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Global GHG emissions

Monetization of climate effects using ““the best available science and economics™

3%

" Waste and waste water

Agriculiure and forestry L
* Industry 1 Gt =1 billion tons

" Energy supply IWG = Interagency Working Group on Social
* Transpoit cost of GHG

= Buildings Cost of global damage from GHG is

$50 t1 CO,*
*hased on IWG recent estimate
(Science 2017, 357:655)

*49 Gt of CO, eq.yr?

2004 data; Nature 20117

Cost of Global damage from GHG emissions estimated at

$US 2450 billion y- ($US 2.45 trillion y1)
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Agriculture alone is responsible for 14 Gt CO,.eq.y!
About 24% of total GHG emissions

A major portion (80%) of agricultural GHG emissions are associated with

Production and Use of N-fertilizers

(based on life-cycle analysis, which is energy and carbon intensive)

The social cost of 14 Gt of GHG emissions from agriculture is

$US 700 billion y-!
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Global food production has doubled from 1960 — 2000

Nitrogen fertilizer consumption increased 10-fold
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Nitrogen fertilizer consumption worldwide in 2010 < d
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Nearly 70%6 of the N fertilizer applied is lost to the
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Nitrification and denitrification

are the primary drivers for generation of

Plant N uptake &
Assimilation

>80% of global N,O
emissions
IS generated from Farming

Nitrification %" Denitrification
(NH4.N03_) (NO3_----N2)-
Nitrosomonas \ >15 groups of bacteria
Archaea and fungi use NO3-as
Nitrobacter source of energy
itrifi i e " i Anagrobic process
Nitrification T Aerobic process
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Intensification of agricultural practices led to

acceleration of nitrification in modern production
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Switch to low-nitrifying agricultural systems

How to achieve low-nitrifying agricultural soils?
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Concept of Biological Nitrification Inhibition (BNI)

N lost from agricultural system

N,O, NO and N2
Denitrification

BNI Concept
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How to engineer a plant function Q)
into

Technology & Research Strategy

Characterization of BNI functio

® Strength of BNIs production in crops/pastures
®Genetic variability in BNI-trait
®Chemical-identity of BNIs

®How stable are BNIs?

@ Soil conditions influence on BNIs functioning

®BNI concentration required in soil to be effective
@ Effectiveness in tropics vs temperature environs
®Regulatory mechanisms for BNI release

®Mode of inhibitory action

®Negative effects on soil microbial community
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Release rates
Stability
ED;,

Determines

Effectiveness of BNI function in the field

BNIs can provide stable inhibitory effect on soil nitrification
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Plants produce a cocktail of BNIs to suppress nitrifying bacteria

Nitrosomonas

BNIs isolated from sorghum BNIs isolated from B. humidicola
o—

AMO blocker HOWO
A S

Methyl 3-(4-hydroxyphenyl)propionate

AMO blocker

Root exudate

AMO & HAO blocker AMO & HAO blocker

ET disruptor
Sorgoleone

Root exudate

H,CO
AMO & HAO blocker \E;?
OH o
Sakuranetin a-linoleicacid Linoleicacid
— —.
Root exudate Root tissue Root tissue
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How much BNI-activity is released from root systems of B. humidicola?{

An assessment

B. humidicola roots can release 2.6 to 7.5 million BNI activity d! ha!

* Active root biomass in a long-term BH pasture being 1.5 Mg ha!
*(Root mass up to 9.0 Mg ha! has been reported in BH pastures)
* BNI release rates can be 17 to 50 ATU g root dry wt. d?

- Estimated BNI activity release d-1 could be 2.6 x 10 to 7.5 x 106 ATU
(CIAT 679) (CIAT 26159)
*1 ATU being equal to 0.6 ug of nitrapyrin

- This amounts to an inhibitory potential equivalent to the
application of 6.2 to 18 kg of nitrapyrin application ha1 yr-t
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Can we breed for high-BNI capacity in food- and -feed crops?
Developing low-nitrifying and low-N20O emitting systems

Brachiaria pastures suppressed N,O emissions from the field
Can BNI function in plants be exploited to develop low-N,O emitting systems then?
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Cumulative N,O emissions (mg of N,O N per m? per year) from field plots of tropical pasture grasses
(monitored monthly over a 3-year period, from September 2004 to November 2007)

©2009 by National Academy of Sciences
Subbarao G V et al. PNAS 2009;106:17302-17307 |E | ﬂ a is
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Nitrogen excreted (from urine) from grazing animals

from managed grasslands (9 million kn¥) is estimated at

>120 Tg N y-

Can BNI-enabled pastures help reducing N,O emissions from these grazing systems?
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Developing BNI-enabled crop/pasture varieties?

Hydrophilic BNIs release
from sorghum roots




Sorgoleone phenotyping of mini-core sorghum germplasm (231 lines) - 2015
Breeding for high-sorgoleone producting sorghum cultivars - Feasible?

Highest sorgoleone producing germplasm

Germplasm line
Collected from Niger, WA
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Sorgoleone additions to the soil suppressed N,O emissions

High-sorgoleone producing genetic stocks suppress N,O emissions better than low-sorgoleone producing genetic stocks?

N20 emission
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Germplasm line
collected from

Yemen

Germplasii: 'ine
collected from

High sorgoleone producing sorghum
genetic stocks have low N,O emissions?

Breeding for high-sorgoleone production could a proxy to
develop low-N,O emitting sorghum cultivars?
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Wild-wheat has high-BNI capacity

JIRCAS-CIMMYT partnership
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Benefits from Genetic-Mitigation using BNI-Technology

@ Cost effective and Scalable

®Delivery of BNIs - precise and effective

® Cocktail of inhibitors from BNIs — more stable effect
®No negative environmental consequences

®No health issues on food or feed quality

®|mprove soil-N-retention and fertility

JIRCAS-NARO International Symposium on
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Portfolio of current technologies @

to reduce nitrification and N,O emissions

@ Synthetic nitrification inhibitors

®Urease inhibitors

®Slow-release nitrogen fertilizers

®Polythene-coated nitrogen fertilizers

@ Split-Nitrogen applications

®Precision farming — ‘Green-seeker’ technology

® AWD (alternate wetting and drying) for paddy rice systems

BNI-technology could become part of portfolio of technologies to address

GHG emissions from agriculture

JIRCAS-NARO International Symposium on
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Developing novel Mitigation-technologies
critical to reduce GHG emissions from agriculture

Paris Climate Agreement signed in 2015 calls to hold the global average
temperature to <2C above preindustrial levels by for{ 80% reduction in GHG
emissions from current lev 2050

Without
additional

JIRCAS-NARO International Symposium on

Source: IPCC AR5 synthesis report ' Agricultural Greenhouse Gas Mitigation,
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Paris-Climate Agreement Signed in 2015 Q)

“ ... holding the increase in the global average temperature to well below 2 °C above
preindustrial levels and pursuing efforts to limit the temperature increase to 1.5 °C”

PRESIDENT | 7§



The smart way to address climate change is through |~

Innovation

Energy Production and Transport Sectors

Solar-electricity, Hybrid Cars, Electric cars are some of the GHG reducing technologies
emerged recently

Reducing GHG emissions from Agriculture reduces N-pollution, N-fertilizer
consumption, improve soil fertility and sustainability of production systems

Low N,O emission systems are a “WIN WIN’ situation
for both environment and for Agriculture

Funding support for BNI Research

MAFF
MOFA — CGIAR Collaborators
CRP-WHEAT
JIRCAS-President’s special grants
JSPS Research Grants (R International

_Consortium
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Thank You for the attention

Huge waterfall spouting from the ice edge of

Brasvell Glacier — Getty image


https://www.treehugger.com/slideshows/clean-technology/7-terrifying-global-warming-pictures/page/9/
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