Biological Nitrification Inhibition (BNI)-Technology

Tackling Agricultural Greenhouse Gas Emissions

A Genetic-Mitigation Strategy

GV Subbarao JIRCAS, Japan

Collaborators & Partners CIAT CIMMYT ICRISAT CCAF

Global GHG emissions

Monetization of climate effects using "the best available science and economics"

Cost of Global damage from GHG emissions estimated at \$US 2450 billion y⁻¹ (\$US 2.45 trillion y⁻¹)

Agriculture alone is responsible for 14 Gt CO₂.eq.y⁻¹ About 24% of total GHG emissions

A major portion (80%) of agricultural GHG emissions are associated with **Production and Use of N-fertilizers**

(based on life-cycle analysis, which is energy and carbon intensive)

The social cost of 14 Gt of GHG emissions from agriculture is \$US 700 billion y⁻¹

Global food production has doubled from 1960 – 2000 Nitrogen fertilizer consumption increased 10-fold

Nitrification and denitrification

are the primary drivers for generation of

Intensification of agricultural practices led to acceleration of nitrification in modern production systems

Switch to low-nitrifying agricultural systems

How to achieve low-nitrifying agricultural soils?

Concept of Biological Nitrification Inhibition (BNI)

В

How to engineer a plant function into Technology & Research Strategy

Characterization of BNI function

- •Strength of BNIs production in crops/pastures
- •Genetic variability in BNI-trait
- •Chemical-identity of BNIs
- •How stable are BNIs?
- •Soil conditions influence on BNIs functioning
- •BNI concentration required in soil to be effective
- •Effectiveness in tropics *vs* temperature environs
- •Regulatory mechanisms for BNI release
- •Mode of inhibitory action
- •Negative effects on soil microbial community

Plants produce a cocktail of BNIs to suppress nitrifying bacteria *Nitrosomonas*

How much BNI-activity is released from root systems of *B. humidicola?*

B. humidicola roots can release 2.6 to 7.5 million BNI activity d⁻¹ ha⁻¹

- Active root biomass in a long-term BH pasture being 1.5 Mg ha⁻¹ • (Root mass up to 9.0 Mg ha⁻¹ has been reported in BH pastures)
- BNI release rates can be 17 to 50 ATU g⁻¹ root dry wt. d⁻¹
- Estimated BNI activity release d⁻¹ could be 2.6 x 10⁶ to 7.5 x 10⁶ ATU

```
(CIAT 679) (CIAT 26159)
```

- •1 ATU being equal to 0.6 μg of nitrapyrin
- This amounts to an inhibitory potential equivalent to the application of 6.2 to 18 kg of nitrapyrin application ha⁻¹ yr⁻¹

Can we breed for high-BNI capacity in food- and -feed crops? Developing low-nitrifying and low-N2O emitting systems

JIRCAS Arris

Brachiaria pastures suppressed N_2O emissions from the field Can BNI function in plants be exploited to develop low- N_2O emitting systems then?

Cumulative N₂O emissions (mg of N₂O N per m² per year) from field plots of tropical pasture grasses (monitored monthly over a 3-year period, from September 2004 to November 2007)

©2009 by National Academy of Sciences

Subbarao G V et al. PNAS 2009;106:17302-17307

Nitrogen excreted (from urine) from grazing animals

from managed grasslands (9 million km²) is estimated at

>120 Tg N y⁻¹

Can BNI-enabled pastures help reducing N_2O emissions from these grazing systems?

1800 million livestock units; 182 to 392 g N excreted per animal d⁻¹ Equal to synthetic Nitrogen fertilizer to global agricultural systems

Source: Saggar et al. 2005

Developing BNI-enabled crop/pasture varieties?

1.11. A store M

Sorghum-BNI characterization at a field site in ICRISAT, India

Sorgoleone phenotyping of mini-core sorghum germplasm (231 lines) - 2015

Breeding for high-sorgoleone producting sorghum cultivars - Feasible?

Mini-core Sorghum germplasm lines

Sorgoleone additions to the soil suppressed N₂O emissions

High-sorgoleone producing genetic stocks suppress N_2O emissions better than low-sorgoleone producing genetic stocks?

Breeding for high-sorgoleone production could a proxy to develop low- N_2O emitting sorghum cultivars?

High-sorgoleone germplasm line has 50% lower N₂O emissions compared to low-sorgoleone producing germplasm

<u>Germplasm</u> line

collected from

Yemen

140

120

Wild-wheat has high-BNI capacity

JIRCAS-CIMMYT partnership

Leymus does not release BNI when grown with NO_3^{-} -N where pH of RE-collection solution will be of >6.0

Benefits from Genetic-Mitigation using BNI-Technology

- •Cost effective and Scalable
- •Delivery of BNIs precise and effective
- •Cocktail of inhibitors from BNIs more stable effect
- •No negative environmental consequences
- •No health issues on food or feed quality
- •Improve soil-N-retention and fertility

Portfolio of current technologies to reduce nitrification and N₂O emissions

•Synthetic nitrification inhibitors

- •Urease inhibitors
- •Slow-release nitrogen fertilizers
- •Polythene-coated nitrogen fertilizers
- •Split-Nitrogen applications
- •Precision farming 'Green-seeker' technology
- •AWD (alternate wetting and drying) for paddy rice systems

BNI-technology could become part of portfolio of technologies to address GHG emissions from agriculture

Developing novel Mitigation-technologies *critical to reduce GHG emissions from agriculture*

Source: IPCC AR5 synthesis report

Paris-Climate Agreement Signed in 2015

"... holding the increase in the global average temperature to well below 2 °C above preindustrial levels and pursuing efforts to limit the temperature increase to 1.5 °C"

The smart way to address climate change is through Innovation

Energy Production and Transport Sectors Solar-electricity, Hybrid Cars, Electric cars are some of the GHG reducing technologies emerged recently

Reducing GHG emissions from Agriculture reduces N-pollution, N-fertilizer consumption, improve soil fertility and sustainability of production systems

Low N_2O emission systems are a 'WIN WIN' situation for both environment and for Agriculture

Funding support for BNI Research

MAFF MOFA – CGIAR Collaborators CRP-WHEAT JIRCAS-President's special grants JSPS Research Grants

Thank You for the attention

Arctic is melting fast Time for action from Agricultural Scientific Community

Huge waterfall spouting from the ice edge of Brasvell Glacier – Getty image