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Global GHG emissions 
Monetization of climate effects using “the best available science and economics”

*49 Gt of CO2 eq.yr-1
2004 data; Nature 2011
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1 Gt = 1 billion tons
IWG = Interagency Working Group on Social 
cost of GHG
Cost of global damage from GHG is  

$50 t-1 CO2*
*based on IWG recent estimate 
(Science 2017, 357:655)

Cost of Global damage from GHG emissions estimated at  

$US 2450 billion y-1 ($US 2.45 trillion y-1) 
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A major portion (80%) of agricultural GHG emissions are associated with 

Production and Use of N-fertilizers
(based on life-cycle analysis, which is energy and carbon intensive)

Agriculture alone is responsible for 14 Gt CO2.eq.y-1
About 24% of total GHG emissions

The social cost of 14 Gt of GHG emissions from agriculture is 

$US 700 billion y-1
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Why NUE is <30% in most agricultural systems?
Uncontrolled rapid nitrification in 

agricultural soils

Global food production has doubled from 1960 – 2000
Nitrogen fertilizer consumption increased 10-fold

Nearly 70% of the N fertilizer applied is lost to the 
environment

Amounts to a direct annual economic loss of 

US$ 90 billion*
[*based on - a) world annual N fertilizer production is 150 million Mg; b) 0.45 US$ kg-1 urea]

Nitrogen fertilizer consumption worldwide in 2010 

>120 Tg (million metric tons)

Energy cost of nitrogen fertilizer – 1.8 to 2 L diesel oil per 
kg N fertilizer

1.70 billion barrels of diesel oil 
(energy equivalent) is needed to produce this nitrogen 

fertilizer
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Tillman et al. 2011
PNAS 108:20260-20264

Based on Khalil and Rasmussen 1988
Annals of Glaceology 10:73-79

N-fertilizer 
usage to 

reach 250 
Tg yr-1

N2O 
emissions 

double from 
2011 levels
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How to achieve low-nitrifying agricultural soils?

Switch to low-nitrifying agricultural systems
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BNI Concept
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Concept of Biological Nitrification Inhibition (BNI)

BNI-Mitigation Technology?
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A Genetic-Mitigation Strategy
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Characterization of BNI function

Strength of BNIs production in crops/pastures
Genetic variability in BNI-trait
Chemical-identity of BNIs
How stable are BNIs?
Soil conditions influence on BNIs functioning
BNI concentration  required in soil to be effective
Effectiveness in tropics vs temperature environs
Regulatory  mechanisms for BNI release 
Mode of inhibitory action
Negative effects on soil microbial community

How to engineer a plant function 
into 

Technology & Research Strategy
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BNI activity added to the soil (AT g-1 soil)
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Release rates
Stability

ED50
Determines

Effectiveness of BNI function in the field
BNIs can provide stable inhibitory effect on soil nitrification
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Methyl p-coumarate Methyl ferulate

Methyl 3-(4-hydroxyphenyl)propionate

Root exudate

Root exudate

Root exudate

Root exudate

Root  tissue Root  tissue

Root  tissue Root  tissue

Sorgoleone

Sakuranetin

Brachialactone

Linoleic acidα-linoleic acid

BNIs isolated from sorghum BNIs isolated from B. humidicola

Plants produce a cocktail of BNIs to suppress nitrifying bacteria
Nitrosomonas
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AMO blocker

AMO & HAO blocker
ET disruptor

AMO & HAO blocker

AMO blocker

AMO & HAO blocker



How much BNI-activity is released from root systems of B. humidicola?
An assessment

• Active root biomass in a long-term BH pasture being 1.5 Mg ha-1 
•(Root mass up to 9.0 Mg ha-1 has been reported in BH pastures)

• BNI release rates can be 17 to 50 ATU g-1 root dry wt. d-1

• Estimated BNI activity release d-1 could be 2.6 x 106 to 7.5 x 106 ATU
(CIAT 679)           (CIAT 26159)

•1 ATU being equal to 0.6 µg of nitrapyrin

• This amounts to an inhibitory potential equivalent to the 
application of 6.2 to 18 kg of nitrapyrin application ha-1 yr-1

Does it work in the field?

BNI
Mitigation 
Technology

B. humidicola roots can release 2.6 to 7.5 million BNI activity d-1 ha-1
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Can we breed for high-BNI capacity in food- and -feed crops?
Developing low-nitrifying and low-N2O emitting systems

Cumulative N2O emissions (mg of N2O N per m2 per year) from field plots of tropical pasture grasses 
(monitored monthly over a 3-year period, from September 2004 to November 2007)

Subbarao G V et al. PNAS 2009;106:17302-17307
©2009 by National Academy of Sciences

Brachiaria pastures suppressed N2O emissions from the field
Can BNI function in plants be exploited to develop low-N2O emitting systems then? 

BNI capacity in root systems – Field plots

No BNI
capacity

Highest BNI
capacity

BNI-Mitigation 
Technology

BNI
Biological Nitr i fication Inhibi t ion



JIRCAS-NARO International Symposium on 
Agricultural Greenhouse Gas Mitigation, 

31st August 2017, Tsukuba, Japan

Nitrogen excreted (from urine) from grazing animals 
from managed grasslands (9 million km2) is estimated at 

>120 Tg N y-1

1800 million livestock units; 182 to 392 g N excreted per animal d-1

Equal to synthetic Nitrogen fertilizer to global agricultural systems
Source: Saggar et al. 2005

Can BNI-enabled pastures help reducing N2O emissions from these grazing systems?
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Sorghum-BNI characterization at a field site in ICRISAT, India

JIRCAS-ICRISAT Collaboration

Hydrophilic BNIs released 
from sorghum roots

Developing BNI-enabled crop/pasture varieties?



Mini-core Sorghum germplasm lines
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Sorgoleone phenotyping of mini-core sorghum germplasm (231 lines) - 2015

Highest sorgoleone producing germplasm

Germplasm line
Collected from Niger, WA

PVK 801

296-B
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Breeding for high-sorgoleone producting sorghum cultivars - Feasible?

Sorgoleone-capacity 
in elite-breeding lines
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BNI-Mitigation 
Technology

High-sorgoleone producing genetic stocks suppress N2O emissions better than low-sorgoleone producing genetic stocks? 
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High sorgoleone producing sorghum 
genetic stocks have low N2O emissions?

Sorghum germplasm lines
IS 32087 IS 20762
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IS 32087 IS 20762

High-sorgoleone germplasm line has 50% 
lower N2O emissions compared to 
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Breeding for high-sorgoleone production could a proxy to 
develop low-N2O emitting sorghum cultivars?



Nobeoka Chinese Spring

L. racemosus

Wild-wheat has high-BNI capacity

Leymus racemosus

Leymus does not release BNI when grown with 
NO3

--N where pH of RE-collection solution will 
be of >6.0

RE 
collection

pH 4.0

RE 
collection

pH 7.5

JIRCAS-CIMMYT partnership
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BNI-Mitigation 
Technology
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Benefits from Genetic-Mitigation using BNI-Technology 

Cost effective and Scalable 
Delivery of BNIs - precise and effective 
Cocktail of inhibitors from BNIs – more stable effect 
No negative environmental consequences
No health issues on food or feed quality
Improve soil-N-retention and fertility
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Portfolio of current technologies 
to reduce nitrification and N2O emissions

Synthetic nitrification inhibitors
Urease inhibitors
Slow-release nitrogen fertilizers
Polythene-coated nitrogen fertilizers
Split-Nitrogen applications
Precision farming – ‘Green-seeker’ technology
AWD (alternate wetting and drying) for paddy rice systems

BNI-technology could become part of portfolio of technologies to address 
GHG emissions from agriculture
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Developing novel Mitigation-technologies 
critical to reduce GHG emissions from agriculture 

With substantial 
mitigation

Without
additional
mitigation

Change in average surface temperature (1986–2005 to 2081–2100)

Source: IPCC AR5 synthesis report BNI
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Paris Climate Agreement signed in 2015 calls to hold the global average 
temperature to <2C above preindustrial levels by for 80% reduction in GHG 

emissions from current levels by 2050



“ . . . holding the increase in the global average temperature to well below 2 °C above 
preindustrial levels and pursuing efforts to limit the temperature increase to 1.5 °C”

Paris-Climate Agreement Signed in 2015



Funding support for BNI Research
MAFF 

MOFA – CGIAR Collaborators
CRP-WHEAT

JIRCAS-President’s special grants
JSPS Research Grants

The smart way to address climate change is through 

Innovation

Reducing GHG emissions from Agriculture reduces N-pollution, N-fertilizer 
consumption, improve soil fertility and sustainability of production systems  

Low N2O emission systems are a ‘WIN WIN’ situation 
for both environment and for Agriculture

Energy Production and Transport Sectors
Solar-electricity, Hybrid Cars, Electric cars are some of the GHG reducing technologies 

emerged recently
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Arctic is melting fast
Time for action 

from Agricultural Scientific Community

JIRCAS

BNI
Biological Nitr i fication Inhibi t ion

Thank You for the attention

Huge waterfall spouting from the ice edge of 
Brasvell Glacier – Getty image

https://www.treehugger.com/slideshows/clean-technology/7-terrifying-global-warming-pictures/page/9/
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