JARQ 54 (1), 13-20 (2020) https://www.jircas.go.jp

Transcriptome Analysis of Two Strains of Aspergillus
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Abstract

The production process of such traditional Japanese fermented foods as miso, shoyu and sake using
Aspergillus oryzae has been highly optimized over a long history. However, new technology is
needed to achieve further improvements in productivity or production efficiency. Light affects the
gene expression and metabolic pathways of fungi. Thus, the development of technology that takes
advantage of the light response of A. oryzae is important. In a previous study, we found that A. oryzae
strains RI1B40 and RI1B1187 showed opposing manners of growth and conidiation in response to light.
To elucidate the effect of light on genome-wide gene expression for both strains, we conducted
transcriptome analysis by RNA sequencing. We also identified 453 differentially expressed genes
(DEGS) between both strains by bioinformatic analysis. Of these 453 DEGs, we identified a total of
67 light-responsive DEGs between RI1B40 and R1B1187. We also analyzed the expression patterns of

fermentation-related digestive enzyme genes.
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Introduction

Aspergillus oryzae produces and secretes large
amounts of many kinds of digestive enzymes during the
production of such traditional Japanese fermented foods
as miso, shoyu and sake. Grain fermented with A. oryzae
is called koji. The balance of these enzymes in koji has a
critical effect on the final product, and the balance of
glycolytic and proteolytic enzyme activity during Kkoji
fermentation by A. oryzae can be adjusted to a
considerable extent by temperature control. The
production process of traditional Japanese fermented
foods has been highly optimized over a long history of
revision by predecessors, and thus achieving further
improvements in productivity by extension of the prior
art of temperature control is difficult. Additional
artificially controllable parameters are also necessary.

Many studies have reported that filamentous fungi
are responsive to light. The saprotrophic fungi A. nidulans
is thought to live in soil in nature and use light as a signal
of the soil surface environment (Rodriguez-Romero et al.
2010). When A. nidulans hyphae grow upward and reach
the surface of the soil, fungi are exposed to UV radiation,
desiccation or significant temperature changes by

sunlight. Light affects the gene expression and metabolic
pathways of fungi (Tisch and Schmoll 2010). For example,
A. nidulans produces asexual spores (conidia) under
conditions of light, whereas it produces sexual spores
(ascospores) under dark conditions (Rodriguez-Romero
et al. 2010; Ruger-Herreros et al. 2011). There have been
many studies on the molecular mechanisms of A. nidulans
light response. Velvet proteins (fungus-specific
regulators) make complexes and shuttle from the cytosol
to nuclei according to the light conditions (Bayram et al.
2008; Bayram et al. 2010). White collar complex (WCC),
the blue-light receptor, and phytochrome, the red-light
receptor, can physically interact, and blue and red light
induce conidiation in a comparable extent of white light
by an additive effect (Purschwitz et al. 2009; Purschwitz
et al. 2006). A. nidulans is a model organism of the genus
Aspergillus, and most species in this genus such as A.
fumigates (Kevin, K. et al. 2016), A. flavus (Calvo et al.
1999), and A. parasiticus (Calvo et al. 1999) conserve
similar mechanisms of light response, and produce more
conidia under light conditions than under dark conditions.
Inastudy of A. oryzae, Hatakeyama et al. (2007) reported
that A. oryzae RIB40 (a genome-sequenced strain of A.
oryzae) conserved light signaling molecules and can
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respond to light, but in a manner opposite to that of other
Aspergillus species (as A. oryzae produces more conidia
under dark conditions than under light conditions).
Previously, we showed that the light response of A. oryzae
is strain-dependent, and that there are three types of light
response among A. oryzae strains (Pushpa et al 2018): i)
the same manner as other Aspergillus species; ii) the
opposite manner to other Aspergillus species; and iii) no
significant response. RIB40 belongs to type ii). Kumagai
(1978) reported that the manner of light response of plant
pathogens could be classifiable into three categories.
Some plant pathogenic fungi show different light
responses among strains of the same species (Kihara et
al. 1997). By comparative genomics with other
Aspergillus species, the ancestor of A. oryzae was
assumed to be a plant pathogen (Kobayashi et al. 2007).
Our previous results showed that A. oryzae strain
RIB1187, isolated from soy sauce koji, makes more
conidia under light conditions, that is, RIB1187 belongs
to type i) (Pushpa et al 2018). The reason why RIB1187
and RIB40 behave in opposite manners in response to
light remains unclear. Variations of the gene expression
pattern induced by light stimuli are presumed to lead to
the opposite behavior of the two strains. Transcriptome
studies enable an investigation of genome-wide gene
expression. RNA sequencing (RNA-seq) was recently
used for transcriptome analysis of A. oryzae (He et al.
2018, Zhong et al. 2018). Here, we conducted
transcriptome analysis of RIB1187 and RIB40 to elucidate
the effect of light illumination on the genome-wide gene
expression pattern of both strains of A. oryzae, and
elucidate such metabolic changes as the enzyme
production caused by light.

Materials and methods

1. Strains and media

A. oryzae maintained at the National Food Research
Institute, Japan (NFRI 1599 = R1B40) and obtained from
the National Research Institute of Brewing (R1B1187)
were used in this study. Spore suspensions were prepared
using sterile water solution containing 0.002% (v/v)
Tween 80 and 0.5% (w/v) NaCl. Plate (2% agar) and liquid
cultures were conducted on Czapek Dox (0.6% NaNO,,
0.1% KH,PO,, 0.05% KCI, 2 mM MgSO,, 1% glucose,
and a 0.1% trace element solution consisting of 0.1%
FeSO,-7H,0, 0.88% ZnSO,-7H,0, 0.04% CuSO,-5H,0,
0.01% Na,B,0,:10H,0, and 0.005% (NH,);M0,0,,-4H,0).

2. Light exposure conditions

White fluorescent light (Panasonic, FHF24SEW)
was used for light illumination experiments. The photon
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flux density at the surface of the culture was approx. 25
pmol m=2s7L,

3. Total RNA preparation

The RIB40 and RIB1187 strains were incubated
with liquid surface culture on CD liquid medium at 30°C
for 34 h in the dark. Total RNA was isolated by ISOGEN
(Nippon Gene, Tokyo, Japan) from 34-h mycelia exposed
to white light (25 pmol m=2 s7%) for 10 min. or kept in the
dark as per the manufacturer’s instructions.

4. RNA sequencing

Library preparation, illumina sequencing (75-bp
paired-end reads), and bioinformatic analysis were
conducted by Bioengineering Lab. Co., Ltd. (Atsugi,
Japan). Sequencing was performed by an Illumina
NextSeq 500 with 2 x 76 bp. And sequencing reads were
quality filtered by Sickle (ver. 1.33). Reads were mapped
on the genome of A. oryzae (https://www.ncbi.nlm.nih.
gov/assembly/GCF_000184455.2) by HISAT 2 (ver. 2.1.0).
Reads mapped on exons were counted by featureCounts
(ver. 1.5.3), and reads were normalized using reads per
kilobase of exon per million mapped reads (RPKM) by
iDEGES, with differentially expressed genes (DEGS)
being identified by DESeq. The false discovery rate
(FDR) was < 0.05.

The Venn diagram was drawn by Venny 2.1 (http://
bioinfogp.cnb.csic.es/tools/venny/index.html).

Results and discussion

In a previous study, we showed that A. oryzae strain
RIB1187 produces more conidia under light conditions
than under dark conditions, whereas A. oryzae strain
R1B40 produces more conidia under dark conditions than
under light conditions. To elucidate the effect of light
illumination on the genome-wide gene expression pattern
of the two strains (RIB40 and R1B1187), RNA sequencing
was performed on cultures of each strain kept in the dark
for 34 h or illuminated by white light for 10 min. following
34 h of culture in the dark. More than nine million high-
quality reads per sample were generated and aligned on
the whole reference genomic sequence. More than 97%
high-quality reads were mapped on the genome of A.
oryzae.

Clustering analysis of the total gene expression of
each sample was conducted (Fig. 1). The cluster
dendrogram showed that the difference between both
strains was greater than the difference between culture
conditions. From the dendrogram, it was expected that
more differentially expressed genes (DEGs) would be
detected by comparing strains under the same culture
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condition than by comparing different culture conditions
of the same strain. DEGs between both strains were
identified by statistical analysis. Under the dark culture
condition, 237 genes were identified as DEGs between
RIB40 and RIB1187, and under the light-stimulated
culture condition, 216 genes were identified as DEGs.
Under the dark culture condition, 106 genes were
expressed at higher levels in RIB1187 than in RI1BA40,
while under the light-stimulated culture condition, 100
genes were expressed at higher levels in RIB1187 than in
RIB40. However, the genes expressed at higher levels in
RIB1187 than in RIB40 under both dark and light-
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Fig. 1. Dendrogram of clustering analysis of whole gene

expression pattern of four samples

1187D: gene expression pattern of strain RIB1187 under
dark condition; 1187L: gene expression pattern of strain
RIB1187 under light-stimulated condition; 40D: gene
expression pattern of strain RIB40 under dark condition;
40L: gene expression pattern of strain RI1B40 under
light-stimulated condition.
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Fig. 2. Venn diagrams of DEGs

Transcriptome of Aspergillus oryzae Responding to Light

stimulated culture conditions shared 90 common genes,
and the genes expressed at higher levels in RIB40 than in
RIB1187 under both dark and light-stimulated conditions
shared 103 common genes. This showed that the 90 and
103 common DEGs mentioned above may result from
variation of the strains, and thus may have less relevance
to the light response. Omitting these genes, 67 genes
were identified as light-responsive DEGs between R1B40
and R1B1187 (Fig. 2). These results were concordant with
the results of clustering analysis (i.e., a greater difference
between both strains than between culture conditions).
To estimate the differences in biological function of
each strain under dark and light-stimulated culture
conditions, the 67 light-responsive DEGs were analyzed
by gene ontology (GO) enrichment analysis. GO terms
were classified into three categories: biological process
(Fig. 3), cellular component (Fig. 4), and molecular
function (Fig. 5). Biological process (G0O:0008150),
cellular component organization (G0:0016043), and
molecular function (GO:0003674) were prominent among
all conditions and showed a similar pattern. The
oxidation-reduction process (G0O:0055114) was most
enriched in DEGs that were expressed at higher levels in
RIB40 than in RIB1187 under the dark culture condition.
Conversely, the oxidation-reduction process was
enriched to a similar extent in DEGs that were expressed
more in RIB1187 than in RIB40 under both dark and
light-stimulated culture conditions. Regulation of
transcription, DNA-templated (G0:0006355),
sterigmatocystin biosynthetic process (GO:0045461),
DNA binding (GO:0003677), electron carrier activity
(G0:0009055), heme binding (G0O:0020037), iron ion
binding (GO:0005506), oxidoreductase activity acting on

L40>1187 D40>1187

28
(19.4%)

L1187 > 40: DEGs expressed at higher levels in RIB1187 than in RIB40 under light-stimulated condition; D1187 > 40: DEGs
expressed at higher levels in RIB1187 than in RIB40 under dark condition; L40 > 1187: DEGs expressed at higher levels in
RIB40 than in RIB1187 under light-stimulated condition; D40 > 1187: DEGs expressed at higher levels in RIB40 than in
R1B1187 under dark condition. L1187 > 40 shared 90 DEGs with D1187 > 40. L40 > 187 shared 103 DEGs with D40 > 1187.
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Fig. 3. GO (biological process) enrichment analysis of light-responsive DEGs between RIB40 and RIB1187
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To study the effect of light on the fermentation
process, the expression of genes coding for fermentation-
related digestive enzymes was analyzed. The descriptions
of mapped and normalized data were used to determine
214 genes encoding these enzymes. There were 23
amylolytic genes, 95 other glycolytic genes excluding
amylolytic genes, 68 proteolytic and glutaminase genes,
and 28 other genes including lipases and phosphatases.

conidiation.

incorporation or reduction of

Fig. 4. GO (cellular component) enrichment analysis of light-responsive DEGs between RIB40 and R1B1187
The frequency of each GO term for individual DEGs is shown.

molecular oxygen (G0:0016708), and zinc ion binding
(G0:0008270) were enriched in both DEGs expressed at
higher levels in RIB1187 than in RIB40 under the light-
stimulated culture condition, and in RIB40 than in
RIB1187 under the dark culture condition. As RIB1187
produces conidia under the light-stimulated condition
and RIB40 produces conidia under the dark condition,
these processes are likely to have some relation to

paired donors with
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Fig. 5.

GO (molecular function) enrichment analysis of light-responsive DEGs between R1B40 and R1B1187

The frequency of each GO term for individual DEGs is shown.
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Fig. 6. Heatmap of the expression of glycolytic genes. A: amylolytic genes; B: glycolytic genes, excluding amylolytic genes

Figure 6 A shows the expression of the amylolytic genes.
In RIB40, the top four amylolytic genes (i.e., alpha-
amylase4, alpha-amylasel0, glucoamylase predicted
protein glaA, maltase_glucoamylase_family 31 2) were
upregulated under the dark condition as compared to the
light-stimulated condition. For example, the RPKM of
alpha-amylase 10 in RIB40 was 15056 under the dark

condition and 13071 under the light-stimulated condition.
However, the RPKM of alpha-amylase 10 in RIB1187
was 2519 under the dark condition and 2837 under the
light-stimulated condition. Figure 7 shows the expression
of the proteolytic genes. The top three proteolytic genes
in RIB1187 were aspartyl protease 2, metallopeptidase 2,
and subtilisin-related protease. The most and third most
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Fig. 7. Heatmap of the expression of proteolytic genes and glutaminase genes

highly expressed genes in RIB1187 (aspartyl protease 2
and subtilisin-related protease) were upregulated under
the light-stimulated condition in both strains. The RPKM
of aspartyl protease 2 in RIB1187 was 585 under the dark
condition and 718 under the light-stimulated condition.
The RPKM of aspartyl protease 2 in RIB40 was 458
under the dark condition and 602 under the light-
stimulated condition. The metallopeptidases including
metallopeptidase 2—the second most highly expressed
gene in RIB1187—showed a tendency of higher
expression under the dark condition in RIB1187. For
example, the RPKM of metallopeptidase 1 in RIB1187
was 337 under the dark condition and 260 under the light-
stimulated condition. Itseemsthat most carboxypeptidases
were constantly expressed, regardless of dark or light-
stimulated condition. Figure 6 B shows the expression of
the glycolytic genes, excluding the amylolytic genes. The
expression patterns of genes in this category were
randomly distributed, making it difficult to find any
regularity. Figure 8 shows the expression of phosphatases,
lipases, and other enzymes. Eleven of the 28 genes were
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upregulated under the light-stimulated condition in both
strains, while 13 of the 28 genes were downregulated
under the light-stimulated condition in both strains.
Figure 9 shows the expression of the top 50 high expressed
genes (excluding amylase) in RIB1187 under the light-
stimulated condition. Seven of the 50 genes including
various kinds of enzymes were upregulated in RIB1187
and downregulated in RIB40 under the light-stimulated
condition, whereas 14 of the 50 genes including nine
peptidases and two proteases were downregulated in
RIB1187 and upregulated in RIB40 under the light-
stimulated condition. However, not all peptidases and
proteases showed a similar tendency of expression. The
expression analysis showed that considerable numbers of
genes encoding fermentation-related enzymes were
upregulated or downregulated by light.

In conclusion, we have shown the possibility of
controlling the enzyme activity of A. oryzae during the
production of fermented foods by changing the light
conditions, because light can control the gene expression
of enzymes of A. oryzae. Industrial cellulase producer
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Fig. 8. Heatmap of the expression of phosphatases, lipases,
and other enzyme genes

Trichoderma reesei expresses a greater amount of
cellulase under dark conditions than under light, and
adenylate cyclase and protein kinase A are involved in
light-modulated cellulase gene expression (Schuster et al.
2012). Cellulase is also regulated by light in Neurospora
crassa via the blue-light receptor WCC (Schmoll et al.
2012). Taking these studies into account, our results
contribute not only to the production of traditional
Japanese fermented food, but also to the enzyme industry.
We used RNA from liquid surface cultures to ensure that
we obtained the first RNA-seq data under dark and light
conditions; however, traditional Japanese fermented
foods are made by solid state fermentation (SSF) on
grain. In future studies, we plan to obtain transcriptome
data from SSF. In this study, we showed the RNA
sequence data without replication. Overall gene
expression tendency did not conflict with other gene
expression data of A. oryzae (i.e., extremely high-level
expression of amylases). We used the DESeq method of
the R/Bioconductor package for statistical analysis of our
RNA sequence data. DESeq allows an analysis of
experiments with no biological replicates under one or
both of the conditions (Anders and Huber, 2010).

Transcriptome of Aspergillus oryzae Responding to Light
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Fig. 9. Heatmap of the expression of top 50 high expressed
genes (excluding amylase) in R1B1187 under light-
stimulated condition

Although more biological replications may improve the
accuracy of statistical analysis, our data is still useful for
the first screening of light-regulated genes of A. oryzae.
We have obtained a great deal of data on the effect of
light on all 12,000 genes of A. oryzae, which will give us
insights into the molecular basis of the variation of light
response among the strains of A. oryzae.
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