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Abstract
Livestock select places in a pasture that offer high-quality and nutritious grass, and these selections 
cause spatial heterogeneity and reduced productivity. To maximize the efficiency of pasture systems, 
it is important to understand the spatiotemporal information regarding livestock grazing behavior. In 
this review, we describe studies conducted to develop a simple tool for determining cow foraging 
behavior, and to predict the spatial distribution of cow excrement (dung) in a steeply sloping pasture. 
An accelerometry-based activity monitor, the Kenz Lifecorder EX (hereafter, the LC), was used to 
differentiate between foraging and other activities of beef cows. A linear discriminant analysis 
yielded good discrimination accuracy of the minute-based data of the LC. The combination of the 
activity timeline and GPS tracking data successfully revealed the spatiotemporal distribution of cow 
foraging activity in a sloping pasture. Both foraging activity and excretion play important roles in the 
nutrient cycling in pasture ecosystems. We found that the spatial distribution of cow dung could be 
predicted using a Bayesian approach in conjunction with a generalized linear mixed model 
incorporating conditional autoregressive terms with two parameters (green herbage biomass and 
distance from a water trough). Dung deposits tended to be distributed in areas with higher green 
herbage biomass and in areas located closer to the water trough. We also describe a new pasture 
survey method of detecting cow dung and weed positions in a pasture by using unmanned aerial 
vehicle (UAV)-based imagery.
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Introduction

Spatiotemporal information about livestock 
activities such as grazing and resting in a pasture provides 
insights into pasture and animal conditions, allowing for 
improved pasture management and animal care (Turner 
et al. 2000), and thus many studies have been conducted 
on livestock behavior. Global positioning systems (GPS) 
have been increasingly used to monitor the spatial 
distribution of livestock and their track routes (Ganskopp 
2001, Barbari et al. 2006), and the use of GPS has often 
been combined with sensing devices to monitor livestock 
activities, especially grazing behavior. Information on 
grazing behavior can be acquired from these devices by 

measuring the electrical resistance of jaw opening (Rutter 
2000); devices that record the sounds of bites and chewing 
in grazing (Ungar & Rutter 2006); and accelerometers 
fitted on the jaw or neck (Wark et al. 2007, Watanabe et 
al. 2008).  However, farmers do not use most of these 
devices because the devices are only capable of taking 
measurements for a few days, entail high energy 
consumption and high cost, and require extensive 
experience in correctly attaching the devices to animals 
(Ungar & Rutter 2006).

The Kenz Lifecorder EX-4s or GS-4s (hereafter, the 
LC; Suzuken Co., Aichi, Japan) was developed as a 
commercially available tool for human health 
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management and research at a relatively low price 
(approx. 37,000 JPY). Ueda et al. (2011) devised a simple 
method of identifying the foraging activity of dairy cows 
in a flatland pasture by using the LC and an identified 
threshold value. To further develop cow activity 
monitoring using the LC device, we tested the ability of 
the LC to monitor the activity of beef cattle in a steeply 
sloping pasture, as most of the grazed pasture in Japan is 
located in mountainous or hilly terrain.

Cattle select foraging locales in response to the 
forage quantity and quality attributes (Ganskopp & 
Bohnert 2009), and thus cattle play an important role in 
the nutrient cycling in pasture ecosystems (Hirata et al. 
2011). Cattle extract nutrients from the plants and return 
those nutrients to the pasture through their urine and 
dung (Ledgard 2001). Cattle urine and dung in the 
ecosystems not only provide soil nutrients but are also a 
major source of greenhouse gas (GHG) emissions (Holter 
1997, Sordi et al. 2014). With increasing pressure on 
farmers to minimize environmental pollution from 
farming operations, a better understanding of the spatial 
distribution of excreta from grazing cattle is required. 
Research concerning the excreta of livestock by 
observation is laborious. Urine sensors that detect and 
log each urination event of female sheep and cattle have 
been developed (Betteridge et al. 2010), but useful 
equipment to detect dung positions has yet to be 
developed. We have therefore attempted to predict the 
spatial distribution of cow dung in a sloping pasture by 
using data on manageable factors (i.e., green herbage 
biomass, distance from a water trough).

In this review, we describe the studies that have 
been conducted to develop a simple tool for determining 

cow grazing behavior in the pasture, and to predict the 
spatial distribution of cow excrement using the Bayesian 
approach. We also introduce a method of monitoring 
pasture information by using unmanned aerial vehicle 
(UAV) imagery.

Study site, animals, and equipment

The study was conducted in a mixed sown pasture 
(No. 37) at the Hokkaido Agricultural Research Center, 
National Agriculture and Food Research Organization 
(NARO), Japan (Fig. 1). Three paddocks were delimited 
using electric fences (paddocks I and II: 1.02 ha; paddock 
III: 0.85 ha) where 20 breeding Japanese Black cows and 
their five calves were moved every four days in the order 
of paddocks I, II and III (paddock I: May 17-21, 2010; 
paddock II: May 31-June 4, 2010; paddock III: June 14-
18, 2010). Four cows (cow 1: 596 kg, 16 years old; cow 36: 
516 kg, 6 years old; cow 50: 588 kg, 4 years old, and cow 
63: 395 kg, 2 years old) were randomly selected from 
among the 20 cows, and each cow was fitted with a GPS 
collar (CM-10kx, Furuno Electric Co., Nishinomiya, 
Japan), with another collar being attached to a small 
fabric bag containing the LC.

Distinguishing the cows’ foraging activities by 
using an accelerometry-based activity monitor 
(Yoshitoshi et al. 2013)

1. Data treatment and statistical analysis
This study was conducted in paddock III (Fig. 1). 

During the four-day grazing periods, the positions of the 
cows were recorded every min. by the GPS collars, and 

Fig. 1.	Location of the three experimental paddocks, showing the 2-m contours and 
10-m2 grid cells in each paddock
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the acceleration of the cows’ neck movement was 
recorded at 4-sec. intervals by the LC. The LC records at 
4-sec. intervals an intensity of movement at 11 scaled 
magnitudes: activity levels (AL) of 0 (none), 0.5 (subtle), 
and 1 to 9 (1, light; 9, vigorous). Three observers visually 
observed the cows’ behavior, and the cows’ posture 
(standing or lying down) and activities (i.e., foraging, 
ruminating, resting, walking, grooming, drinking) were 
recorded every min. by instantaneous scan sampling. A 
total of 15 hrs. of grazing behavior data per cow was 
obtained during the three-day field observation period.

The LC data were summed every min. to match the 
1-min. interval used for the field observations. To 
distinguish between foraging and all other recorded 
activities, we subjected the 1-min interval data from the 
LC and observations to a logistic regression (LR) and 
linear discriminant analysis (LDA; Fisher 1936). To 
validate the accuracy of the LR and LDA functions, we 
applied a bootstrap procedure with 10,000 iterations 
based on an independent test data set. At each iteration, 
the data were randomly divided into a training subset for 
model development and a test subset for validation at a 
ratio of 2:1, respectively. Next, the training subset data 
were used to develop the LR and LDA functions. Finally, 
the classification accuracies of the foraging activities in 
the test subset were calculated using these functions.

Figure 2 shows histograms of the percentage of 

correct discrimination scores for foraging in the 10,000 
bootstrap replicates using the LR and LDA functions. 
The threshold values (above which the activity is 
classified as foraging and below which is classified as 
other activities) for each cow based on the LR were larger 
(8.5 to 16.6 AL min−1) than those based on the LDA (7.8 
to 10.4 AL min−1). For the pooled data set, the mean LR-
based and LDA-based threshold values (± SD) were 
10.8 ± 0.2 AL min−1 and 8.9 ± 0.1 AL min−1, respectively. 
Overall, the LDA yielded higher correct discrimination 
for all cows (90.6%-94.6%) than the LR (80.8%-91.8%).

Similarly, correct discriminations for the LDA and 
LR for the pooled data set were 92.4% and 85.6%, 
respectively. The proportions of true nonforaging 
observations that were misclassified as foraging activity 
in analyzing the pooled data set using the LDA were 
6.8% for resting and 0.8% for ruminating.

2.	The spatiotemporal distribution of eating and 
other activities

By applying the LDA function, the hourly pattern of 
eating activity (eating time per hr.) was obtained for each 
cow. Figure 3 provides the spatial distributions of the four 
cows during their time spent on eating and other activities 
during the daytime (9:00 to 15:00) and nighttime (21:00 
to 3:00). During the daytime (Fig. 3 a), the cows mostly 
grazed in the lower-altitude area of the paddock, covering 

(a) Cow 1

(c) Cow 51

(b) Cow 36

(d) Cow 63
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Fig. 2.	Density distributions of the percentage of correct classification of foraging activity based 
on bootstrapping 10,000 times using logistic regression (LR) and linear discriminant 
analysis (LDA)
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a wider area than at night. During the nighttime (Fig. 3 
b), the cows spent most of their time in the higher-altitude 
area of the paddock, with less eating activity. The 
combination of the activity timeline and GPS tracking 
data was thus effective in determining the spatiotemporal 
distribution of cow foraging activity on pasture or 
rangeland.

Spatial modeling for predicting cows’ dung 
positions (Yoshitoshi et al. 2015)

1. Dataset and modeling methodology
After four days of grazing in each of the three 

paddocks, each paddock was divided into 10 m×10 m grid 
cells (Fig. 1), and the number of dung deposits (Nd) in 
each cell was counted. The grid size was based on our 
previous study estimating the spatial distribution of green 
herbage biomass (GBM) and crude protein (CP) 
concentrations with the use of a hyperspectral radiometer 
over the same paddock (Lee et al. 2011). Considering the 
vegetation survey and labor required to count Nd, we used 

grid cells. Although topographical factors are related to 
cow dung positions, it is difficult to control the topography 
of a pasture (e.g., angle of inclination, slope shapes). As 
we would like to manage the distribution of excretion in 
the future, two controllable parameters—GBM and 
distance from a water trough (Dw)—were used in the 
present study as explanatory variables. GBM can be 
trimmed, the data can be obtained by remote sensing 
(Kawamura et al. 2010, Watanabe et al. 2014), and the 
land manager can control the location of the water 
troughs.

GBM was estimated using a rising plate meter 
(RPM) prior to the grazing trial in each of the three 
paddocks, and was defined as:

 GBM (g DM m－2)＝17.67x＋36.56  (R2＝0.86)

in which x is the value of the RPM reading. Dw was 
computed using ArcGIS ver. 10 software (ESRI, 
Redlands, CA, USA). The mean values of the parameters 
for each cell were calculated based on the grid.

Fig. 3.	Spatial distributions of the cows’ time spent on eating and other activities during 
the (a) daytime (9:00 to 15:00) and (b) nighttime (21:00 to 3:00)
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Because response variable Nd was a ‘count’ in 
nature, it was assumed to follow a Poisson distribution 
with the mean λi, which includes a spatial correlation 
random effect. The number of grid cells that contained 
zero values of Nd were three, one, and zero in the three 
paddocks, respectively. The corresponding variance 
values of Nd were 36.0, 76.1, and 64.6, respectively. This 
result indicated that these data cannot be explained well 
by a Poisson distribution. We thus used a generalized 
linear mixed model (GLMM) with a conditional 
autoregressive (CAR) term to incorporate the difference 
in location. The resulting Bayesian model was defined as:

Nd ~ Poisson (λi) 
log (λi)＝b1 [ j ] ＋b2 [ j ] log(GBM)

＋b3 [ j ] log(Dw)＋rhoi 

b1 [ j ]~Normal (µb1,τb1), b2 [ j ]~Normal (µb2,τb2),  
b3 [ j ]~Normal (µb3,τb3), 

µb1~Uniform (－10,10), µb2~Uniform (－10,10),  
µb3~Uniform (－10,10),

τb1＝
1

――――
σb1*σb1

, σb1~Uniform (0,10),

τb2＝
1

――――
σb2*σb2

, σb2~Uniform (0,10),

τb3＝
1

――――
σb3*σb3

, σb3~Uniform (0,10)

rhoi~CAR (Adjj [], Weightj [], Numj [], τ),

τ＝
1

―――
σ*σ

, σ~Uniform (0,10)

where b1 is the intercept, b2 is the coefficient for GBM, b3 
is the coefficient for Dw, j is the paddock number, and rho 
represents the spatial random effects for each grid 
position. CAR terms were used to specify the intrinsic 
Gaussian CAR prior distribution (Thomas et al. 2004). 

Adj[] is a vector listing the ID numbers of the grid cells 
adjacent to each grid cell i; Weight[] is a vector the same 
length as Adj[] giving un-normalized weights associated 
with each pair of areas. Taking Wij = 1 if areas i and j are 
adjacent gives a vector of 1’s for Weight[] and implies a 
weight of 0 if areas i and j are not adjacent. Num[] is the 
number of sites adjacent to each grid cell, and τ is the 
precision or inverse variance parameter for the Gaussian 
CAR prior, where σ is assumed to follow a uniform (0, 
10) distribution. All of the explanatory variables were 
standardized (mean=0, standard deviation=1) before use.

We performed Markov Chain Monte Carlo (MCMC) 
simulation to estimate the posterior distribution. The 
length of the MCMC chain for this model was 30,000 
cycles after 10,000 burn-in cycles, with samples saved 
every 10 cycles. Three chains were used. All data 
handling and modeling analyses were performed using R 
statistical software ver. 2.15.2 (R Core Team 2012) and 
OpenBUGS ver. 3.2.2. (Lunn et al. 2009).

2.	The MCMC results and spatial distribution of cow 
dung

Based on the results of the posterior distribution 
generated by the MCMC simulation, we observed similar 
estimates in all of the paddocks (i.e., positive values for 
GBM, negative values for Dw; Table 1, Fig. 4). This 
indicated that higher Nd tended to be associated with 
higher GBM and a location closer to the water trough. 
The 95% posterior probability interval (PPI) for μb1 did 
not include zero. The means for μb2 and μb3 were 0.208 
and 0.212, respectively, and the signs were as would be 
expected intuitively. The PPI values for both included 0, 
and the probability that they were above or below 0 was 
87.2% and 91.7%, respectively. A small value of σ (with 
posterior mean of 0.631) was obtained, indicating weak 
spatial autocorrelation (Kubo 2009).

Table 1.	 Posterior means, standard deviations (SD), and quartiles (2.5%, 50.0% and 97.5%)  
obtained from the Markov Chain Monte Carlo (MCMC) simulation

Coefficient Mean SD 2.5%† 50.0%† 97.5%†

μb1 2.140 0.522 1.397 2.157 2.808
μb2 0.208 0.634 −0.753 0.209 1.129
μb3 −0.212 0.485 −0.855 −0.211 0.389
σb1 0.389 0.853 0.006 0.146 2.567
σb2 0.519 0.997 0.010 0.211 3.433
σb3 0.339 0.790 0.005 0.120 2.329
σ 0.631 0.048 0.541 0.630 0.730

† The values from 2.5% to 97.5% indicate the 95% posterior probability intervals (PPIs). μ is the hyper 
parameter of b1, b2, and b3. b1 is the intercept, b2 is the coefficient of green herbage biomass, and b3 is the 
coefficient of distance from the water trough. σ is the standard deviation.
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Our present findings confirmed that the spatial 
distribution of cattle dung could be estimated using a 
Bayesian approach in conjunction with a GLMM model 
incorporating CAR terms with two parameters that the 
farmer can control (Fig. 5). We suspect that the bias on 
these plots was related to the cattle’s activities. There 
were two major grazing periods during the day in this 
study: a long afternoon period and a shorter morning 
period, which are in accord with previous observations 
(Schlecht et al. 2004, Lin et al. 2011). It is likely that the 
grid cells that have large model residual values could be 
affected by these differences.

Detecting cow dung and weed positions using 
UAV-based imagery

UAVs have been applied to support precision 
agriculture. In the last decade, the use of UAVs has 
proliferated in applications of aerial photography and 
imaging over crop fields to assist with crop production 
management (Huang et al. 2013). UAVs have also been 
used for weed mapping (Tamouridou et al. 2017, Pflanz et 
al. 2018). We attempted to develop a method for detecting 

the positions of cow dung and reed canary grass (Phalaris 
arundinacea) by using high-resolution images from a 
UAV onboard camera. Reed canary grass is a perennial 
grass that spreads underground by its thick rhizomes. 
Due to its competitiveness and low palatability, reed 
canary grass is regarded as a major weed in Hokkaido, 
Japan.

We previously observed that the cows’ fresh dung 
could be detected from its size and shape; old dried dung 
similar in color to soil was more difficult to detect 
(Yoshitoshi et al. 2015). The distribution of reed canary 
grass in orchard grass meadows could be detected using 
two digital surface models (DSM) before cutting and 
after harvest (Yoshitoshi et al. 2019). Although those 
results were obtained by traditional pixel-based image 
analysis based on the information in each pixel, this 
method has such disadvantages as the generation of noise 
and misclassification. As the information from 
surrounding pixels that may help in correctly identifying 
the target pixel’s class is not used, each pixel is 
independently classified; thus, a class having high 
heterogeneity may have many misclassified pixels. 
Moreover, the application of high spatial resolution 
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Fig. 5.	Predicted and observed number of cattle dung deposits (n) in each 10-m2 grid in 
paddocks I (a), II (b), and III (c) using a Bayesian model based on green herbage 
biomass (GBM) and distance from the water trough (Dw)

	 The predicted values were the medians from posterior distributions of the number of 
dung deposits (Nd) for each grid cell.
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Fig. 4.	Box plot of the 95% credible interval for each parameter
	 b1 is the intercept; b2 and b3 are coefficients for log green herbage biomass (GBM) and 

log distance from the water trough (Dw), respectively.
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imagery to pixel-based image analysis leads to more 
errors due to the increased spectral heterogeneity (Myint 
et al. 2011, Whiteside et al. 2011). One of the approaches 
developed to overcome this problem is object-based 
image analysis (OBIA; Blaschke 2010). In OBIA, pixels 
are grouped together into objects or segments based on 
some criterion of homogeneity, and created objects (or 
segments) are far richer in information than that for 
individual pixels (Whiteside et al. 2011); therefore, the 
analysis results provide high classification accuracy and 
fast processing. Peña et al. (2013) suggested that the 
combination of ultra-high-spatial-resolution UAV remote 
images and OBIA permits the generation of weed maps 
in early maize crops. Pérez-Ortiz et al. (2016) confirmed 
the feasibility of UAV orthomosaic imagery and that of 
OBIA for both the early detection and mapping of weeds, 
and the saving of herbicides in sunflower and maize 
crops. The combination of UAV imagery and OBIA is 
expected to easily create highly accurate field maps.

Conclusion

In Japan, most grazing pastures are located in 
mountainous areas due to the limited land area available. 
A better understanding of livestock behaviors and their 
spatial distribution is important for increasing 
productivity and decreasing the environmental impact of 
grazing livestock. As described in this review, we used 
accelerometry-based activity monitor data with the LDA 
function to characterize the temporal organization of 
cows’ eating activities in the pasture, and these data 
allowed the calculation of the hourly and daily time the 
cows spent on eating. We also attempted to predict the 
spatial distribution of cow dung in a slope pasture by 
using a Bayesian approach in conjunction with a GLMM 
model incorporating CAR terms with two controllable 
parameters (GBM and Dw). The dung deposits tended to 
be distributed in areas with higher green herbage biomass 
and those located closer to the water trough. As various 
methods are currently being developed, researchers will 
have to repeat the trial and error process to construct the 
most cost-effective procedure with better classification 
accuracy for creating maps of target sites.
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