyruvate Pi-dikinase)⁸⁾.

The influence of oxygen on the evolution of ${}^{14}CO_2$ and the sugar formation from

alanine-1-¹⁴C was was examined in C₃-plants (*Oryza sativa*, *Phalaris arundinacea*, *Panicum disculcatum*) and C₄-plants (*Eragrostis ferrunginea*, *Zoysia japonica*). The evolution of $^{14}CO_2$ increased with the augmentation of the ambient oxygen concentration, whereas the radioactivity was quite low in sugar fraction in C₃-plants.

On the contrary, the evolution of ${}^{14}CO_2$ was very slow and it was slightly affected by the ambient oxygen concentration but the sugar formation was stimulated with the increased concentration of oxygen as shown in Fig. 1.

Fig. 1. Metabolism of alanine-1-14C by excised leaves of *Gramineaes* under various O₂ concentrations

This indicates that CO_2 fixation is inhibited in the high concentration of ambient oxygen; hence, the internal ¹⁴CO₂ due to dark respiration is not refixed and released from the leaves in C₃-plants.

However, internal ¹⁴CO₂ can be efficiently refixed by a PEP carboxylase (with low Km)

in the mesophyll cell, and then metabolized to sugar in the bundle sheath cell of C₄-plants⁹.

Inhibition of TCA cycle by the light has been reported by many workers¹⁰, however, the feeding experiments of labelled compounds showed that TVA cycle activity in detached leaves was not inhibited to any extent, dark respiration was sufficiently preserved during photosynthesis and they were rather closely connected with each other.

We presumed from the above results that the following pathways function in the photosynthetic sugar formation in C₄-plants as shown in Fig. 28). 1) C-4 of C4-dicarboxylic acid is transferred to RuDP, resulting in the formation of PGA and is metabolized to sugar. 2) After the transfer of C-4 of C4-dicarboxylic acid, the remaining three carbons are introduced into TCA cycle and completely degraded there, and so the produced CO2 is refixed by PEP carboxylase in the mesophyll cell and metabolized to sugar via the same pathway as in atmospheric CO₂ fixation. 3) The remaining C3-compound is changed to PEP by pyruvate Pi-dikinase, and a part of PEP directly converts to sugar via PGA by the backward glycolysis and the rest acts as an acceptor of CO2. 4) The shortage of Ca-compounds may be supplemented from sugar by glycolysis.

Internal evolution of CO₂ and leaf anatomy

The evolution of ¹⁴CO₂ from asparate-¹⁴C(U) and alanine-1-¹⁴C was examined under various light intensities in three C₄-plants (*Paspalum* urvillei, Eragrostis ferrunginea and Zoysia japonica).

At high light intensities, the evolution of ${}^{14}CO_2$ correlated with the thickness of mesophyll layers surrounding the vascular bundle sheath. The thicker the mesophyll layers, the smaller the evolution of ${}^{14}CO_2{}^{80}$.

This evidence supported the theory that the mesophyll layers played a vital role for refixation of the internal CO_2 in the light in C_4 -plants as mentioned above.

Accordingly, the apparent lack of photorespiration in C₄-plants results at least in part from refixation of the CO_2 by PEP carboxylase in the mesophyll layers.

Conclusion

1) The metabolic pathway of glycolate, which evolves CO_2 from C-2 of glycolate, may also exist in C₃-plants besides the glycolate pathway. And this pathway may also play a role of the photorespiration.

JARQ Vol. 8, No. 3, 1974

2) TCA cycle is sufficiently preserved even in the light; accordingly the respiration in the light should be considered both of the dark respiration and photorespiration (as a narrow meaning).

3) Actually, each of the photosynthesis and respiration doesn't work independently in the leaves in the light and they are rather closely connected with each other.

4) It is assumed that the actual form of C_4 -pathway in an intact leaf is a combination of the complicated reactions which include glycolysis and TCA cycle besides the pathway proposed by Hatch et al.

5) The C₄-plants release CO_2 with very slow rates and show a greater productivity, as the PEP carboxylase in the mesophyll cell of those plants refix the internal CO_2 evolved by the respiration in the light.

References

 Yamada, Y.: Behavior of the early products of photosynthesis, Kali Symposium. 1971, Tokyo, Kali Kenkyukai, 155-175 (1972).

- Black, C. C. Jr.: Photosynthetic carbon fixation in relation to net CO₂ uptake. Ann. Rev. Plant Physiol., 24, 253-286 (1973).
- Kisaki, T. & Tolbert, N. E.: Glycine as a substrate for photorespiration. *Plant Cell Physiol.*, 11, 247-258 (1970).
- Zelitch, I.: Comparison of the effectiveness of glycolic acid and glycine as substrates for photorespiration. *Plant Physiol.*, 50, 109-113 (1972).
- 5) Ono, S. & Yamada, Y.: Unpublished.
- Imai, H., Yamada, Y. & Harada, T.: Comparative studies on the photosynthesis of higher plants. Soil Sci. Plant Nutr., 17, 110-114 (1971).
- Imai, H., Yamada, Y. & Harada, T.: Comparative studies on the photosynthesis of higher plants. Soil Sci. Plant Nutr., 18, 133-141 (1972).
- Imai, H., Iwai, S. & Yamada, Y.: Unpublished.
- Imai, H. et al.: Soil Sci. Plant Nutr., 19, 61-71 (1973).
- Santarius, K. A. & Heber, U.: Changes in the intracellular level of ATP, ADP, AMP and Pi and regulatory function of the adenylate system in leaf cells during photosynthesis. *Biochim. Biophy. Acta*, 102, 39-54 (1965).