

Renewable Energy Options and Reducing Emissions from Deforestation and Forest Degradation (REDD+) Using Geoinfo - Mozambique Case Study

Joaquim MACUÁCUA
IRENA Innovation and Technology Center
November 41th, 2017
Bonn, Germany

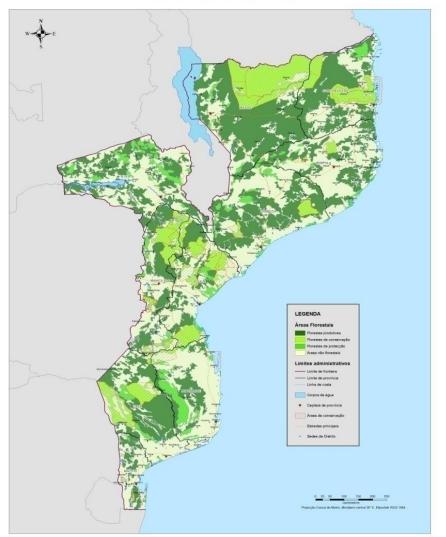
Content

- General information
- Forest resources
- Scope of the study
- What is REDD+
- Methodological approach
- Wood Energy
- People
- Fluctuation of Hydro energy supply
- Potential from Natural Gas Exploitation
- Analysis of the REDD+ Effect
- Conclusion

General information

- Area ~ 801 590 Sq km;
- **Population** ~ 27.216.000 (2017 census projection);
- Economy Agro-based (cashew nuts, cotton);
 - Resources: Water, <u>Wood Products</u>, Shrimps, <u>Natural Gas</u>, <u>Coal</u>, <u>Hydro-energy</u>;
- Tropical climate with two seasons:
 - wet season from October to March, and
 - dry season from April to September;
- Institution responsible for Forest: National Directorate of Forestry under Ministry Land, Environment and Rural Development.

INDIAN


COBERTURA FLORESTAL

Forest resources

- Forest cover and other woodland: 54.8 millions ha (70% of the country)
- Forest cover: 40.1 million ha;
- Potential area of timber production: 26.9 millions ha;
- Deforestation rate: 0.58%/year (219.000 ha per year), (AIFM2007);

Scope of the study

Objective:

•The objective of the case study is to analyse alternative, sustainable and renewable energy development options for Mozambique alternative to the major use of wood based energy in both urban and rural areas significant GHG which cause emissions by deforestation and forest degradation;

Expected Results:

 Potential REDD+ effect by introduction of alternatives energy to firewood and charcoal demand;

What is REDD+

- Reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries (REDD+);
- 2005 :Started Negotiation under UNFCCC;
- 2015 : Paris agreement Article 5 and 17 UNFCCC COP decisions on methodologies;
- Countries incorporate REDD+ in NDC, for Results based Payments (GCF and others);
- Countries must submit the information on the FREL/FRL, Safeguards (social and environmental), Forest Monitoring;

Methodological approach

- The analysis of steps initially developed as the Woodfuel Integrated
- Supply/Demand Overview Mapping (2013);
- Calculations and results.

Wood Energy is one of the Largest Drivers of Deforestation

- Introduction of RE can be a potential REDD+ activity;
- However, it is not known much how to find RE as REDD+ option;

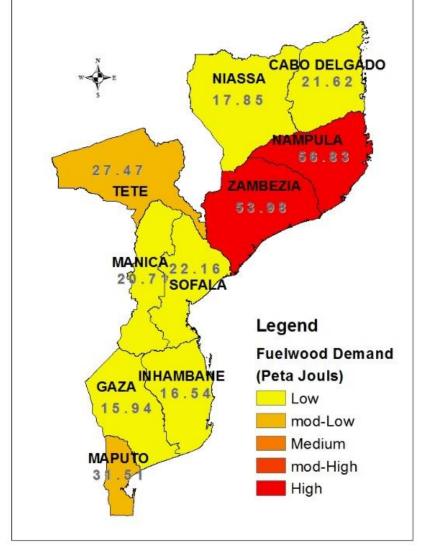
Wood demand

- 1. Estimation of per-capita consumption in rural and urban areas;
- 2. Analysis of demographic projection & estimation of 2013 situation;
- 3. Creation of population distribution density and accessibility maps;
- 4. Creation of woody biomass consumption map from the energy demand;

Analysis of Wood Energy Demand

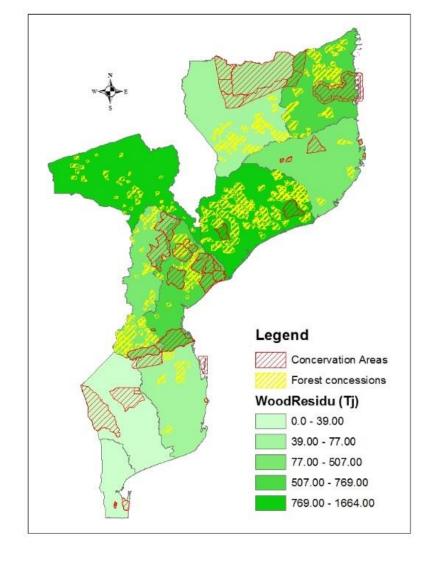
Demand

- Estimation of per-capita consumption in rural and urban areas based in projection of population of 2013;
- Convert the consumption value in Tons and PJ;
- Evaluation of the demand per province, and the rate to deforestation where available;


Annual Demand of Wood Energy (2013)

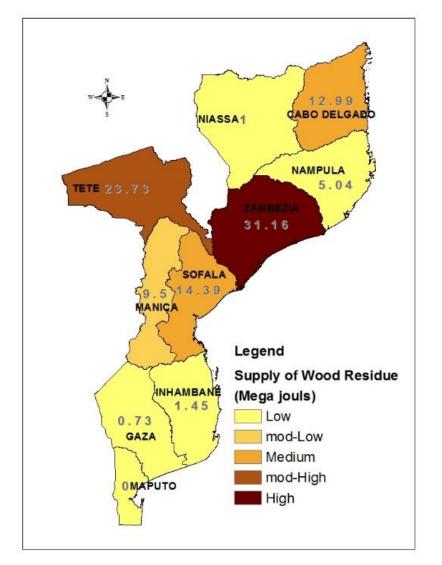
Province	Demand (PJ)
Niassa	17.85
C. Delgado	21.62
Nampula	56.83
Zambézia	53.98
Tete	27.47
Manica	20.71
Sofala	22.16
Inhambane	16.54
Gaza	15.94
Maputo	0.00

Total: 284.61 PJ/Year



Wood Residue

Province	Wood Residue (TJ)
Niassa	53
C. Delgado	694
Nampula	269
Zambézia	1664
Tete	1267
Manica	507
Sofala	769
Inhambane	77
Gaza	39
Maputo	0



Supply of Wood Harvest and Processing Residues Potential

Province	Wood Residue (TJ)
Niassa	53
C. Delgado	694
Nampula	269
Zambézia	1664
Tete	1267
Manica	507
Sofala	769
Inhambane	77
Gaza	39
Maputo	0

Total: 5.34 PJ/Year

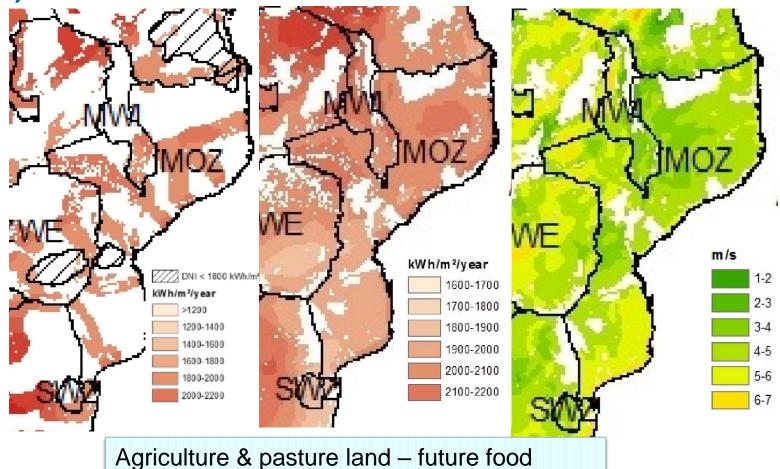
Potential supply based on currently available RE

Bioenergy potential (190PJ) =
 Residues from Agriculture
 (191PJ) + Residues from
 Forestry (5PJ) – Biomass
 Needs for Animal Feed (7PJ)

(condition for analysis)

- 25% of agro-harvest residue
- 90% of potential processing residue
- 30% of wood-harvest residue

(IRENA Africa 5 analysis based on FAO Stat, 2010)



Alternative Energy - Solar CSP, Solar PV and Wind Potential

Solar CSP	Solar PV	Wind
TWh	TWh	TWh
9123	21846	19252
PJ	PJ	PJ
32842	78644	69307

- Exclude river basin, protected areas(all RETS)
- Exclude slope > than 21 % CSP
- Exclude slope > than 45 % PV
- Exclude agriculture area for Solars;
- Exclude forested area;

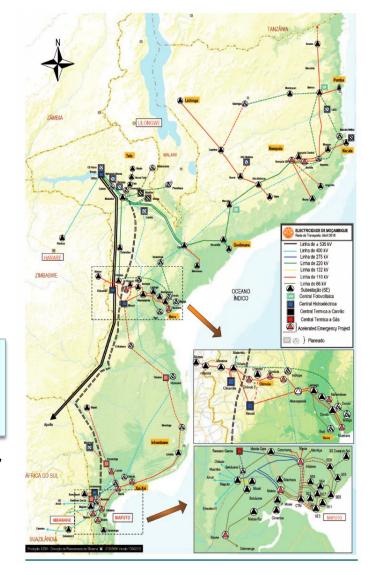
(IRENA analysis)

security and ecosystem based needs?

Potential from Hydropower Expansion Plan

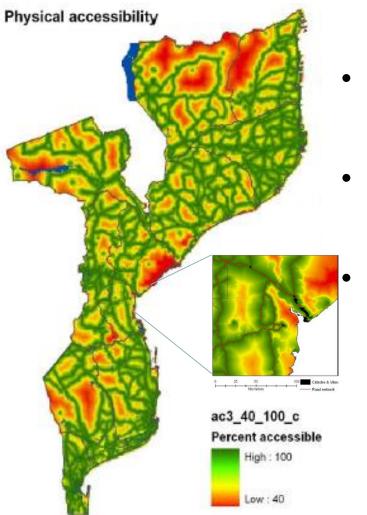
Hydropower production total: 43.20 PJ

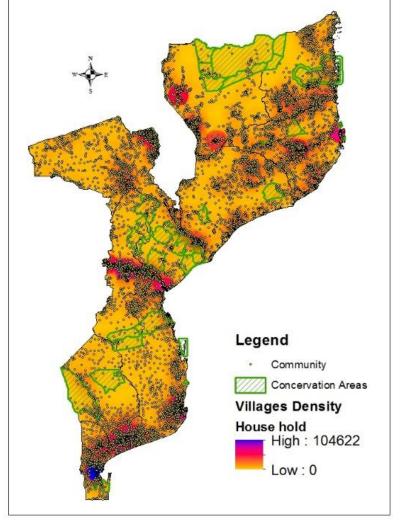
Current domestic supply: 12.17PJ


export: 31.03 PJ

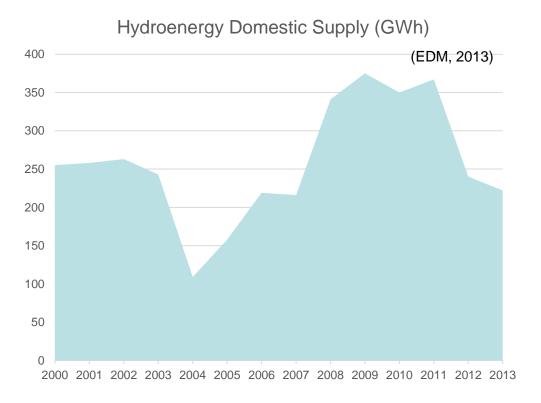
(Cahora Bassa dam 2013)

On going expansion 2500 MW to 12000 MW (4.8 holds)


Future Hydropower potential: 207.36 PJ / year

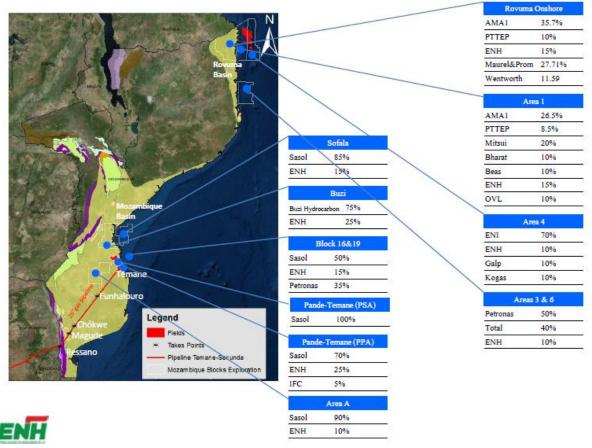


People are Using All Land Except for Protected Areas

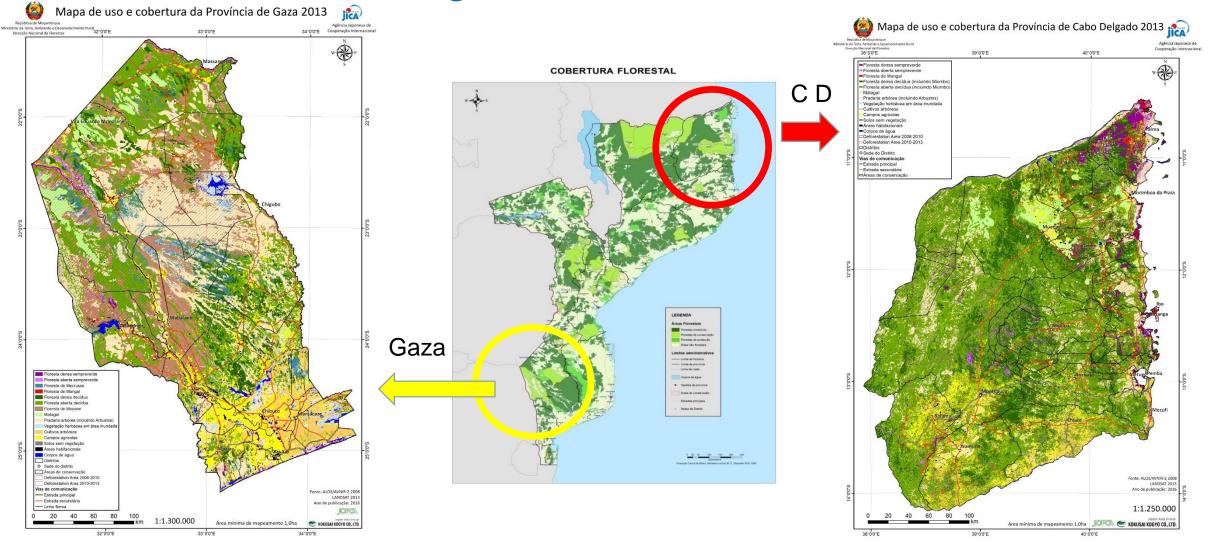


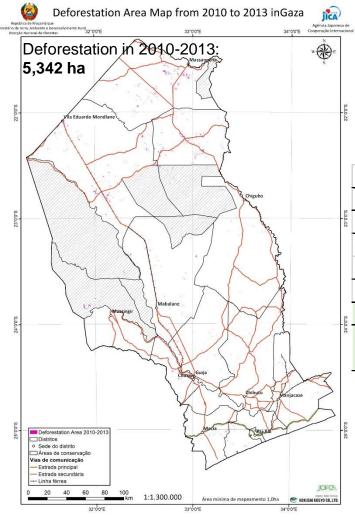
- Shifting Cultivation and Livestock Grazing;
 - Biomass is precious resource for sustainable yield;
 - Frequent flood and drought;

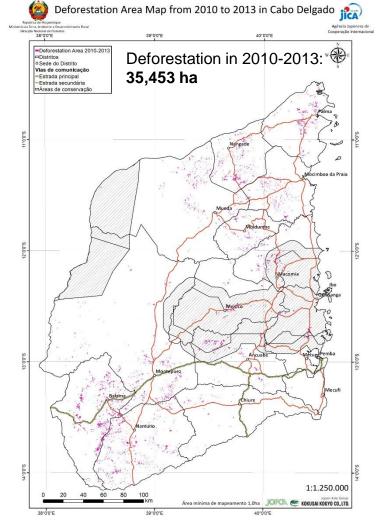
Fluctuation of Hydroenergy supply



Potential from Natural Gas Exploitation


- 5,507 billion m3 in
 Inhambane and Rovuma deposit
 (Number one in Africa)
- 410 PJ


Land Cover Map of Cabo Delgado and Gaza Provinces


Analysis of the REDD+ Effect by Alternative Energy Deployment

If current energy demand is fulfilled by natural gas, how much REDD+ effects is expected on emission from the LUC.

GHG Emission Petential If Wood Fuel is Replaced by Natural Gas					
	PJ	GJ	KgCO2	CO2ton	
Total	284.61	284,610,000	16,507,380,000	16,507,380	
Cabo Del	21.62	21,624,232	1,254,205,436	1,254,205	
Gaza	15.94	15,937,177	924,356,295	924,356	
GHG Emission from Deforestation (DINAF-JICA, 2017)					
2010-201	3			CO2ton	
Cabo Del. 1,485,013					
Gaza 594,232					

Natural Gas GHG emission: 58 CO2ton/KG (U Berkley)

Additional alternative vs current scenarios of fuelwood trade

Low-income population

- Majority of household in urban areas can not bye one bag of charcoal at a time (1200 Mt = 19.55 USD);
- Small amount of charcoal to supply cooking energy for almost one or two days (0.33 USD; **0.81USD**);

61.38 Mt 1 USD

20 Mt 0.325839

50 Mt 0.814598

500Mt 8.145976

1200 Mt 19.55034

Program of energy for cooking in urban areas:

- Need of <u>development and implement massively program</u> of **smaller Gas cylinder (3 kg**) and **one-burner stove** to assist population in suburban areas taking into account their economical capability (e.g. initial loan).
- One full smaller cylinder of **3 kg** of LP Gas purchased can be used per household within **10.6 days** (**3kg=2.7 USD**).
- (11Kg LPG=8.7 USD)

This kind of program need to be implemented as package (subsidized cylinder and one-burner stove)

Conclusion

	Charcoal demand						
	284 PJ/year						
	Bioenergy	Solar CSP	Solar PV TWh	Wind TWh	Hydro total production in 2012		
		9,122.73	21,845.57	19,252.00	12.00		
	PJ	PJ	PJ	PJ	PJ		
	191 Agroresidue	32,841.83	78,644.04	69,307.20	43.20		
	(25% hervest,						
	production) + Wood residue						
	(30% harvest) - Animal Feed						
	Development of processing						
Limiting	industry is a						
factors	key	Land demand	Land demand	Weather	Precipitation		
	REDD+ effect						
	Combination of	various RE while	meets the socia	l and environme	ntal safeguard on	land use is the	e key

Thank You