EDITORIAL BOARD

Chairman
Hiroshi Komiyama Director, Research Planning and Coordination Division

Vice-Chairman
Shinsuke Morioka Head, Information and Public Relations Office
CONTENTS

Message from the President ... 2
Highlights from 2013 ... 5

Research Overview
Overview of JIRCAS’ Research Structure ... 14
Main Research Programs .. 17
 A Environment and Natural Resource Management 17
 B Stable Food Production .. 28
 C Rural Livelihood ... 41
 D Information Analysis .. 56

Training and Invitation Programs / Information Events
Invitation Programs at JIRCAS .. 60
Fellowship Programs at JIRCAS ... 71
Workshop ... 74

Appendix
Publishing at JIRCAS ... 82
 Official JIRCAS Publications .. 82
Research Staff Activity 2013-2014 .. 83
Third Medium-Term Plan of the Japan International Research Center for
 Agricultural Sciences ... 91
Financial Overview .. 100
Members of the External Evaluation Committee 101
JIRCAS STAFF in FY 2013 ... 102
The Japanese Fiscal Year and Miscellaneous Data 105
Food and nutrition security is an essential fabric of any sustainable human society. Unfortunately, more than 800 million people worldwide are still classified as undernourished, i.e., their daily food intake is inadequate in terms of quantity (calories) and quality (micronutrients). This human tragedy takes a high toll, mostly on women and young girls in developing countries.

Dealing with global hunger issues raises the obvious question: Can we produce enough food sustainably and at a price affordable to all? The 2012 Global Hunger Index (GHI), published jointly by the International Food Policy Research Institute and others, showed that progress in reducing the proportion of hungry people in the world has been tragically slow.

Recent events around the world—droughts, land rush (investing in foreign farmlands), and shocks in energy supplies and prices—underline the scarcity of resources we depend on to produce the world’s food supply. According to a recent FAO estimate, we will have 9.6 billion people by 2050—an increase of 2.6 billion people from 2013. It is increasingly clear that sustainably feeding an ever-increasing number of people requires a much more careful and integrated approach to the use of land, water, and energy than we currently apply. It is an absolute must that we start now to produce more food using fewer resources and to use the harvest more efficiently.

Demographic changes, rising incomes (and associated consumption patterns), and unstable climatic conditions, alongside persistent poverty and inadequate policies and institutions, are all placing serious pressure on the natural resource base that supports current and future societies. This presents a ‘perfect storm’ scenario, especially in light of the recent trends in and increased likelihood of extreme weather events.

The year 2013 was highly significant for JIRCAS because it was the middle of the 5-Year Business Plan for 2011-2016. We have started seeing verifiable evidence of successful implementation of the Projects and delivery of expected outputs under our four newly formed Programs (Fig. 1). This annual report describes how JIRCAS has carried out the major activities that have produced proud moments and highlights.

Let me recap the main points of our Program-based management and strategy:

Introducing the four Programs

The four Programs developed using the mission-based principles are as follows:

1) Development of agricultural technologies based on sustainable management of the environment and natural resources in developing regions (Environment and natural resources management)
2) Technology development for increased productivity and stable production of agricultural products in the tropics and other unstable environments (Stable food production)
3) Technology development for income and livelihood improvement of the rural population in developing regions (Rural livelihood)
4) Information gathering, analysis, and dissemination of domestic and overseas data of the agricultural, forestry and fishery industries in developing regions (Information analysis)

Program-based management

We now have 17 “Projects” that are placed under “Programs” (see Fig. 1). The programs will enable us to clarify our overall goals that need to be achieved and the manner by which we attempt to accomplish our research. Especially assigned Program Directors are in charge of budget, personnel, goal achievement management, and evaluation. Programs A to C have their own so-called flagship projects, representing the most important activity in each program. Projects under each program collectively and coherently contribute to the major goal of their respective programs.

Partnership is the center of our activities

Most of our activities are carried out together with our partner institutions around the world. Effective partnership makes it possible for us to conduct joint research activities that would be of value for social impact for our target beneficiaries in developing regions. The map (Fig. 2) shows locations of our current activities based on formal institutional Memorandums of Understanding. We value such partnerships and place it as our organization’s core value. In 2013, we consulted our partners for their feedback.
on our research activities, and we made the necessary adjustments in our planned research, accommodating our partners’ suggestions and our own reflections: this was needed as a mid-course adjustment for better impact delivery. JIRCAS’s operational cycle (Fig. 3) illustrates our focus towards impact-oriented research for development. Consequently, we were able to develop a clear impact pathway for the delivery of our research outputs to the respective target beneficiaries of each project.

Strive for impacts

By introducing the program-based system for output development and delivery, JIRCAS shall be able to depict more succinctly, not only to taxpayers and Japanese citizens but also to people in developing countries, what it essentially does and for whom. Promotion of more efficient and accountable research will further be feasible. Accordingly, it is important for every researcher, manager, and support staff to work together to produce well-considered outputs that will be deemed suitable, acceptable, and adaptable for users. We will keep striving to take advantage of this new structure with the undying passion of our 43-year-old “research for development” tradition, hoping to produce deliverables that will be used by our target beneficiaries.
Fig. 2. Locations of our current activities based on 95 MOUs with partner institutions

Fig. 3. Impact-oriented research for development (Operational Cycle)
JIRCAS International Symposium 2013

JIRCAS International Symposium 2013, titled “New Direction of Sustainable Technology Development in Asia: Changing Rural Livelihood and Japanese Advantage,” was held at the U Thant International Conference Hall, United Nations University, Tokyo on Nov. 20 and 21, 2013.

Because the year 2013 marked the 20th anniversary of JIRCAS, we reviewed our milestones over the past 20 years and sought the opinions of participants from related organizations on the future direction of research activities in Asia by JIRCAS and other Japanese researchers. We also tried to identify effective ways to share research results in the region and linked them with current strategies for sustainable development of Japanese agriculture and related industries.

On behalf of the symposium organizers, JIRCAS President Masa Iwanaga opened the gathering and emphasized the importance of Japanese contribution for sustainable agriculture in the region. In the opening session, a keynote speech titled “Outlook of global and regional food security, and its impact to Japan” was delivered by Mr. Hiroyuki Konuma, assistant director-general and regional representative for Asia and the Pacific, FAO.

The symposium had four thematic sessions: first, changes in food demand and corresponding technologies of Lao PDR, China and Japan were reported; second, Japanese potential for new technology demands such as rice mechanization, controlled-release fertilizers and novel food processing were presented; third, sustainable rural income sources such as new technologies on prawn co-culture, teak timber production and biomass utilization, as well as the role of biomass utilization on recycling-based management of the resources, were introduced; and fourth, the role of research networks on food and agriculture technology development was discussed.

On the basis of these presentations, the panelists discussed strengthening Japanese agriculture’s competitiveness through collaboration with Asia and creating a so-called win-win situation. It was noted that agriculture, forestry and fisheries should be positioned as new growth industries in Japan, with research and development acting as the driving force. Through research and development, Japan has produced numerous cutting-edge technologies in agriculture, and these technologies are also expected to contribute to rural development and in improving rural incomes in developing regions. We will use our learned knowledge and past experiences with JIRCAS to discuss effective methods which can be beneficial for promoting agriculture, forestry and fisheries not only in developing regions but in Japan as well.
TICAD V Pre-event Workshop

The 5th Tokyo International Conference on African Development (TICAD V) was held in Yokohama, Japan on June 1-3, 2013. JIRCAS was an active participant and organized, among others, a pre-event workshop, titled “New Stages of Agricultural Research in Africa,” at Yayoi Auditorium, the University of Tokyo on May 31. The workshop, co-organized by the Consultative Group on International Agricultural Research (CGIAR) Fund Office and supported by the Agriculture, Forestry and Fisheries Research Council Secretariat, MAFF, as well as the Graduate School of Agricultural and Life Sciences, the University of Tokyo, was officially registered as a TICAD V partner event.

The workshop attracted a wide range of participants (169 attendees) including researchers, policy makers, NGO members, and private sector workers as well as students interested in agricultural development in Africa, in addition to TICAD participants. Research activities on international agriculture by JIRCAS and partner organizations were introduced, and workshop participants discussed new ways of agricultural technology development that can contribute to the TICAD process.

Mr. Akihiko Uchikawa, director of International Research Division, MAFF, gave the opening remarks. Session 1 (CGIAR Research Activities in Africa) followed with Dr. Papa Seck, director general of AfricaRice, delivering a special lecture titled “Conducting rice science for impact in Africa.” Speakers from the CGIAR Fund Office, International Center for Tropical Agriculture (CIAT), and the Center for International Forestry Research (CIFOR) also introduced their activities and future directions for Africa.

In Session 2, research activities conducted by JIRCAS in various African countries were presented. The topics included rice development, research on yams and cowpeas, water use technologies as well as afforestation CDM (Clean Development Mechanism) projects. A general discussion took place after the two sessions. Many questions were raised, particularly on ways to relate the research results with actual social impacts. Students, on the other hand, wanted to know the attitudes and mindsets required for persons to become engaged in international research for development.

The pre-event workshop provided a valuable opportunity for generating ideas that will further international cooperation between JIRCAS and partner institutions. This will enhance agricultural research, which in turn will be a key ingredient towards achieving social impact in Africa. However, a lot of work remains to be done to advance the research agenda for increasing food production.

Apart from the workshop, JIRCAS opened a booth at the TICAD venue in Yokohama to highlight its activities. JIRCAS also played important roles in other side events such as the workshop organized by the Coalition for African Rice Development (CARD) as well as the special lecture made by Tunisian President Mohamed Moncef Marzouki.
2013 Japan International Award for Young Agricultural Researchers

In cooperation with the Agriculture, Forestry and Fisheries Research Council (AFFRC) Secretariat, the 2013 Japan International Award for Young Agricultural Researchers was presented for the seventh consecutive year. The award recognizes and honors young foreign researchers (under 40 years of age) who are highly recommended by their institutes, and whose outstanding achievements promote research and development of agricultural, forestry, fishery and other related industries in developing regions. Each awardee is given a testimonial and a USD 5,000 cash prize.

This year’s selection committee (composed of seven members) conducted a document review, and the chairman of the AFFRC determined three winners from among 28 candidates.

The 2013 commendation ceremony was held last November 20 at the U Thant International Conference Hall of the United Nations University (UNU) in Tokyo. AFFRC Chairman Eitaro Miwa welcomed the awardees and guests, and congratulatory remarks were delivered by UNU Senior Vice-Rector Kazuhiko Takeuchi, Council for Science and Technology Policy (Cabinet Office) Executive Member Yuko Harayama, and Japan International Cooperation Agency (JICA) Senior Special Adviser Fumito Mizuma. Selection Committee Chair Keiji Kainuma explained the selection process.

This year’s awardees and their research achievements are as follows:

- **Dr. Lee Hong Tnah**
 Nationality: Malaysia
 Institute: Forest Research Institute Malaysia
 Research Achievement: Timber tracking system of an important Malaysian timber species, *Neobalanocarpus heimii* (Dipterocarpaceae) using DNA approach

- **Dr. Nouhoun Belko**
 Nationality: Burkina Faso
 Institute: Senegalese Agricultural Research Institute
 Research Achievement: High-throughput phenotyping and selection for drought tolerance in cowpea (*Vigna unguiculata* L. (Walp.))

- **Dr. Panuwan Chantawannakul**
 Nationality: Thailand
 Institute: Chiang Mai University
 Research Achievement: Honey bee pathology and development of beekeeping in Asia

Awardees, members of the selection committee and other officials
NEW RESEARCH COLLABORATION

New relationship with the Agricultural Research Institute of Mozambique

JIRCAS signed a Memorandum of Cooperation (MOC) with the Agricultural Research Institute of Mozambique (IIAM) on January 12, 2014 at the Presidential Office in Maputo City, Mozambique. The signing was witnessed by President Armando Emílio Guebuza of Mozambique and Prime Minister Shinzo Abe of Japan. Prior to this memorable event, Mozambique’s Agriculture Minister José Pacheco and IIAM Director General Inácio Maposse visited JIRCAS headquarters in April 2013 to observe its research activities and facilities.

JIRCAS is currently involved in a JICA project on research capacity building in the savanna region of northern Mozambique. Besides the research activities in the JICA project, supplemental researches have been planned and conducted with collaborators from IIAM. To date, a number of useful results supporting the introduction of a resource-efficient, soybean-maize intercropping system have been identified mainly through field experiments.

With this MOC, JIRCAS has officially established a new relationship with IIAM under the authorization of both governments. JIRCAS and IIAM will jointly identify and implement more collaborative research topics on various crops and livestock. The first workplan was concluded in July 2014.

Photo 1. Signing ceremony in Mozambique

Photo 2. Visit of Mozambique’s Agriculture Minister to JIRCAS
OPEN RESEARCH FACILITIES
(Lysimeters)

Open research facilities (lysimeters) were constructed at the Tropical Agricultural Research Front in 2003 to accelerate activities on reducing soil erosion and water deterioration, and to increase water use efficiency in island environments. The facilities consist of outdoor weighing and non-weighing lysimeters as well as indoor non-weighing lysimeters, artificially prepared sloping fields, and artificially constructed waterways. These are used for analyzing evapotranspiration, fertilizer and water release, water use by plants, the extent of soil erosion, and water quality, among others.

The lysimeters are attached to a sump for capturing drained water and nutrients, and to irrigation pipes from the bottom to supply water. Rhizotrons were constructed to observe rooting behavior, and the latest sensors and instruments were installed to measure environmental conditions under the ground. The equipment for water observation, soil physics analysis, water quality and root development measurement, transpiration and soil erosion estimation as well as plant water measuring operation are also linked to the lysimeter system.

The facilities are open to researchers interested in the environmental conservation of agricultural ecosystems. JIRCAS Newsletter No.64 (September 2012 issue) highlighted the results of our recent research projects using the facilities. Collaborative research programs were also carried out with outside research organizations. In 2013, three universities and one private sector entity utilized the facilities under the collaborative research programs of JIRCAS. In addition, three universities and one private sector entity also used the facilities for their own research purposes.

We hold operating committee meetings four times a year to discuss effective utilization and extensive publicity campaigns for the facilities. We have started collecting fees for using the equipment (collaborative research organizations are free of charge) in accordance with the operating regulations revised in 2012.
Certificate of appreciation for contribution to collaborative research on wild sugarcane

Dr. Akira Sugimoto, former principal plant breeder for development of tropical crops at JIRCAS-TARF, received a certificate of appreciation from the Department of Agriculture (DOA), Thailand, for his long-term contribution (from 1997-2013) to the collaborative research between JIRCAS and DOA on the collection and utilization of wild sugarcane.

The certificate and plaque were presented by Dr. Thongchai Tangpremsri, director of the Field and Renewable Energy Crops Research Institute, on behalf of the director general of the DOA, during the “DOA/JIRCAS Collaborative Workshop on Future of Multi-Purpose Sugarcane (MPS)” on 9 September 2013 in Khon Kaen City, Thailand.

Dr. Sugimoto has collected more than 500 accessions of Saccharum spontaneum (wild sugarcane) and 150 accessions of Erianthus (a wild relative of sugarcane) from all over Thailand. They are conserved at Khon Kaen Field Crops Research Center, DOA, and used for breeding of sugarcane by interspecific and intergeneric hybridization. Three promising lines of progeny from hybrids between sugarcane varieties and Saccharum spontaneum have already been submitted for variety registration in Thailand.

“Friendship Award” from the Chinese Government

Dr. Masayoshi Saito, director of JIRCAS’s Rural Livelihood Improvement Program, was among the 50 foreigners who received this year’s prestigious “Friendship Award” from China’s State Council. This award is the highest honor given to foreign experts working in China, including researchers and educators who have made valuable contributions in various fields.

JIRCAS has been promoting collaborative activities with China for many years. Research activities with China Agricultural University have resulted in the improvement of food processing technology and physiological functionality of traditional Chinese food, as well as in providing guidance to young researchers. Accordingly, Dr. Saito’s award was made possible because of the recommendation he received from China Agricultural University.

On September 29-30, 2013, a series of ceremonies related to the awards was held at the Great Hall of the People in Beijing, with Premier Li Keqiang and Vice Premier Ma Kai of the State Council of the People’s Republic of China (PRC) in attendance.

Certificate of Appreciation and Medals from Vietnam’s Ministry of Agriculture and Rural Development

JIRCAS Project Leader Yoshimichi Fukuta was awarded a certificate of appreciation and a medal by the Minister of Agriculture and Rural Development (MARD) in Vietnam on 5 September 2012. Dr. Fukuta was among the 28 individuals working for international organizations who were honored for their “great contributions to agriculture and rural development in Vietnam.”
A medal was likewise awarded to JIRCAS during the international workshop, “Direction of blast studies in Asia, Africa, and Japan,” in JIRCAS Tsukuba on 25 September 2013. Dr. Nguyen Thi Lang, principal scientist at the Cuu Long Delta Rice Research Institute (CLRII) in Vietnam, brought and presented the medal.

Certificate of Appreciation from Kasetsart University, Thailand

On November 25, Kasetsart University in Thailand awarded JIRCAS a certificate of appreciation and souvenir for its long-term promotion of joint research projects and pursuit of human resources development through fellowship and academic research support programs.

JIRCAS has been implementing joint research with Kasetsart University since 1994 on a number of projects related to food science, microbiology, biomass utilization and aquaculture, among others. These projects have generated significant results, and both organizations are looking forward to a more fruitful relationship in the future.

Certificate of Appreciation from King Mongkut’s University of Technology Thonburi, Thailand

On 29 November 2013, King Mongkut’s University of Technology Thonburi (KMUTT) in Thailand awarded JIRCAS a certificate of appreciation and souvenir for its long-term promotion of joint research projects and pursuit of human resources development through fellowship and academic research support programs. In addition, Project Leader Dr. Akihiko Kosugi was personally commended for his tremendous support in promoting the projects.

JIRCAS has been implementing joint research with KMUTT since 2002 on projects related to the development of biomass utilization technologies. These projects have generated significant results, and both organizations are looking forward to a more fruitful relationship in the future.
“Research Encouragement Award” from the Japanese Society for Tropical Agriculture

Dr. Naoko Kozai, researcher of the Tropical Agriculture Research Front, received the Research Encouragement Award from the Japanese Society for Tropical Agriculture in March 2014. This award was given for her research titled “Studies on fruit set characteristics under tropical and subtropical condition - Especially on peach and durian.”

Dr. Kozai’s research focused on the reproductive physiology of peach and durian cultivated in tropical areas. Peach cultivated in tropical highlands frequently encounter yield fluctuations due to marginal climatic conditions. She observed the patterns of bud burst and flowering, the development embryo sac, and the fruit set in peach at the northern highlands of Thailand. In durian, erratic fruit set occurs occasionally even when flowers are artificially pollinated.

She carried out morphological observations of pollen-tube growth and ovule development as affected by pollen source or night-temperature in durian at eastern Thailand. Her achievement was highly appreciated and is expected to contribute to the stable production of peach in tropical highlands and durian in tropical lowlands.
RESEARCH OVERVIEW
OVERVIEW OF JIRCAS’ RESEARCH STRUCTURE

1. History

The Japan International Research Center for Agricultural Sciences (JIRCAS) was first established in 1970 as the Tropical Agriculture Research Center (TARC), one of the research institutes of the Ministry of Agriculture and Forestry of Japan. TARC was reorganized into JIRCAS in 1993.

On April 1, 2001, JIRCAS became an Incorporated Administrative Agency (IAA) under the jurisdiction of the Ministry of Agriculture, Forestry and Fisheries (MAFF), in accordance with the administrative reforms of the Government of Japan to facilitate the reorganization of national government-affiliated research organizations.

2. Mission

Through research and development (R&D) and dissemination of information related to agriculture, forestry and fisheries in developing regions, JIRCAS contributes to the improvement of the international presence of Japan and towards a secure and stable supply of food worldwide including Japan.

3. The IAA System

An IAA is an organization responsible for key public services that the government is not required to provide, but which the private sector is likely to neglect for various reasons. The IAA system was introduced in 2001, as part of central government reforms based on the scheme that the planning sectors and the implementing sectors should be separated. Under the IAA system, MAFF defined JIRCAS’ Third Medium-Term Goals in FY 2011, including the enhancement of research efficiency and the improvement of the quality of research programs and financial performance. Based on the Third Medium-Term Goals, JIRCAS drafted and began to implement a detailed five-year plan, the Third Medium-Term Plan (FY 2011- FY 2015).

4. Evaluation

The performance and budgeting management of research activities conducted by JIRCAS undergo regular evaluation by the IAA Evaluation Committee established within MAFF. As for the activities of each fiscal year, the Committee investigates and analyzes the progress towards achieving the Medium-Term Plan, and the results of this evaluation shall be applied as deemed necessary to the modifications of the operational and financing systems for subsequent fiscal years. To meet the requirements of the general guideline concerning evaluation of the national research and development (a decision of the Prime Minister in 2008) which require efficient evaluation, JIRCAS has modified the in-house evaluation system in the initial year of the Third Medium-Term Plan. The in-house evaluation in FY 2013 was carried out as follows:

1) Research activities were evaluated, and summary reports were prepared for each Research Program.

2) These reports were then collectively evaluated at the meeting for the evaluation of research programs of the Medium-Term Plan by external reviewers (government officials from the Ministry of Agriculture, Forestry and Fisheries and specialists from other research institutes) and internal reviewers (the President, the Vice-President, an Executive Advisor and Auditor, the Program Directors and the Directors of each research division) in February 2014.

3) Comprehensive evaluation of all JIRCAS activities, which also include administrative operations, was performed by external reviewers of the JIRCAS External Evaluation Committee in March 2014. The external reviewers are listed in the Appendix. The results of the in-house evaluation and a summary of all activities were submitted to the IAA Evaluation Committee established within MAFF in June 2014.

5. Medium-Term Plan

JIRCAS implements four programs for research activities under the Medium-Term Plan. Each program consists of several projects. Major accomplishments and research highlights of the programs in FY 2013 are described in the following sections. The contents of the Medium-Term Plan are also described in the Appendix.
Third Medium-Term Plan (FY 2011 - FY 2015)

[Research Approach 1]
Research and development on agricultural, forestry and fishery technologies geared towards providing solutions to international food and environmental problems

Program A
Development of agricultural technologies based on sustainable management of environment and natural resources in developing regions

Projects:
1. Development of agricultural technologies in developing countries to respond to climate change
2. Development of resilient agro-pastoral systems against the risks of extreme weather events in arid grasslands in Northeast Asia
3. Development of technologies for sustainable agricultural production in the African savanna
4. Development of environment-friendly agricultural production technology in islands
5. Utilization of Biological Nitrification Inhibition (BNI) function for the development of breeding materials and application to cropping systems

Program B
Technology development for increased productivity and stable production of agricultural products in the tropics and other unstable environments

Projects:
1. Development of rice production technologies in Africa
2. Development of genetic engineering technologies of crops with environmental stress tolerance
3. Development of breeding technologies toward improved production and stable supply of upland crops
4. Evaluation and utilization of diverse genetic materials in tropical field crops

Program C
Technology development for income and livelihood improvement of the rural population in developing regions

Projects:
1. Establishment of sustainable and independent farm household economy in the rural areas of Indochina
2. Design and evaluation of a recycling-based agricultural production system in upland farming areas of Northern China
3. Advanced application of local food resources in Asia
4. Development of biofuel and biomaterial production technologies using biomass resources in Southeast Asia
5. Development of forest management and conservation techniques through sustainable use in Southeast Asia
6. Development of aquaculture technologies for sustainable and equitable production of aquatic products in tropical coastal areas

[Research Approach 2]

Program D
Collection, analyses and dissemination of information for grasping trends of international agriculture, forestry and fisheries

Projects:
1. Collection and analysis of international food supply and demand as well as production systems
2. Dissemination of research trends and local information
6. Collaborative Research

JIRCAS is required to cover a wide range of research fields. Human resources at JIRCAS, however, are limited. This makes collaborative research with other institutes or universities necessary towards achieving JIRCAS’ project objectives. Whenever JIRCAS and its collaborators reach an agreement on the commencement of collaborative research after exchanging ideas and opinions, a Memorandum of Understanding (MOU) or a Joint Research Agreement (JRAs) is usually concluded. JIRCAS developed the concept of JRAs in 2006. A JRA is a contract for collaborative research with a particular research subject and with a fixed term. A total of 103 MOUs or JRAs remained in force at the end of FY 2013.

In 2004, JIRCAS was given a Certificate of Recognition by CGIAR as a key partner and as the CGIAR focal point institution in Japan. JIRCAS has been playing an important role in promoting mutual understanding and collaboration between CGIAR and the Japanese government. It has also been intensively implementing collaborative research with several CGIAR research centers. JIRCAS has been regularly dispatching researchers and research managers to promote research in the developing regions. In FY 2013, 144 JIRCAS researchers or administrators were dispatched abroad for a total of 566 duties. Likewise, we have been dispatching researchers from other institutes and universities to promote the effective implementation of JIRCAS’ projects with the cooperation of such organizations. JIRCAS has likewise implemented several invitation programs for overseas researchers and administrators at counterpart organizations. These programs facilitate not only the promotion of international collaborative research but also related exchanges of information and opinions.

7. Organization of JIRCAS

The organizational structure of JIRCAS for the Third Medium-Term Plan period is summarized in the figure below.

Four Program Directors, whose positions were newly-established, are responsible for the implementation of individual programs during the Third Medium-Term Plan period. The directors of divisions, offices, and the Tropical Agriculture Research Front (TARF) are responsible for managing staff and enhancing the capabilities of researchers.

TARF (formerly the Okinawa Subtropical Station), located in Ishigaki Island in the southernmost part of Japan, is JIRCAS’s sole substation. It focuses on agricultural, forestry, and fisheries research being carried out in overseas regions with highly similar climatic and geographic conditions as Okinawa, taking full advantage of its subtropical weather and geographic location.
The Environment and Natural Resource Management Program focuses on impact analyses and the development of adaptation and mitigation technologies to cope with progressing climate change. The program also deals with sustainable resource management and environmental conservation technologies in regions vulnerable to climate change.

[Response to climate change]

The impact of climate change is being analyzed by modeling. Analysis of spatiotemporal dynamics of crop production in Bangladesh using the 11-year (2000-2010) net primary production (NPP) dataset derived from products of the high-frequency earth observation satellite, MODIS, revealed that NPP tends to decrease in the southwest and southeast of the country, but tends to increase in the northwest.

One research outcome relating to adaptation measures for climate change was the discovery of a rice gene, SPIKE, in an Indonesian tropical Japonica landrace. Because SPIKE can increase grain yield by 13-36% in Indica rice varieties, this discovery could significantly contribute to food security in the Asian region.

Full-dyke systems were constructed for triple rice cropping in flood-prone rice areas in Mekong Delta. Analysis of the effect of full-dyke systems on the hydrological environment revealed that flooding period became longer downstream and upstream of the full-dyke area, and that the water level became higher downstream.

Regarding mitigation measures, monitoring of methane emission from ruminants using the respiration analysis system is being continued, and baseline survey on methane emission from grazing cattle using the SF6 tracer method has been initiated. Meanwhile, the introduction of a water-saving technology in paddy fields has resulted to a reduction in the magnitude of the methane emissions and an increase in crop yield compared with the previous year.

In August 2013, the CDM Executive Board of the UNFCCC issued 6,819 tCO₂ of CER to the afforestation/ reforestation (A/R) CDM project of JIRCAS in Paraguay. The CDM project was developed as a model for sustainable rural communities with low GHG emissions. Manuals for the implementation of an A/R CDM project—from formulation to implementation including the results of monitoring activity—were developed specifically for small-scale farmers.

[Utilization of Biological Nitrification Inhibition function]

Research on biological nitrification inhibition contributes to mitigation strategies related to global warming. The secretion mechanism of the biological nitrification inhibitors (BNIs) from sorghum root was analyzed and the interplay among NH₄⁺ uptake, rhizosphere-pH, and plasma membrane H⁺-ATPase activity were identified in regulating the release of BNIs.

[Resilient agro-pastoral systems in Northeast Asia]

Resilient agro-pastoral systems against the risks of extreme weather events are being developed in Mongolia. Dry matter intake was quantified in each season, both in forest steppe and steppe regions, and used as basis in developing a carrying capacity map. A prototype carrying capacity map was constructed for the forest steppe research site in winter 2012.

[Sustainable agricultural production in the African Savanna]

Regarding the development of conservation agriculture (CA) in the African savanna, evaluations of CA cropping systems are being continued in Burkina Faso and Ghana, and watershed-level data was collated for the development of a zoning feasibility map for CA adoption.

[Island environment conservation]

For the development of efficient water resource management technologies in islands, estimation of nitrogen loads on soil surface were conducted. Studies revealed that the major nitrogen sources polluting underground water are fertilizers in applied crop fields in Negros, Philippines, and manure from pig pens in the Marshall Islands. A three-dimensional simulation model estimated that excessive water pumping was one of the major causes of upconing during the 1998 drought in the Marshall Islands.
Establishment of an implementation methodology for an afforestation/reforestation clean development mechanism project targeting small-scale farmers

The Clean Development Mechanism (CDM) is a system that reduces or removes greenhouse gases (GHGs) in the atmosphere by carrying out GHG emission reduction projects in developing countries. The carbon dioxide stored in these projects is converted to carbon credits which can be added to the emission reduction targets of the Annex I countries (developed countries) under the Kyoto Protocol. Accordingly, an afforestation/reforestation CDM (A/R CDM) project targeting small-scale farmers (SSFs) in Paraguay was implemented as part of rural development and for establishing a practical methodology to obtain carbon credits.

In August 2013, the CDM Executive Board of UNFCCC issued CERs amounting to 6,819 tCO2-equivalents, the first to be issued in Latin America, to JIRCAS’s A/R CDM project, titled “Reforestation of croplands and grasslands in low income communities of Paraguari Department, Paraguay” (Table 1, Fig. 1). This CDM project used SSFs’ lands effectively by introducing agroforestry and silvopasture practices based on the needs of SSFs (Photo 1).

Despite high expectations in terms of social significance, tree growth turned out poor or irregular due to low technical capabilities and degraded lands that were susceptible to drought. Carbon stocks were quantified by establishing sample plots not with a unit area but with a certain number of trees to correspond to the irregularity of SSFs’ forests. The study subsequently clarified that the project generated considerably less carbon stocks or CERs than planned (Table 2).

The implementation methodology of an A/R CDM project targeting SSFs -- from formulation to implementation, including the results of monitoring activity conducted in 2012 -- was recommended and developed as manuals, which were then uploaded to the JIRCAS homepage. In addition, the necessary documents for the issuance of CERs such as project design document and monitoring report as well as validation and verification reports prepared by the designated operational entity were published on the web site of the UNFCCC.

Expecting high sustainability, the methodology of JIRCAS is intended to promote reforestation by self-responsibility and beneficiary pays principle, and can be applied to carbon sequestration projects such as A/R CDM, REDD+ and voluntary carbon offset systems involving unorganized SSFs in Latin America.

If an A/R CDM project is proposed, its break-even CER unit value is calculated by financial analysis, after which it is compared to an assumed market value or the minimum unit cost obtained by JIRCAS to ensure the viability of CER acquisition. The keys for realizing sustainable reforestation projects adopting the ‘beneficiary pays’ principle are to select project areas that are most in need of tree planting and to promote self-help efforts by means of awareness-raising activities.

(E. Matsubara, M. Watanabe, S. Shiraki)

Table 1. Increase of GHG removals by sinks at the A/R CDM project site in Paraguay

<table>
<thead>
<tr>
<th>Item</th>
<th>Tree species</th>
<th>Carbon stock (tC)</th>
<th>Baseline (tC)</th>
<th>Leakage (tC)</th>
<th>Net carbon stock increase (tC or tCO2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon stocks</td>
<td>Eucalyptus grandis</td>
<td>882.2</td>
<td>263.2</td>
<td>132.3</td>
<td>486.7</td>
</tr>
<tr>
<td></td>
<td>Eucalyptus camaldulensis</td>
<td>2,471.2</td>
<td>557.6</td>
<td>370.7</td>
<td>1,542.9</td>
</tr>
<tr>
<td></td>
<td>Grevillea robusta</td>
<td>74.5</td>
<td>57.7</td>
<td>11.2</td>
<td>5.6</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>3,427.8</td>
<td>878.5</td>
<td>514.2</td>
<td>2,035.2</td>
</tr>
<tr>
<td>Deduction (1)</td>
<td></td>
<td>205.9</td>
<td>30.6</td>
<td>175.3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1,859.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convert to tCO2 (2)</td>
<td></td>
<td>6,819.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note (1) Net carbon stock increase= Carbon stock - Baseline - Leakage.

Note (2) Deduction rate is determined according to margin of error. The margin of error of the project is 11.4%, which corresponds to 6% of deduction rate.

Note (3) The conversion rate of tC to tCO2 is 44/12 (or 3.667).

Table 2. Comparison of planned reforestation area with monitored reforested area

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Planted Area (ha)</td>
<td>No. of Parcel</td>
<td>Crediting Area (ha)</td>
</tr>
<tr>
<td>S1</td>
<td>Eucalyptus grandis (2007)</td>
<td>30.05</td>
<td>56</td>
<td>13.59</td>
</tr>
<tr>
<td>S2</td>
<td>Eucalyptus grandis (2008)</td>
<td>31.17</td>
<td>41</td>
<td>9.59</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>61.22</td>
<td>97</td>
<td>23.18</td>
</tr>
<tr>
<td>S3</td>
<td>Eucalyptus camaldulensis (2007)</td>
<td>16.36</td>
<td>17</td>
<td>7.71</td>
</tr>
<tr>
<td>S4</td>
<td>Eucalyptus camaldulensis (2008)</td>
<td>64.48</td>
<td>21</td>
<td>45.63</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>80.84</td>
<td>38</td>
<td>53.34</td>
</tr>
<tr>
<td>S5</td>
<td>Grevillea robusta (2007)</td>
<td>5.59</td>
<td>9</td>
<td>0.67</td>
</tr>
<tr>
<td>S6</td>
<td>Grevillea robusta (2008)</td>
<td>15.16</td>
<td>14</td>
<td>2.33</td>
</tr>
<tr>
<td>S7</td>
<td>Grevillea robusta (AF) (2007)</td>
<td>14.05</td>
<td>28</td>
<td>1.13</td>
</tr>
<tr>
<td>S8</td>
<td>Grevillea robusta (AF) (2008)</td>
<td>38.30</td>
<td>54</td>
<td>1.06</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>73.10</td>
<td>105</td>
<td>4.99</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>215.16</td>
<td>240</td>
<td>83.51</td>
</tr>
</tbody>
</table>

Note (1) AF: Agroforestry
A QTL for total spikelet number per panicle is detected on chromosome 7 in the genetic background of an Indica-type rice cultivar

IR64 is a high quality Indica-type rice cultivar noted for good eating quality and high yield in many countries. To improve its yield potential, we studied quantitative trait locus (QTL) information for total spikelet number per panicle (TSN). TSN is one of the most important traits responsible for increasing grain productivity in rice (Oryza sativa L.). In this research, a Japanese high-yielding cultivar, Hoshiaoba, was backcrossed to IR64 for three times. We attempted to detect QTLs for TSN using the developed introgression line. Furthermore, we developed a near isogenic line (NIL) to characterize the effect of the QTL for increasing the TSN.

A putative QTL, qTSN7.1, was detected between two markers, RM1132 and RM505, on the long arm of chromosome 7 (Figs. 1A and 1B). For developing NILs, plants that have an introgression in the target chromosomal region of qTSN7.1 were selected from 144 F2 plants derived from a cross between IR64 and its introgression line used for the QTL mapping. A whole-genome survey was conducted using 480 simple sequence repeat (SSR) markers distributed throughout the 12 rice chromosomes to generate the graphical genotype of NIL with qTSN7.1 (Fig. 1C).

To characterize the agronomic traits of NIL, 11 traits were evaluated and compared with those of IR64 (Table 1). NIL showed significantly higher TSN than IR64. In contrast, NIL had significantly shorter seed length (SL) than IR64. There was no significant difference between IR64 and NIL in other agronomic traits across the seasons (except grain weight in 2012 dry season).

In this study, we successfully detected a QTL for TSN, qTSN7.1, using a Japanese high-yielding cultivar, Hoshiaoba, as a donor parent. The developed NIL for TSN with tagged DNA markers would be useful in improving the yield potential of Indica-type rice cultivars through an increase in TSN.

(N. Kobayashi [NARO-NICS], Y. Koide [JSPS], D. Fujita [JSPS], A.G. Tagle [IRRI], K. Sasaki, Y. Fukuta, T. Ishimaru)
Gene discovery of SPIKE -A unique gene from a rice landrace increases grain yield of Indica-type cultivars

Increasing crop production is essential to securing the future supply of food in developing countries. Total spikelet number per panicle (TSN), one of the most important traits that determine grain productivity in rice (*Oryza sativa* L.), is being evaluated with regard to the presence of a quantitative trait locus (QTL) for high TSN. We previously reported the detection of *qTSN4*, a QTL for increasing the TSN on the long arm of chromosome 4 derived from new plant type (NPT) cultivars with the genetic background of IR64 (JIRCAS Research Highlights, 2012). In this study, we attempted to clone the gene for *qTSN4*. We also characterized the agronomic traits of a near isogenic line (NIL) with the gene. To understand the effect of the gene in different genetic backgrounds, we introduced it by marker-assisted selection into six *indica* cultivars popular in South and Southeast Asian countries.

We successfully identified a causative gene for *qTSN4*, designated here as SPIKE (SPIKELET NUMBER), by map-based cloning using 7996 BC$_2$F$_1$ plants of an NPT cultivar as a donor and IR64 as a recurrent parent (Fig. 1A). NIL for SPIKE had higher TSN (Fig. 1B), wider flag leaf (Fig. 1C), and heavier root dry weight (Fig. 1D) than those of IR64. Rate of grain filling was also higher, but panicle number per plant and 1000-grain weight were lower in the NIL (data not shown). Notably, the grain appearance of the NIL was significantly improved (Fig. 2A), presumably owing to a strengthening of assimilate supply to the larger number of spikelets by an increase in vascular bundle number (Fig. 2B). Consequently, the grain yield of the NIL was consistently higher by 13-36% than that of IR64 over four cropping seasons, significantly so in three of the four seasons (Fig. 2C). SPIKE also increased TSN in six cultivars popular in South and Southeast Asia (Fig. 3), confirming its effectiveness in various genetic backgrounds.

In conclusion, the detection and identification of SPIKE, a unique gene, is significant because it would lead to increased grain yield of *indica* cultivars in South and Southeast Asia through molecular marker-assisted breeding, thus contributing to food security in these regions.

(N. Kobayashi [NARO-NICS], D. Fujita [NARO-NICS, JSPS], A.G. Tagle [IRRI], Y. Koide [JSPS], K. Sasaki, R. B. Gannaban [IRRI], Y. Fukuta, T. Ishimaru)

Table 1. Characterization of agronomic traits of IR64 and NIL with *qTSN7.1* in the wet season of 2010 and the dry season of 2012

<table>
<thead>
<tr>
<th>Line</th>
<th>Season</th>
<th>TSN (m)</th>
<th>DTH (d)</th>
<th>CL (cm)</th>
<th>PL (cm)</th>
<th>LW (cm)</th>
<th>LL (cm)</th>
<th>PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR64</td>
<td>2010WS</td>
<td>141.8 ± 30.1</td>
<td>88.8 ± 1.8</td>
<td>78.6 ± 3.0</td>
<td>25.2 ± 1.5</td>
<td>1.3 ± 0.1</td>
<td>38.2 ± 5.3</td>
<td>18.0 ± 5.3</td>
</tr>
<tr>
<td>NIL</td>
<td>2010WS</td>
<td>176.4 ± 21.4**</td>
<td>86.0 ± 1.0</td>
<td>77.8 ± 2.5</td>
<td>25.1 ± 1.2</td>
<td>1.3 ± 0.0</td>
<td>39.7 ± 5.4</td>
<td>22.6 ± 6.8</td>
</tr>
<tr>
<td>IR64</td>
<td>2012DS</td>
<td>106.9 ± 18.9</td>
<td>79.8 ± 3.4</td>
<td>65.5 ± 1.9</td>
<td>23.5 ± 1.1</td>
<td>1.3 ± 0.2</td>
<td>26.1 ± 4.0</td>
<td>19.2 ± 4.4</td>
</tr>
<tr>
<td>NIL</td>
<td>2012DS</td>
<td>150.0 ± 34.2**</td>
<td>78.5 ± 2.1</td>
<td>69.7 ± 5.2</td>
<td>23.0 ± 1.7</td>
<td>1.5 ± 0.1</td>
<td>28.6 ± 3.3</td>
<td>14.6 ± 5.6</td>
</tr>
</tbody>
</table>

TSN: total spikelet number; DTH: days to heading; CL: culm length; PL: panicle length; LW: leaf width; LL: leaf length; PN: panicle number; GW: 100-grain weight; SL: seed length; SW: seed width; ST: seed thickness.

**, significant difference at 1% by t-test
Hydrological impacts of full-dyke systems in flood-prone rice granary areas in the Mekong Delta

Mekong Delta, Vietnam’s rice granary, produces 90% of its rice exports, making the country the world’s second largest rice exporter. However, it is feared to be at high risk to the adverse effects of climate change. To reduce flood vulnerability and enable triple-cropped rice cultivation, full-dyke systems were constructed around flood-prone rice areas in the Mekong Delta. The objective of this study, therefore, was to clarify the effect of full-dyke systems on the hydrological environment in the region, through interviews with government officials and residents, and through analysis of river water levels and satellite images. The research data will provide the basic knowledge needed to ensure sustainable rice cultivation that could cope with the increased flood risk under...
climate change.

Two types of dyke systems were constructed to reduce vulnerability in high-flood areas adjacent to the Cambodian border in the Mekong Delta: a high embankment called “full-dyke”, which completely prevents farmland from flooding (August – November); and a low embankment called “semi-dyke”, which prevents flooding only up until the harvest period (August) of spring-summer rice (Fig. 1). Triple rice cropping became possible in farmlands enclosed by full-dykes, as rice can grow even during peak flood season from September to October. In response to farmers’ request, the Vietnamese government has promoted the construction of full-dykes, hence areas with full-dyke systems expanded rapidly in the past 10 years especially in An Giang Province (Fig. 2).

MODIS Terra images were compared between floods in 2011 (with a 10-year return period), when full-dykes have become widespread in the study area, and floods in 2000 (with a 60-year return period), when there were only a few full-dykes around. The inundated area was larger and the flood period longer in 2011 than in 2000 at Kien Giang province, downstream and west of An Giang Province (point A), and at the Cambodian border, upstream of the full-dyke area (point B) (Fig. 3). Three points in Fig. 3 were selected for verification: (a) the point with significantly prolonged inundation, (b) with slightly prolonged inundation, and (c) with little change in inundation. Interview surveys with the farmers were subsequently conducted. The results showed that the farmers’ recollection of flood events were in good accordance with the delineated flood area using satellite images. In recent years, the water level at CanTho station in Hau River, one of the major tributaries of the Mekong River, has shown a rising trend. The annual maximum water levels between CanTho and ChauDoc were compared, from 1979 to 2011, separated into two periods: before 2004, and after 2005. An upward trend in water level was observed in CanTho after 2005, compared with the water level before 2004 (Fig. 4).

The research output will be utilized for studying adaptation measures in megadeltas with progressive flood risk. It will also be useful as validation data in hydrologic and hydraulic modelling of flood inundation areas caused by the expansion of full-dyke systems in the Mekong Delta. It should be noted that land subsidence in urban areas and sea level rise due to global warming are also major factors contributing to water level rise in CanTho, thus a more detailed investigation is required to separate the impact of full-dyke systems.

(H. Fujii, Y. Fujihara [Ishikawa Prefectural University], K. Hoshikawa [Center for Integrated Area Studies, Kyoto University] and S. Yokoyama)
Effects of no-till maize cultivation after leguminous hairy vetch cropping on fertilizer saving and nitrogen leaching

No-till cultivation associated with residue mulch after leguminous cropping has several advantages such as a decrease in water runoff and soil erosion as well as fertilizer saving (JIRCAS Research Highlights, 2006). However, reducing surface runoff also has disadvantages. It increases water percolation into the soil, increasing the risk of nitrogen leaching if nitrates generated due to decomposition of organic matter are not effectively taken by plant. In the present study, we elucidate nitrogen leaching and balance, taking into account the relationship between water runoff and percolation in a sloping field when no-till maize is cultivated in a residue mulch of hairy vetch (*Vicia villosa* Roth) cropped during fallow period.

As shown in Fig. 1, maize yield with 50-kg dose of nitrogen after hairy vetch cropping, either tilled or no-tilled, was equal to or more than that after fallow (conventional treatment; nitrogen dose: 100 kg ha⁻¹). These results confirmed possible nitrogen fertilizer saving. In addition, at zero dose of nitrogen, maize yield after natural fallow recorded almost zero yield, while that after hairy vetch cropping obtained 70% of conventional yield (nitrogen dose: 100 kg ha⁻¹). No-till cultivation after hairy vetch cropping turned the residue into mulch. Table 1 shows water movement and nitrogen leaching at major rainfall events. The concentration of nitrate-nitrogen in the percolated water at the hairy vetch treatment increased 23.5 times compared with natural fallow treatment while the amount of percolated water increased only 1.5 times, resulting to a 37-fold increase in leached nitrogen. This means that the increase in nitrogen leaching was mainly due to the increase in the concentration of nitrate-nitrogen, while the increase in percolation resulting from no-till cultivation associated with the residue mulch was limited. Available nitrogen provided (total amount of nitrogen derived from fertilizer, hairy vetch, and soil) is almost equal to the sum of the amount of nitrogen taken up by maize and the amount that was leached. It can be explained, therefore, that generating excess nitrogen results to leaching. Regarding nitrogen balance at harvest time, it was much positively higher for no-till cultivation after hairy vetch cropping than that for conventional cultivation, suggesting that hairy vetch cropping increases soil fertility in a sustainable way. (Note: Nitrate-nitrogen output associated with water runoff was not considered in nitrogen balance computations since it was not detected in the runoff water.)
This cropping system shows some advantages such as decreased water runoff and fertilizer saving as described. Therefore, it is expected to be adopted in regions experiencing short duration, high intensity rainfall, and where dose of fertilizer application is limited. Excess turnover of biomass into the soil, however, pose a ground-water pollution risk due to nitrogen leaching as shown in the present study. It is necessary to consider the quantitative relationship between the amount of nitrogen derived from fertilizer and the amount derived from hairy vetch in order to adjust the dose of nitrogen fertilizer.

This study is being conducted at 14-m-long sloping fields (2º, 3.5º, 5º) in one of the open research facilities of Japan International Research Center for Agricultural Sciences (JIRCAS), Tropical Agriculture Research Front (TARF) in Ishigaki Island, Okinawa Prefecture, Japan.

(F. Nagumo, K. Nakamura [National Institute for Agro-Environmental Sciences])
Identification of fatty acids and fatty acid methyl esters as new nitrification inhibitors

The tropical pasture grass, Brachiaria humidicola (Rendle) Schweick, produces nitrification inhibitory compounds (termed biological nitrification inhibitors or BNIs) in its shoot and root tissues, and releases BNIs from its roots. During this study, two BNI compounds were isolated and identified from the shoot tissue of B. humidicola using activity-guided fractionation.

The BNI compounds in the shoot tissue were identified as linoleic acid (LA) and linolenic acid (LN) using authentic chemicals (ED₈₀ 16.0 µg for both LA and LN) for verification (Fig. 1). None of the other tested free fatty acids, namely, stearic acid, oleic acid, arachidonic acid, and vaccenic acid, showed any inhibitory effects on nitrification. Among the fatty acid methyl esters (FAME) evaluated [methyl oleate, methyl linolate (LA-ME), and methyl linolenate (LN-ME)], only LA-ME showed any inhibitory effect (ED₈₀ 8.0 µg ml⁻¹) (Figs. 1, 2). The inhibitory effect of LA, LN and LA-ME on soil nitrification was stable for 120 days at 20°C (Fig. 3). Soil treated with LA, LN and LA-ME showed a very low accumulation of NO₃⁻ and the maintenance of soil inorganic N in NH₄⁺ form (Fig. 3). The inhibitory effect of LA-ME on soil nitrification was greater than that of LA, LN or nitrapyrin (commercial nitrification inhibitor) (Fig. 3).

Both LA and LN suppressed soil nitrifier activity by blocking AMO (ammonia monoxygenase) and HAO (hydroxylamine oxidoreductase) enzymatic pathways in Nitrosomonas europaea.

Commercial nitrification inhibitors such as nitrapyrin or dicyandiamide (DCD) are not effective. (Nitrapyrin is volatile at temperatures >5°C, thus is not effective in tropical environments. Likewise, DCD is highly soluble in water and leaches out of fertilizer zone, making it ineffective and not suited for production agriculture in tropical field environments.)

LA, LN and LA-ME can be produced from vegetable oils such as soybean, flax, or sunflower oils. Because these compounds are bound to soil, they do not leach out from the point of application to the fertilizer zone. Thus, they are more effective and stable in tropical soils, and have the potential for use as nitrification inhibitors in production agriculture in tropical environments.

(G. V. Subbarao, K. Nakahara, T. Ishikawa, T. Yoshihashi, Y. Ono [National Food Research Institute], M. Kameyama [National Food Research Institute], M. Yoshida [National Food Research Institute])

Fig. 1. Structure formulae of various fatty acids and fatty acid esters. Substances with enclosures exhibit nitrification inhibitory activity.

Table 2. Nitrogen balance for maize cropping (kg ha⁻¹)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>NF</th>
<th>HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Fallow)</td>
<td>(Tillage)</td>
<td>No-till (N dose: kg ha⁻¹)</td>
</tr>
<tr>
<td>Biomass-N</td>
<td>13.2 (weeds)</td>
<td>150.1 (HV)</td>
</tr>
<tr>
<td>Fertilizer-N</td>
<td>100.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Input-N</td>
<td>113.2</td>
<td>200.1</td>
</tr>
<tr>
<td>Available-N</td>
<td>108.7</td>
<td>133.7</td>
</tr>
<tr>
<td>Uptake N</td>
<td>95.6</td>
<td>96.2</td>
</tr>
<tr>
<td>Leached N</td>
<td>11.1</td>
<td>36.5</td>
</tr>
<tr>
<td>Output-N</td>
<td>106.7</td>
<td>132.7</td>
</tr>
<tr>
<td>Available N-Output N</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>N balance</td>
<td>6.5</td>
<td>67.4</td>
</tr>
</tbody>
</table>

TOPIC 6

Identification of fatty acids and fatty acid methyl esters as new nitrification inhibitors

The tropical pasture grass, Brachiaria humidicola (Rendle) Schweick, produces nitrification inhibitory compounds (termed biological nitrification inhibitors or BNIs) in its shoot and root tissues, and releases BNIs from its roots. During this study, two BNI compounds were isolated and identified from the shoot tissue of B. humidicola using activity-guided fractionation.

The BNI compounds in the shoot tissue were identified as linoleic acid (LA) and linolenic acid (LN) using authentic chemicals (ED₈₀ 16.0 µg ml⁻¹ for both LA and LN) for verification (Fig. 1). None of the other tested free fatty acids, namely, stearic acid, oleic acid, arachidonic acid, and vaccenic acid, showed any inhibitory effects on nitrification. Among the fatty acid methyl esters (FAME) evaluated [methyl oleate, methyl linolate (LA-ME), and methyl linolenate (LN-ME)], only LA-ME showed any inhibitory effect (ED₈₀ 8.0 µg ml⁻¹) (Figs. 1, 2). The inhibitory effect of LA, LN and LA-ME on soil nitrification was stable for 120 days at 20°C (Fig. 3). Soil treated with LA, LN and LA-ME showed a very low accumulation of NO₃⁻ and the maintenance of soil inorganic N in NH₄⁺ form (Fig. 3). The inhibitory effect of LA-ME on soil nitrification was greater than that of LA, LN or nitrapyrin (commercial nitrification inhibitor) (Fig. 3).

Both LA and LN suppressed soil nitrifier activity by blocking AMO (ammonia monoxygenase) and HAO (hydroxylamine oxidoreductase) enzymatic pathways in Nitrosomonas europaea.

Commercial nitrification inhibitors such as nitrapyrin or dicyandiamide (DCD) are not effective. (Nitrapyrin is volatile at temperatures >5°C, thus is not effective in tropical environments. Likewise, DCD is highly soluble in water and leaches out of fertilizer zone, making it ineffective and not suited for production agriculture in tropical field environments.)

LA, LN and LA-ME can be produced from vegetable oils such as soybean, flax, or sunflower oils. Because these compounds are bound to soil, they do not leach out from the point of application to the fertilizer zone. Thus, they are more effective and stable in tropical soils, and have the potential for use as nitrification inhibitors in production agriculture in tropical environments.

(G. V. Subbarao, K. Nakahara, T. Ishikawa, T. Yoshihashi, Y. Ono [National Food Research Institute], M. Kameyama [National Food Research Institute], M. Yoshida [National Food Research Institute])

Fig. 1. Structure formulae of various fatty acids and fatty acid esters. Substances with enclosures exhibit nitrification inhibitory activity.

Table 2. Nitrogen balance for maize cropping (kg ha⁻¹)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>NF</th>
<th>HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Fallow)</td>
<td>(Tillage)</td>
<td>No-till (N dose: kg ha⁻¹)</td>
</tr>
<tr>
<td>Biomass-N</td>
<td>13.2 (weeds)</td>
<td>150.1 (HV)</td>
</tr>
<tr>
<td>Fertilizer-N</td>
<td>100.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Input-N</td>
<td>113.2</td>
<td>200.1</td>
</tr>
<tr>
<td>Available-N</td>
<td>108.7</td>
<td>133.7</td>
</tr>
<tr>
<td>Uptake N</td>
<td>95.6</td>
<td>96.2</td>
</tr>
<tr>
<td>Leached N</td>
<td>11.1</td>
<td>36.5</td>
</tr>
<tr>
<td>Output-N</td>
<td>106.7</td>
<td>132.7</td>
</tr>
<tr>
<td>Available N-Output N</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>N balance</td>
<td>6.5</td>
<td>67.4</td>
</tr>
</tbody>
</table>
Analysis of the secretion mechanism of biological nitrification inhibitors from sorghum roots

The ability to suppress soil nitrification by releasing nitrification inhibitors from plant root systems is termed ‘biological nitrification inhibition’ (BNI). We have reported earlier that sorghum roots release higher BNI activity when grown with NH$_4^+$, but not with NO$_3^-$, as N source. Also, for BNI release, rhizosphere pH of <5.0 is needed; beyond this, a negative effect on BNI release was observed with nearly 80% loss of BNI activity at pH ≥ 7.0. This study is aimed at understanding the inter-functional relationships associated with NH$_4^+$ uptake, rhizosphere-pH and plasma membrane H$^+$-ATPase (PM H$^+$-ATPase) activity in regulating the release of biological nitrification inhibitors (BNIs).

Sorghum was grown hydroponically and root exudate was collected from intact plants using a pH-stat system to separate the secondary acidification effects from NH$_4^+$ uptake on BNIs release. A recombinant luminescent Nitrosomonas europaea bioassay was used to determine BNI activity. Root plasma membrane was isolated using a two-phase partitioning system. Hydrolytic H$^+$-ATPase activity was determined. Split-root system was used to understand the localized responses to NH$_4^+$, H$^+$-ATPase-stimulator (fusicoccin) or H$^+$-ATPase-inhibitor (vanadate) on BNI release by sorghum. The results presented suggest that the presence of NH$_4^+$ in the rhizosphere stimulated the expression of H$^+$-ATPase activity and enhanced the release of BNIs from sorghum roots compared to NO$_3^-$ (Fig. 1a, b). NH$_4^+$ levels (in rhizosphere) positively influenced BNIs release and root H$^+$-ATPase activity in the concentration range of 0 - 1.0 mM, indicating a close relationship between BNIs release and root H$^+$-ATPase activity with a possible involvement of carrier-mediated transport for the release of BNIs in sorghum (Fig. 2). Split-root system studies showed that part of the root system exposed to NH$_4^+$ released substantially higher levels of BNI activity than the root system that was exposed to NO$_3^-$; similarly, part of the root system which was exposed to fusicoccin stimulated BNI release, whereas the part of the root system exposed to vanadate suppressed BNI release (Fig. 3a, b). These results indicate that NH$_4^+$ uptake, PM H$^+$-ATPase activity, and rhizosphere acidification are functionally interconnected with BNI release in sorghum, and a hypothesis is proposed (Fig. 4).

Such knowledge is critical to gaining insights into why BNI function is likely to be more effective in light-textured and mildly acidic soils [such as Alfisols (of SAT regions), Ultisols (predominant in South America) or Sandy-loams (of West-African SAT region)] compared to heavy-textured soil types such as Vertisols.

(Y. Zhu, H. Zeng [Nanjing Agricultural University], Q. Shen [Nanjing Agricultural University], T. Ishikawa, G. V. Subbarao)
Fig. 1. Influence of N-forms (i.e., 1 mM N as NH₄⁺ vs. NO₃⁻) and root exudate collection solution pH (solution pH 3.0 vs. 7.0) on biological nitrification inhibition (BNI) release and root plasma membrane (PM) H⁺-ATPase in sorghum grown hydroponically for 14 days with NH₄⁺ or NO₃⁻ as N source.

Fig. 2. The relationship between BNI release from sorghum roots and root PM H⁺-ATPase activity at various concentrations of NH₄⁺ (0 to 1.0 mM) in the root exudate collection solutions.

Fig. 3. Influence of N-forms (1 mM N as NH₄⁺ vs. NO₃⁻) and H⁺-ATPase stimulator, fusicoccin (1 µM) or H⁺-ATPase inhibitor, vanadate (0.5 mM) on BNI release in sorghum in a split-root system setup.

Fig. 4. Hypothesis on the transport of biological nitrification inhibitors (BNIs), driven by plasma membrane H⁺-ATPase, associated with NH₄⁺ uptake and assimilation in sorghum.
PROGRAM B
Stable Food Production Program

“Technology development for increased productivity and stable production of agricultural products in the tropics and other unstable environments”

The Stable Food Production Program is aimed at developing technologies that will improve and sustain productivity through collaborative research with local institutions and international research centers in specific research fields wherein Japan has shown predominant comparative advantage, especially for areas under adverse environments such as those found in tropical regions. Research outcomes are expected to contribute to global food security and help reduce starvation and malnutrition which remain serious problems in developing regions.

[Development of rice production technologies in Africa]

The program’s flagship project, “Development of rice production technologies in Africa,” will try to fulfill the main target of the Coalition for African Rice Development (CARD) to double rice production in Sub-Saharan Africa within ten years (by 2018). A workshop titled “Improvement of Soil Fertility with Use of Indigenous Resources in Rice Systems in Ghana” was held in Tamale, Ghana, and a guidebook titled “Manual of Soil Fertility Improvement Technologies in Lowland Rice Ecologies of Ghana” was published. Additionally, multi-site agronomic characterization of rainfed upland NERICA varieties (Ver.1) was uploaded to the JIRCAS website. In this version, primary datasets of agronomic traits of NERICAs collected in Tsukuba, Japan, and some characterization results were provided as downloadable files.

The effect of direct application of phosphate rocks produced in Burkina Faso (BPR) on rice production under two agro-ecological conditions (the Guinea Savanna and Equatorial Forest zones) was examined in Ghana. Based on studies, its effect on rice yield was observed to be comparable to chemical P fertilizers. [Topic1]

Shoot elongation rate after germination was improved by priming the seed in a wide range of soil water content in sandy substrate. If this technology becomes applicable to rainfed lowland, it can be expected to contribute to the establishment and expansion of a stable rice production system. [Topic 2]

[Rice innovation for environmentally sustainable production systems]

A low-input and environment-friendly variety of rice and a new cultivation technology in Asia that ensures stable productivity in poor environmental conditions will be advanced. Based on JIRCAS “Blast Research Network for Stable Rice Production,” two research studies below, as well as the research on the development of the differential system for blast pathogen and resistance genes in rice varieties in Asia and Africa, have progressed.

Blast isolates collected from Cambodia revealed wide variation and were classified into 3 groups — I, IIa, and IIb — using data from the reaction patterns of differential varieties. [Topic3]

A Myanmar rice landrace, Haoru, has broad-spectrum resistance controlled by three resistance genes. Two of them were mapped on chromosomes 12 and 6, and were designated as Pi58(t) and Pi59(t), respectively. Pi58(t) and Pi59(t) were differentiated from other reported resistant genes using the standard differential system. [Topic4]

[Development of genetic engineering technologies of crops with environmental stress tolerance]

Development of genetic engineering technologies as tools to improve crop cultivation in developing countries is important, especially in areas under unstable environments where drought or poor natural conditions affect stable crop production.

We revealed that a rice stress-inducible CCCH-type zinc finger protein OsTZF1 binds to RNA, and is involved in the regulation of growth, senescence, and stress tolerance. OsTZF1 may serve as a useful biotechnological tool for the improvement of stress tolerance in various plants through the control of RNA metabolism of stress-responsive genes. [Topic5]

Rice Oshox24 promoter was strongly induced by stresses, but showed low activity under normal growth conditions. The Oshox24 promoter is useful for overexpressing stress-tolerance genes without adversely affecting growth. [Topic6]

[Development of breeding technologies toward improved production and stable supply of upland crops]

In South America, soybean production has been threatened since the early 2000s by Asian soybean rust (ASR) caused by Phakopsora pachyrhizi. ASR, along with drought, is currently the most serious threat to stable soybean production. To cope with ASR, we evaluated its
pathogenicity and are developing resistant soybeans using backcrossing and marker-assisted selection. BC$_F_1$ lines are now ready for field evaluation. The experimental protocols for evaluating the pathogenicity, the ASR resistance, and the marker-assisted selection in soybean, have been organized and uploaded as “Laboratory Manual for Studies on Soybean Rust Resistance” to the JIRCAS website. The QTL region responsible for NaCl tolerance in soybean is being fine-mapped toward gene isolation. Alkaline tolerance is also being studied to explore candidate genes. Rice genes involved in aerenchyma formation are being isolated toward molecular breeding for waterlogging tolerance in field crops. Using the new hydroponic method [Topic8], which can clearly differentiate the mechanisms of aerenchyma formation in rice into constitutive or inducible (further, by nitrogen or oxygen deficiency), seven aerenchyma variants were selected, and the mechanism of aerenchyma formation of two previously isolated genes was characterized.

[Evaluation and utilization of diverse genetic materials in tropical field crops]

This project is aimed at developing effective evaluation and breeding techniques to utilize a wider range of germplasm for genetic improvement in tropical field crops, especially in yam, cowpea, tropical fruits, and sugarcane.

Yam (Dioscorea spp.) is a traditional staple food crop of significant economic and socio-cultural importance in West Africa. To develop technologies using genomic information and molecular techniques to facilitate yam breeding in West Africa, generating a reliable reference sequence is a prerequisite. We have been gathering efforts to obtain the first whole genome sequence of D. rotundata, and the on-going de novo assembly is currently in its final stage. Next-generation sequencing allows large-scale genome-wide discovery of genetic markers that are important for genomic and genetic applications such as construction of genetic and physical maps, and analysis of genetic diversity. As a component of the on-going efforts, we selected a subset of experimental materials called Diversity Research Set (DRS) to develop genotyping and phenotyping tools as well as protocols for germplasm evaluation. Accordingly, 106 out of over 2,000 accessions of IITA’s D. rotundata collection have been selected for inclusion in the DRS based on 21 key morphological traits, ploidy levels, and SSR polymorphisms.

Cowpea (Vigna unguiculata) is an important protein and micronutrient source for the poor and a good cash crop for small farmers in Africa. To develop high-valued cowpea varieties with better nutritional value and commercial quality to meet markets’/consumers’ preferences, we are investigating germplasm to identify useful breeding materials and strategic breeding approaches. Twenty cowpea grain varieties were analyzed for various nutritional components. It was confirmed that free sugar content, β-amylase activity, and flour pasting properties were especially diverse among the tested varieties and considered to be the traits linked with markets’/consumers’ preferences. To understand local preference on cowpea, continuous market surveys focusing on the relationship between the variety characteristics and its price are being carried out in Nigeria, the biggest cowpea producer and consumer in the world. Based on Hedonic price analyses with 4,350 samples collected from 19 markets in 2012 and 2013, it was shown that cowpea variety names have significant effects on the price. The result implies that cowpea prices are influenced not only by observable characteristics but also by unobservable characteristics, such as taste, cooking properties, etc.

To better utilize the tropical fruits germplasm collection conserved at JIRCAS, characterization and evaluation of the germplasm collection are steadily ongoing. Selection of SSR markers for diversity analysis and varietal identification of 80 mango accessions is also in progress. A promising passion fruit breeding line selected by JIRCAS is undergoing local network trials in different prefectures in Japan from this year.

Sugarcane is widely cultivated as food and energy source in the tropics. However, inferior environmental conditions such as poor soil and rainfall deficiency hinder stable production. We are attempting to utilize wild relatives, especially Erianthus, to improve biomass productivity of sugarcane even under unfavorable environments. Morphological characterization and evaluation of major agronomic traits of 150 accessions of the Thai Erianthus germplasm were completed in 2013. In addition, a set of SSR markers were selected for further genetic diversity study of the collection. To facilitate intergeneric crosses between sugarcane and Erianthus, development of artificial flowering regulation techniques is also in progress. Using these techniques, hybrids between sugarcane and different types of Erianthus were successfully obtained.

[Development of integrated pest management techniques for stabilization of agricultural and livestock production in developing areas]

Multi-purpose sugarcane (MPS), which was developed during JIRCAS’ Second Medium-Term Plan period, is expected to help
address global food and energy issues because it can be used for both food (sugar) and energy (ethanol) production purposes. However, a phytoplasma disease, sugarcane white leaf (SCW), is an obstacle to field production in developing areas. We examined the primary factors in the spread of SCW occurrence in Northeast Thailand, and results of the epidemiological study suggested that the most important factor was the planting of infected seed-canes in the field. The “DOA/JIRCAS Collaborative Workshop on Future of Multi-Purpose Sugarcane” was held in September 2013 in Khon Kaen, where we proposed the creation of the MPS research network to exchange information on the utilization of MPS.

TOPIC 1

Direct application of Burkina Faso phosphate rock is highly effective on lowland rice cultivation

Phosphorus (P) is a critical nutrient for crop production all over the world. In Sub-Saharan Africa (SSA), soil P deficiency is one of the most serious constraints on crop production. This shortfalls has resulted from the high P fixation capacities of highly weathered acidic soils. The lack of soil P impacts on a range of agricultural lands, including paddy soils for rice cultivation. However, few farmers in SSA can use commercial water-soluble P fertilizers to cope with this P deficiency. Resource-poor farmers especially find it difficult to apply these chemical fertilizers because of very limited accessibility and affordability.

Phosphate rock (PR) is being considered as a cheaper alternative to water-soluble P fertilizers such as triple super phosphate (TSP), and it has been verified that PR deposits exist in SSA. It is therefore imperative to propose a proper PR application method using these local PR resources.

Generally, PR produced in SSA has low solubility, and thus is considered less effective especially for upland crop production. However, for direct application on paddy fields it seemed that PR solubility is affected by the paddy fields’ unique soil properties and conditions. Hence, it cannot be denied that PR direct application has a positive effect on lowland rice production. Observations from elucidating the effects of PR direct application will be used as fundamental information for PR utilization in SSA.

This study examined the impact of direct application of fine ground sedimentary PRs produced in Kodjari, Burkina Faso (BPR) on rice production under two agro-ecological conditions of the Guinea Savanna and Equatorial Forest zones of Ghana at several application levels, as shown in Table 1. Effects of BPR direct application on rice grain yield were observed to be comparable to TSP in both agro-ecological zones (Fig. 1). In BPR direct application plots, rice grain yield increased with increasing BPR application rates. These results suggest that BPR direct application is effective on lowland rice production in Ghana. Furthermore, a positive correlation between plant P uptake and rice grain yield has been noted (Fig. 2). It means that applied P has increased rice grain yield effectively. Moreover, BPR direct application has shown a high residual effect on lowland rice production (unpublished data).

Results shown in this study will have great impact on lowland rice cultivation in SSA because BPR reserves, estimated at 100 million tons (as P2O5), exist in Burkina Faso, with an estimated 600 million tons more in neighboring countries. Moreover, BPR are sold at 1/4 the price of TSP in the Burkina Faso markets, which makes it more affordable to farmers.

(S. Nakamura, M. Fukuda, S. Tobita)

Table 1. Summary of fertilizer application rates for each PR direct application treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>P source</th>
<th>Savanna zone</th>
<th>Equatorial forest zone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P2O5</td>
<td>N</td>
<td>K2O</td>
</tr>
<tr>
<td>Zero†</td>
<td>None</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Control</td>
<td>None</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>PR-L</td>
<td>BPR*</td>
<td>67</td>
<td>60</td>
</tr>
<tr>
<td>PR-M</td>
<td>BPR*</td>
<td>135</td>
<td>60</td>
</tr>
<tr>
<td>PR-H</td>
<td>BPR*</td>
<td>270</td>
<td>60</td>
</tr>
<tr>
<td>TSP</td>
<td>TSP**</td>
<td>270</td>
<td>60</td>
</tr>
<tr>
<td>TSP-rec†</td>
<td>TSP**</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

†In the Savanna zone, absolute zero application (Zero) plot was set up, while in the Equatorial Forest zone, TSP at the recommended rate (80 kg P2O5 ha⁻¹) was set up (TSP-rec).
*PR: Burkina Faso phosphate rock (P2O5 26%, Ca 32%, Si 6%)
**TSP: Triple Super Phosphate
TOPIC 2

Rice seed priming improves germination speed, germination uniformity, and seedling emergence

Improving seedling establishment and emergence rates is extremely important in the development of a direct seeding rice cultivation technology and for maintaining sustainable production for the rainfed lowlands of Africa. However, individual differences in initial growth rates due to variations in seedling emergence affect the dry matter production and light-receiving posture of rice. These defective conditions decrease rice yield. Strategies involving techniques for good seedling establishment in a wide range of soil moisture conditions are thus required because controlling soil moisture at the time of seeding is difficult, particularly in rainfed lowlands. Seed priming, a treatment method that allows artificial germination to proceed by soaking the seeds in water over a certain period and drying them back to their initial weight, has demonstrated that germination and emergence rates are accelerated and that seedling vigor is enhanced. If this technology becomes applicable to rainfed lowlands, it can contribute greatly to the establishment and expansion of a stable rice production system.

Shortened germination time was more pronounced when seeds were soaked at 24h and 48h at 20 °C water temperature, and at 12h at 30 °C. Soaking the seeds for 12h at 30 °C water temperature (similar to African conditions) reduced germination time by about 18 hours compared with non-priming (Table 1). With priming, shoot elongation rates after germination improved 1.2 times in sandy soils with moisture content from 3 to 20% (field capacity = 22.2%) inside growth chambers (Fig. 1). Emergence time, meanwhile, was shortest at 8% soil moisture content, equivalent to dry conditions (Fig. 2). Emergence uniformity was also improved by seed priming except at soil moisture contents equal to 6% and 20% (Fig. 3). These results indicate that emergence speed is improved and stabilized by increasing the growth rate of the seedlings and thus accelerating germination.

Seed priming is practical because it can be accomplished by simply soaking and re-drying the rice seeds, eliminating the need for dedicated facilities. In conclusion, this study has shown that stabilization of emergence with fast germination rates can be obtained in the rainfed lowlands of Africa, and that primed seeds can be stored for several months as they have already been pre-soaked.

(K. Matsushima, J.-I. Sakagami)

Fig. 1. Effect of seed priming on shoot elongation rate

***(Significant different at P<0.01, 0.05 (T-test)
Table 1. Germination time (h) after seed priming at varying temperatures and soaking times

<table>
<thead>
<tr>
<th>Soaking time (h)</th>
<th>Soaking temperature (℃)</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>39.7±4.6<sup>**</sup></td>
<td>35.5±1.7<sup>**</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>37.7±2.3<sup>**</sup></td>
<td>35.6±1.0<sup>**</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>34.4±1.3<sup>**</sup></td>
<td>35.6±1.8<sup>**</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>34.3±0.3<sup>**</sup></td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>36.5±1.2<sup>**</sup></td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td>44.1±3.8<sup>ns</sup></td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Control</td>
<td>51.9±2.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The time to achieve 50% germination is germination time. “-” in the tables indicates less than 50% germination. Means±SE. **, *: Significantly different at P<0.01, 0.05 (T-test). After soaking at several temperatures and at multiple time points, the seeds were dried back to attain initial seed weight before submerging in water at 25℃. Germination was investigated below 30℃ under dark conditions.

Fig. 2. Shortened emergence time caused by seed priming
- Non-priming: O. \(y = 0.066x^2 - 1.385x + 87.814, r=0.395 \)
- Priming: ▲ \(y = 0.237x^2 - 4.630x + 82.442, r=0.957 \)

Emergence Uniformity (GU) is the standard deviation of the mean of germination time. The formula used to calculate is:

\[
GU = \sqrt{\frac{\sum(D-D̅)^2}{n-1}}
\]

where
- \(D \): mean of germination time, \(D̅ \): time after sowing, and \(n \): number of germinate at the time of \(D \)

TOPIC 3

Pathogenicity of rice blast (*Pyricularia oryzae* Cavara) isolates from Cambodia and its geographical distribution

Evaluation of 122 blast (*Pyricularia oryzae* Cavara) isolates collected from the Tonle Sap and Mekong River regions of Cambodia revealed a wide variation.

Using a new designation system, the blast isolates were categorized into 92 races based on the reaction patterns of rice differential varieties (DVs) harboring 23 resistance genes and of 1 susceptible cultivar, Lijiangxintuanheigu (LTH).

Cluster analysis was used to classify the blast isolates into 3 groups — I, IIa, and IIb — using data from the reaction patterns of the DVs and LTH (Fig. 1). We used the classification method established under the new designation system, alongside cluster analysis and the geographical distribution of blast isolates, to investigate the diversity and differentiation of blast races in the
Tonle Sap and Mekong River regions.

The distribution of the blast races differed between the 2 regions. Blast isolates of group IIa were distributed commonly in both regions, and groups I and IIb occurred at higher frequencies in the Tonle Sap region rather than in the Mekong region. The blast isolates in groups I and IIb were also less diverse than those in group IIa. Accordingly, Group II blast isolates overall were distributed in both regions with high diversity, but some modified blast isolates were additionally distributed in the Tonle Sap region (Fig. 2).

(Y. Fukuta [TARF, JIRCAS])

Fig. 1. Frequency of virulent blast isolates from Cambodia against differential varieties.

Blast isolates from Cambodia were classified into three groups—I, IIa, and IIb—by cluster analysis based on the reaction pattern data of differential varieties harboring 23 resistance genes and of 1 susceptible cultivar, Lijiangxintuanheigu (LTH).

Fig. 2. Distribution of blast isolates classified into three groups—I, IIa, and IIb—in Cambodia.

Blast isolates from Cambodia were classified into three groups—I, IIa, and IIb—by cluster analysis based on the reaction pattern data of differential varieties harboring 23 resistance genes and of 1 susceptible cultivar, Lijiangxintuanheigu (LTH). The distribution of the blast races differed between the 2 regions. Blast isolates of group IIa were distributed commonly in both regions, and groups I and IIb occurred at higher frequencies in the Tonle Sap region rather than in the Mekong region. The blast isolates in groups I and IIb were also less diverse than those in group IIa. Accordingly, Group II blast isolates overall were distributed in both regions with high diversity, but some modified blast isolates were additionally distributed in the Tonle Sap region (Fig. 2).

(Y. Fukuta [TARF, JIRCAS])

Fig. 2. Distribution of blast isolates classified into three groups—I, IIa, and IIb—in Cambodia.

Blast isolates of group I was distributed at a high frequency in Siem Reap. In the Mekong River region, group IIa was found at a high frequency, whereas groups I and IIb were at low frequencies. In the Tonle Sap region, the frequency of groups IIa and IIb were similarly high. High diversity group IIa probably comprises the basic population of blast races in Cambodia and that groups I and IIb were modified from IIa. These unique distributions of blast races among the 3 regions might occur and be attributable to differences in genotypes of blast resistance genes in the cultivated rice varieties.
TOPIC 4

Novel blast resistance genes from a landrace rice variety in Myanmar

The use of broad-spectrum resistance genes is an effective way to achieve durable resistance against rice blast (*Pyricularia oryzae* Cavara) in rice (*Oryza sativa* L.).

We previously surveyed the diversity of blast resistance in 948 rice varieties and found Haoru (International Rice Research Institute genebank acc. no. IRGC33090), a Myanmar rice landrace with broad-spectrum resistance against blast.

We examined the genetic basis of Haoru’s broad-spectrum resistance using the standard blast differential system consisting of the standard isolates and differential varieties.

For genetic analysis, we used the BC1F1 population and BC1F2 lines derived from crosses of Haoru with a susceptible variety, US-2. Co-segregation analysis of the reaction pattern in the BC1F1 population against the 20 standard isolates suggested that Haoru harbors three resistance genes.

Using bulk-segregant and linkage analysis, we mapped two of the three resistance genes on chromosomes 12 and 6, and designated them as *Pi58(t)* and *Pi59(t)*, respectively.

Pi58(t) and *Pi59(t)* were differentiated from other reported resistance genes using the standard differential system. The estimated resistance spectrum of *Pi58(t)* corresponded with that of Haoru, suggesting that *Pi58(t)* is primarily responsible for Haoru’s broad-spectrum resistance.

In addition, *Pi59(t)* and the third gene were also proven to be new and useful genetic resources for studying and improving blast resistance in rice.

(Y. Fukuta [TARF, JIRCAS])

Table 1. Reaction patterns of Haoru and segregation lines harboring new resistance genes to standard differential blast isolates

<table>
<thead>
<tr>
<th>Line</th>
<th>Reaction patterns</th>
<th>Chr.</th>
<th>Standard differential blast isolates from the Philippines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CA89</td>
</tr>
<tr>
<td>Haoru</td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>US-2</td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>BC1F2 line (US-2/Haoru//US-2)</td>
<td>Pi58(t)</td>
<td>12</td>
<td>R</td>
</tr>
<tr>
<td>IRBL12-M</td>
<td>Pi12(t)</td>
<td>12</td>
<td>S</td>
</tr>
<tr>
<td>IRBL19-A</td>
<td>Pi19(t)</td>
<td>12</td>
<td>S</td>
</tr>
<tr>
<td>IRBLta-CP1</td>
<td>Pita</td>
<td>12</td>
<td>S</td>
</tr>
<tr>
<td>IRBLta-CP1</td>
<td>Pita</td>
<td>12</td>
<td>S</td>
</tr>
<tr>
<td>IRBLz5-CP1</td>
<td>Piz-t</td>
<td>12</td>
<td>S</td>
</tr>
<tr>
<td>BC1F2 line (US-2/Haoru//US-2)</td>
<td>Pi59(t)</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>IRBLz-Fu</td>
<td>Piz</td>
<td>6</td>
<td>R</td>
</tr>
<tr>
<td>IRBLz-Ca-1</td>
<td>Piz</td>
<td>6</td>
<td>R</td>
</tr>
<tr>
<td>IRBLz-CP1</td>
<td>Piz-t</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>IRBLz-Fu</td>
<td>Piz</td>
<td>6</td>
<td>R</td>
</tr>
</tbody>
</table>

R: Resistant, M: Moderately resistant, S: Susceptible

Fig. 1a. Position of resistance gene, *Pi59(t)*, on chromosome 6.
A: Physical map. Position based on the Nipponabare’s genome sequence.
B: Genetic map. Genetic distances between the gene and markers were estimated using the BC1F2 lines of US-2/Haoru//US-2 (n=55).
Identification of RNA-binding protein that regulates growth, senescence, and stress tolerance in rice

Because plants cannot move freely, they must grow and live in place even under environmental stress conditions such as drought. Thus, plants have developed a mechanism to survive under such conditions by controlling the function of various genes. Under drought conditions, expression of the gene coding hydrophilic proteins, transcription factors, and various proteins involved in stress tolerance is induced. The role of stress-induced CCCH-type zinc finger proteins was not well understood. In this study, we revealed that a stress-inducible CCCH-type zinc finger protein OsTZF1 binds to RNA, and is involved in the regulation of growth, senescence, and stress tolerance.

Expression of OsTZF1 was induced by drought, high-salt stress, hydrogen peroxide, abscisic acid, methyl jasmonate, and salicylic acid (Fig. 1A, B). The expression was observed in callus, coleoptile, young leaf, and panicle tissues under normal growth condition. OsTZF1-green fluorescent protein localization was observed in the cytoplasm and cytoplasmic foci under stress condition (Fig. 1C). OsTZF1 binds to RNA, suggesting that OsTZF1 might be associated with RNA metabolism (Fig. 1D). Transgenic rice plants overexpressing OsTZF1 (OsTZF1-OX) exhibited delayed seed germination, growth retardation at the seedling stage, and delayed leaf senescence (Fig. 2A, B). OsTZF1-OX plants also showed improved tolerance to high-salt and drought stresses (Fig. 2C). Microarray analysis revealed that genes related to stress were regulated in the OsTZF1-OX plants.

OsTZF1 may serve as a useful biotechnological tool for the improvement of stress tolerance in various plants through the control of RNA metabolism of stress-responsive genes. Since the delay-like growth was observed when we overexpressed OsTZF1 constitutively, it might be necessary to utilize the suitable promoters such as stress-responsive promoters to improve environmental stress tolerance without causing growth retardation.

(A. Jan, K. Maruyama, D. Todaka, S. Kidokoro [The University of Tokyo], M. Abo [Meiji University], E. Yoshimura [The University of Tokyo], K. Shinozaki, RIKEN, K. Yamaguchi-Shinozaki and K. Nakashima)
TOPIC 6

Development of stress-tolerant rice plants without growth defect using Osnox24 promoter

Rice production is largely inhibited by environmental stresses such as drought and high salinity. Developing transgenic rice plants with enhanced stress tolerance is therefore necessary. Stress-responsive promoters with low expression under normal growth conditions are needed to minimize the adverse effects of stress-tolerance genes on rice growth. We aim to find stress-inducible promoters with low expression levels under normal growth conditions, and develop the technology to produce rice plants showing enhanced stress tolerance without growth inhibition.

We conducted expression analyses of drought-responsive genes in rice plants using a microarray, and selected Osnox24 for promoter analysis. Transient assays using the rice promoters indicated that AREB/ABF (abscisic acid (ABA)-responsive element-binding protein/ABA-binding factor) transcription factors enhanced expressions of the gene. We generated transgenic rice plants containing the Osnox24 promoter and the β-glucuronidase (GUS) reporter gene. GUS assays revealed that the LIP9 and OsNAC6 promoters that have been used were induced by drought, high salinity, and ABA treatment, and
both promoters showed strong activity under normal growth conditions in the root (Fig. 1A). The Oshox24 promoter was strongly induced by stresses and ABA, but showed low activity under normal growth conditions (Fig. 1A). In seeds, GUS staining showed that Oshox24 expression was low and expressions of the other genes were high (Fig. 1B). Transgenic rice plants overexpressing a stress-tolerant gene under the control of the Oshox24 promoter showed increased tolerance to drought and high salinity, and no growth defects (Fig. 2).

These data suggest that the Oshox24 promoter is useful for overexpressing stress-tolerance genes without adversely affecting growth. Verification of the transgenic plants expressing stress-tolerant genes and the Oshox24 promoter in fields is required.

(K. Nakashima, A. Jan, D. Todaka, K. Maruyama, S. Goto, K. Shinozaki [RIKEN], K. Yamaguchi-Shinozaki)

Fig. 1. Expression analysis of the newly isolated rice Oshox24 promoter and rice LIP9 and OsNAC6 promoters that have been used. We generated transgenic rice plants containing each promoter and the β-glucuronidase (GUS) reporter gene. (A) GUS activity at 0h (Control) and 5h drought (dry) condition in the shoot. Error bars: SD. (B) GUS staining in seeds of transgenic plants. Bars: 1mm. These were adopted from Nakashima et al. (2014) (Copyright Springer; http://link.springer.com/journal/425).

Fig. 2. Phenotype of transgenic plants expressing a stress-tolerant gene using the Oshox24 promoter. (A) Plant heights of 14-day-old plants under normal growth condition. (B) Drought tolerance of 14-day-old plants. (C) High-salinity tolerance of 14-day-old plants. Error bars: SD. Asterisks indicate significant increase compared with the control (P<0.01). These were adopted from Nakashima et al. (2014) (Copyright Springer; http://link.springer.com/journal/425).

TOPIC 7

Laboratory manual for studies on soybean rust resistance

Soybean [Glycine max (L.) Merrill] is an economically important legume crop, with more than 80 million tons exported to the world market mainly from North and South American countries. Asian soybean rust (ASR), caused by Phakopsora pachyrhizi Sydow & P. Sydow, is one of the biggest threats to stable soybean production in South America and in other tropical and sub-tropical regions.
Various studies related to the pathogenic variations of ASR and the development of ASR-resistant cultivars in each country have been done. Since ASR pathogens are widespread across borders, each country has had to cope with this disease based on information using a common resistance evaluation method. However, it was difficult to compare the pathogenicity of ASR pathogens and the degree of ASR resistance in soybean genotypes among countries because the evaluation method related to ASR resistance was not standardized.

First, we standardized the experimental protocols – i.e., 1) multiplication of ASR urediniospores, 2) single-lesion isolation, 3) inoculation of soybean with spore suspension, 4) evaluation of ASR pathogenicity, 5) evaluation of ASR resistance in soybean genotypes, and 6) evaluation of ASR tolerance of soybean genotypes (Fig. 1, Table 1) -- to obtain experimental results that are reproducible. South American ASR pathogens and the differential varieties were utilized for this work (Table 2). Then, we optimized the experimental protocols related to SSR marker analysis for marker-assisted selection (MAS) so that domestic institutions in South America can carry out their soybean breeding programs for ASR resistance. Finally, we compiled these standardized experimental protocols into a single manual, titled “Laboratory manual for studies on soybean rust resistance,” which can be accessed from the JIRCAS website: http://www.jircas.affrc.go.jp/english/manual/soybean_rust/JIRCAS_manual_soybean_rust.pdf

The data for the pathogenicity of ASR pathogens and for the degree of ASR resistance in soybean genotypes obtained by following this manual can be compared with previously obtained data (Akamatsu et al., 2013). Therefore, this manual is expected to promote research related to pathogenic variations of ASR pathogens and marker-assisted soybean breeding for ASR-resistant cultivars.

(N. Yamanaka, H. Akamatsu, Y. Yamaoka [University of Tsukuba])

Fig. 1. Evaluation process for Asian soybean rust (ASR) resistance. The numbers in the figure correspond to that of Table 1.

<table>
<thead>
<tr>
<th>No.</th>
<th>Item</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Multiplication of ASR urediniospores</td>
<td>Method to multiply ASR urediniospores for the following experiments</td>
</tr>
<tr>
<td>2</td>
<td>Single-lesion isolation</td>
<td>Method to isolate ASR pathogens from the ASR population that may contain various races</td>
</tr>
<tr>
<td>3</td>
<td>Inoculation of soybean with spore suspension</td>
<td>Methods to grow soybean plants, to prepare urediniospore suspension, and to inoculate urediniospore suspension to soybean plants</td>
</tr>
<tr>
<td>4</td>
<td>Evaluation of ASR pathogenicity</td>
<td>Method to evaluate virulence of ASR pathogens based on the lesion type</td>
</tr>
<tr>
<td>5</td>
<td>Evaluation of ASR resistance in soybean genotypes</td>
<td>Method to evaluate resistance of soybean genotypes based on the lesion type</td>
</tr>
<tr>
<td>6</td>
<td>Evaluation of ASR tolerance of soybean genotypes</td>
<td>Method to evaluate tolerance of soybean genotypes based on infection index and degree of leaf-yellowing</td>
</tr>
<tr>
<td>7</td>
<td>Marker-assisted selection of ASR resistance</td>
<td>Method of SSR marker analysis for the marker-assisted soybean breeding of ASR resistance</td>
</tr>
</tbody>
</table>
Enhancement of porosity and aerenchyma formation by nitrogen deficiency in rice roots (_Oryza sativa_ L.)**

Lysigenous aerenchyma is formed by cell collapse accompanied with cell death. The aerenchyma in roots provides oxygen from the ground portion to the roots, and is concerned with waterlogging tolerance in plants. Field crops such as wheat show generally poor tolerance to water logging, whereas semiaquatic crops such as rice show high tolerance to water logging.

One of the major reasons for the difference in tolerance levels is the initiation of aerenchyma formation between these crops. In wheat, aerenchyma is inducibly formed by multiple environmental factors such as oxygen and nutrient (N, P, K) deficiencies. On the other hand, rice forms two kinds of aerenchyma: constitutive and inducible aerenchyma. Thus, the mechanism of aerenchyma formation in rice is more complicated compared with field crops. Moreover, the mechanism of aerenchyma formation induced by nitrogen deficiency has remained unknown, although the initiation aerenchyma is likely to reduce energy loss. In this study, we attempted to (1) establish reliable growth conditions to estimate aerenchyma formation, and (2) reveal the pattern of aerenchyma formation induced by nitrogen deficiency in rice roots.

Before evaluating aerenchyma formation, we modified the growth conditions, e.g., hydroponic solution and growth period, to estimate precisely the response by nitrogen deficiency alone. We could then establish precise growth conditions demonstrating the recovery of growth vigor caused by pH reduction in hydroponic solutions (Fig. 1). Compared with nitrogen sufficiency, nitrogen deficiency facilitated the formation of air space in whole roots, i.e., an increase in porosity (Fig. 2). In order to determine the spatial and temporal patterns of aerenchyma formation induced by nitrogen deficiency, cross-sections from seminal roots of seedlings grown only on nitrogen-deficient and oxygen-deficient conditions were prepared at several positions, from the root tip to the root base. Microscope observations revealed that aerenchyma formation was enhanced in both nitrogen- and oxygen-deficient conditions compared with reference condition (Fig. 3). In nitrogen-deficient conditions, aerenchyma formation initiated close to root base. Conversely, in oxygen-deficient conditions, the initiation was observed close to root tip (Fig. 3).

As far as we know, this is the first evidence that nitrogen deficiency in rice roots enhances porosity and aerenchyma formation. It strongly distinguishes the physiological roles of nitrogen deficiency and oxygen deficiency on induced aerenchyma formation, demonstrating the different initiation patterns of aerenchyma between nitrogen and oxygen deficiency. Aerenchyma induced by nitrogen deficiency may function in reducing respiration and remobilization of nitrogen, or both. Furthermore, our established growth condition is expected to isolate causal genes associated with aerenchyma (formed either constitutively or induced) toward developing molecular breeding techniques for conferring waterlogging tolerance in field crops in the near future.

(M. Obara, T. Abiko)
Fig. 1. pH maintenance of nutrient solutions (left) and recovery of root elongation (right) in this study (improved method).
- ○: conventional method, ●: this study
- Asterisks (**): represent a significant difference in maximum root length between conventional method and improved method at P-value of 1% level (one-way ANOVA).

Fig. 2. Increased root porosity by nitrogen deficiency.
Root porosity refers to the size of air space including aerenchyma. Ten-day-old seedlings were used. Asterisks (**): represent a significant difference in root porosity between nitrogen-sufficient conditions and nitrogen-deficient conditions at P-value of 1% level (one-way ANOVA).

Fig. 3. Root aerenchyma in rice.
Increased aerenchyma was formed by nitrogen deficiency or oxygen deficiency. Examples of cortical cell, which are living cells, were illustrated in red. Examples of aerenchyma, which are dead cells, were illustrated in yellow. Scale bar in individual pictures indicates 100 µm.
MAIN RESEARCH PROGRAMS

PROGRAM C
Rural Livelihood Improvement Research Program

“Technology development for income and livelihood improvement of the rural population in developing regions”

JIRCAS’s Rural Livelihood Improvement Program is aimed at developing technologies that generate income and improve the living conditions of rural populations in developing regions, mainly in countries such as Lao PDR, Thailand, Malaysia, the Philippines, and China.

[Sustainable and Independent Farm Household Economy in IndoChina Project]
The research site is in Nameuang Village, in the mountainous areas of Vientiane Province in Lao PDR. In this project, it was made clear that conventional, extensive land use should be changed into an intensive one, depending on land conditions, in order to improve the farmers’ livelihoods. The farmers in Nameuang Village are classified into five types using three criteria: paddy landholding, upland rice planting area, and location. We have found that farmers who own paddies enjoyed better economic conditions compared with farmers who only have upland areas for cultivation. Based on this finding, we are trying to develop new technologies that will promote the year-round use of paddies. We have also introduced cash crops, fruits, and cattle in the upland, where agriculture is now based on stable upland rice and non-timber forest products for self-sufficiency, so that a diversified farming system can be established.

Annual meetings in Vientiane City, Laos
Two annual meetings were held in Vientiane to promote the collaborative research between JIRCAS and the National Agriculture and Forestry Research Institute (NAFRI) in Laos. The first was a workshop, held at the Agricultural Research Center on 17-18 December 2013, to enable researchers to share the research outputs and plans. The second was the meeting of the steering committee, which consists of executives from NAFRI and the Ministry of Agriculture and Forestry, at NAFRI headquarters on 25 March 2014 to manage the implementation of the project.

[Recycling-based Agricultural Production in China Project]
Regarding the medium- to long-term evaluations of grain production and environmental load in China, factors that can impact maize yield were clarified, and the apparent balances of nutrients in agricultural production based on the use of chemical fertilizer and animal manure were estimated. For introducing and establishing a recycling-based agricultural production system, we performed comparison studies on the supporting policies of western countries and Japan. Technology developments were carried out for minimum tillage wheat cultivation in the corn-wheat cropping system of Hebei province and for organic vegetable planting system for small-scale dairy farmers in semiarid areas.

Workshop on “Current situation and issues of recycling-based agricultural production system in upland farming areas of Northern China”
This workshop, held at JIRCAS Tsukuba on 5 September 2013, was attended by 25 participants. Nine reports were presented, including some of our research results on maize yield and its influence factors, pollution of ground water by nitrate, minimum tillage practice for wheat cropping, manure use in Inner Mongolia and its availability for vegetable production, marketing
research for value-added agricultural products in semi-arid areas, and Chinese organic food consumption behavior.

[Food Resource Utilization Project]
JIRCAS and Kasetsart University co-organized an international symposium on microbial technology in Bangkok, aimed at using local food resources for advanced applications. A joint declaration on “the Asian Food Resource Network,” which called for forging closer cooperation among local scientists, was adopted at the symposium. The network homepage, which introduces the food resource network concept, was launched, and a database of traditional fermented foods in Thailand was uploaded to the internet. Additionally, our group has discovered a Chinese local food resource that exhibits a blood pressure lowering effect. It is currently under ‘patent pending’ status.

[Asia Biomass Project]
To encourage the production of biofuel and biomaterials from agricultural residues, we successfully developed a new technology named “Biological Simultaneous Enzyme-production and Saccharification (BSES),” a method that uses anaerobic, thermophilic, and cellulolytic bacteria. Pilot-scale fermentation testing has been started in Thailand to demonstrate ethanol production using cassava pulp.

[Sustainable Forestry Production Project]
Technology development on sustainable management and conservation of forest resources was implemented. In Thailand, studies were conducted to improve the suitability of sandy soil for teak plantations. In Malaysia, a pollen dispersal pattern was revealed to enable natural mating important for healthy seed production. Also, we brought forward technology transfer on compressed lumber production using oil palm trunk waste.

[Tropical Coastal Aquaculture Project]
To develop sustainable and environmentally friendly aquaculture technologies in tropical coastal waters, we conducted research on co-culture/polyculture systems and culture-ground management in Southeast Asia. In Thailand, the effects of co-cultured seaweed and snails on the growth of giant tiger prawns were confirmed in large outdoor water tanks. In the Philippines, culture methods for sea cucumber, the key species of a polyculture system, were examined on the field under pompano net cages. In Malaysia, the trend in the blood cockles’ catch was investigated in their culture grounds. In addition, substances controlling ovarian maturation of whiteleg shrimp were determined by measuring the vitellogenin gene expression levels.

TOPIC 1

Evaluation of genetic diversities and population structures of two small-sized fishes in Laos using microsatellite DNA markers

In Indochinese countries including Laos, greatly diversified indigenous fish fauna is present, and many are important food materials, particularly in remote rural areas. In recent years, however, the introduction and spread of invasive alien fishes as well as overfishing and urbanization have become major problems in such areas as they have contributed to the decline in species diversity / stock level of indigenous fishes and increased the risk of inbreeding among similar or closely related species. This situation necessitates the investigation of genetic diversities and soundness of each species in the region.

Among indigenous fish species, the Esomus metallicus (Cyprinidae) and Parambassis siamensis (Ambassidae) are the most common and widely distributed species over the Indochinese Peninsula (Fig. 1). Both of them are small-sized (60 – 70 mm in maximum standard length) and often consumed in fermented and dried forms. In the present study, we developed microsatellite DNA markers for these two species, whose samples were collected from 2 sites in Vientiane City and from 4 sites in the west coast of Nam
Gum River.

Twenty-four and forty microsatellite DNA markers were developed for *E. metallicus* and *P. siamensis*, respectively (Fig. 1). Using these markers, the genetic diversities of the two species (evaluated based on the number of alleles and heterozygosity) in the investigated area were confirmed to be high enough as of this moment (Fig. 3), and the efficiency of the markers was verified. In addition, based on the genetic cluster analysis of the genotype data for each specimen, the presence of three distinct genetic clusters for *E. metallicus* and two for *P. siamensis*, was estimated. Further applications of microsatellite DNA markers over widespread areas would help confirm and provide a more detailed genetic characterization of local populations of the species. The network situation between genetic clusters by migration and breeding can also be estimated. Furthermore, this method is applicable not only for the two species above but also for various other species, including endangered species and the ones for aquaculture. Proper understanding of their strains and their management would be significant to its conservation and sustainability.

(S. Morioka, N. Koizumi [National Institute of Rural Engineering], B. Vongvichith [Living Aquatic Resources Research Center])

Fig. 1. Two fish species used in this study and their registered DNA markers

- *Esomus metallicus*
 - Registered markers: *EmKM01-24*
 - Registration number: AB720584-611

- *Parambassis siamensis*
 - Registered markers: *PsKM01-40*
 - Registration number: AB720612-649

Fig. 2. Genetic diversities of two species based on number of alleles (white bars) and heterozygosity (grey bars)

Fig. 3. Structures of genetic clusters of *E. metallicus* (left) and *P. siamensis* (right)

Fig. 4. Significance in usage of DNA markers for resource conservation & sustainable exploitation

![Graph showing genetic diversity and heterozygosity](image-url)
Local farmers employ bat guano to overcome soil acidity in a semi-mountainous area of Lao PDR

Rainfed paddy soils in a semi-mountainous area in Lao PDR show strong acidity, i.e., pH(KCl) < 4, despite belonging to a calcareous zone. Under such conditions, aluminum injury often becomes a major constraint in cultivating non-rice crops in rice-based cropping systems (Fig. 1). To remedy this situation, local farmers collect bat guano from limestone caves and mix them with soil down to the planting hall at seed sowing depth of upland crops. This study was conducted to clarify the effect of such practice.

Application of bat guano to the soil decreases the soil pH(H2O) but increases pH(KCl). Also, it markedly reduces exchangeable aluminum in acidic soils (Fig. 2), which corresponds to the results of soil surveys in farmers’ fields that received bat guano treatment. In spite of low aluminum-bound phosphorus (Al-P) content in bat guano itself, there is a marked increase of Al-P in soils treated with bat guano regardless of small variations in Ca-P or Fe-P (Fig. 3), which suggests the fixing of exchangeable aluminum with the phosphorus present in bat guano. Through such effects, plant growth in the early stages of tested upland crops are commonly enhanced even when the soils are enriched in exchangeable aluminum with aluminum chloride treatment (Fig. 4). These observations confirm that the bat guano improves soil fertility and mitigates aluminum toxicity.

Bat guano is collected from limestone caves in the neighboring village; however, depletion of this natural resource within a few decades is expected. Therefore, methods for efficient utilization based on the knowledge of its effectiveness must be established.

(K. Matsuo, N. Ae [Rakuno-gakuen Univ.], S. Vorachit [Agriculture Research Center, NAFRI, Lao PDR])

Fig. 1. Relationship between soil pH(KCl) and exchangeable Al in the paddy soil.

Fig. 2. Effects of bat guano(BG) and animal feces(AF) application on soil pH(H2O), pH(KCl) and exchangeable Al in the soil.

Fig. 3. Composition of inorganic phosphorus in the soil applied bat guano.
The effectiveness of introducing organic vegetable cultivation to small dairy farms in China’s semi-arid regions

The cost of feed grains had risen sharply in recent years, leaving the viability of small dairy farms in China’s semi-arid regions in a critical situation. To deal with this problem, some dairy farmers have started planning to become independent corn growers using dairy manure as fertilizer. However, there are apprehensions that extensive farming would result to wasting of water resources and increased erosion rates in conditioned soils (i.e., improved by application of manure) due to strong winds.

Cultivating organic vegetables as high value-added products is an effective method against rising feed grain prices, and for dairy farming to be sustainable, it is necessary for dairy farmers living far from the markets to introduce a cost-saving and labor-saving cultivation system. This idea came about following a survey where 1,200 consumers from four large cities (Beijing, Shanghai, Guangzhou, and Ha’erbin) were asked how much they are willing to pay for organic vegetables over conventionally grown products. Results showed that only 11.9% of those surveyed were willing to pay over twice as much for organic vegetables.

We have introduced a low-cost multi-functional system utilizing regional resources for cultivating organic vegetables in Suniteyouqi, Inner Mongolia (Fig. 1). Fig. 1 shows heat released from fermenting manure, promoting germination of vegetable seeds; barrier of piled manure protecting seedlings, which have just sprouted, from strong wind; and PVC pipe preventing cutworms from damaging the plants. This cultivation system saves cost without building a greenhouse for raising seedlings and planting a forest to create windbreaks. This also results in labor-saving and relieves the dairy farmers of additional heavy burden as daily operation only requires the on-off switching of an irrigation pump.

We cultivated 170 mini pumpkin (Beibei) plants in a 500m² experimental field, and harvested 993 kg (9 pieces per plant, 649g per piece on average) using composted dairy manure and liquid fertilizer in 2012 (Table 1). The mini pumpkins harvested in 2012 and 2013 were sold to consumers through a company in Beijing that is involved in producing and selling organic vegetables, with 65.8% of its customers willing to pay more than 16.0 RMB/kg. The income
derived from cultivating organic mini pumpkins can be evaluated based on the consumers' willingness to pay and the production and marketing costs (Table 2), that is, growing organic vegetables is expected to generate revenues of about 1021.4RMB/100m².

The significant points to consider when introducing this system are to keep the irrigation water delivered on dairy manure under the toxic level of sodium for plants, and to adopt a low-cost monitoring system for providing information about the organic farming practice to customers.

(K. Nakamoto, N. Li [Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences], Tana [Institute of Grassland Research, Chinese Academy of Agricultural Sciences], L. Li [Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences])

Fig. 1. Multifunctional vegetable cultivation system utilizing dairy manure.
* To minimize the effects of strong winds in spring, the system should be built against west-northwest, which is the direction of the heavy winds in Suniteyouqi, Inner Mongolia.
* Vegetable plants will be supplied fresh water when the valve of pipe A is opened, and will be applied liquid fertilizer through fermented manure when the valve of pipe B is opened.
* In the graph, Soil TEMP. A refers to the temperature at 5cm below the surface of the nursery in the system, and Soil TEMP. B refers to the temperature at 5cm below the surface of the ground outside the system.

Table 1. Components of dairy manure as a fertilizer resource (%)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>P₂O₅</th>
<th>K₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composted dairy manure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper parts of compost</td>
<td>1.65</td>
<td>0.98</td>
<td>0.40</td>
</tr>
<tr>
<td>Lower parts of compost</td>
<td>0.87</td>
<td>0.56</td>
<td>0.34</td>
</tr>
<tr>
<td>cf. Fresh dairy manure</td>
<td>1.50</td>
<td>1.02</td>
<td>1.12</td>
</tr>
<tr>
<td>Liquid fertilizer from manure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied on July 24</td>
<td>0.01</td>
<td>0.05</td>
<td>0.11</td>
</tr>
<tr>
<td>Applied on July 29</td>
<td>0.01</td>
<td>0.03</td>
<td>0.10</td>
</tr>
<tr>
<td>Applied on July 31</td>
<td>0.01</td>
<td>0.03</td>
<td>0.12</td>
</tr>
<tr>
<td>Applied on August 4</td>
<td>0.01</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>Applied on August 8</td>
<td>0.01</td>
<td>0.02</td>
<td>0.07</td>
</tr>
</tbody>
</table>

* Only 5 application dates, with measured amounts, were presented in this table, though liquid fertilizer was applied 18 times while cultivating the mini pumpkins.

Table 2. Production and selling cost of mini pumpkins

<table>
<thead>
<tr>
<th></th>
<th>RMB/100m²</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials cost</td>
<td>734.1</td>
<td>34.0</td>
</tr>
<tr>
<td>Seed</td>
<td>166.2</td>
<td>7.7</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pesticide</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Energy</td>
<td>47.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Supply</td>
<td>482.9</td>
<td>22.4</td>
</tr>
<tr>
<td>Machine rental</td>
<td>37.6</td>
<td>1.7</td>
</tr>
<tr>
<td>Land rent</td>
<td>61.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Labor cost</td>
<td>209.9</td>
<td>9.7</td>
</tr>
<tr>
<td>Transportation cost</td>
<td>514.5</td>
<td>23.9</td>
</tr>
<tr>
<td>Selling cost (estimated)</td>
<td>635.8</td>
<td>29.5</td>
</tr>
</tbody>
</table>

* Expected earnings (RMB/100m²) can be calculated as (Expected selling price x Quantity – Total cost), that is, 16.0RMB/kg x 198.6kg/100m² – 2156.2RMB/100m² = 1021.4RMB/100m².
Potassium deficiency in fertilizer budget for crop production in China

There are several concerns about the negative environmental impact of excessive fertilizer use, especially nitrogen use, on Chinese agricultural production systems. Therefore, we calculated the nutrient intake by crops and the nutrient budget in China to obtain information on fertilizer demand and its effective use, food production, and the management of fertilizer resources from the view point of apparent nutrient (nitrogen (N), phosphorus (P) and potassium (K)) balance.

Data sets on chemical fertilizer types, crop production, livestock population, and human population came from “China Agriculture Yearbook,” with 2000, 2005, and 2010 chosen as the target years. In this study, we assumed the rural population as half of total population. Basic unit values of N, P, and K excretion by human and livestock were obtained from “China Organic Fertilizer Ingredients”; N, P, and K concentration in crops were from “China Fertilizer”; and chemical fertilizer application rates for cereals were from “Fertilizer Guideline for Crops.”

The budgets of chemical N and P fertilizers are larger than that of chemical K but smaller than that of organic fertilizers. Also, based on the output or crop yield, K output of cereal by-products (stems and leaves) occupies a significant portion of total K output.

The apparent N, P, and K balance shows a large surplus of N, an even amount of P, and a deficiency of K. For K, the crop K output was larger than the K budget; therefore, it is believed that the K deficiency will reduce soil K fertility.

The cereal K output includes by-products, leaving the farmland soil largely deficient in K fertilizer. However, if only the product part is removed and the by-products returned to the soil, then the amount of N, P, and K would be enough. Therefore, K deficiency for cereal will disappear when the by-product is sown back into the soil or used for mulching.

In this study, basic units of excretion, crop N-P-K contents, and statistical data were entered into a Microsoft Excel spreadsheet so the apparent nutrient balance in each province can be calculated. The results can be used for the effective management of fertilizer resources and for policy-making. On the other hand, we did not calculate the loss of N, P, and K during storage and composting and during volatilization of N when N was applied to alkali soils. We may incorporate these factors in future studies to obtain a more accurate balance measurement and a quantitative assessment of its environmental impact.

(S. Mishima [National Institute for Agro-Environmental Sciences], Chien H.)

Fig. 1. Nutrient budget and removal
Renin and chymase inhibitory activities of edible lichens, *Sulcaria sulcata* and *Lobaria kurokawae*

There is a wide variety of food resources, such as native agricultural and marine products as well as traditional fermented foods, in East and Southeast Asia. These food resources are being used as materials for functional foods and new processed foods. Unknown physiologically active substances may be found in foods produced from regionally specific materials, production methods and microorganisms. If we utilize these active substances as materials for functional foods, we can promote high value-addition to traditional agricultural products or conventional processed foods. In recent years, there has been a large-scale migration from farming villages to the cities and an increase in the number of middle-income groups in these regions. Accordingly, diversification and improved agricultural product quality are in increasing demand. In this study, renin and chymase inhibitory activities in foods were investigated. The activity promises inhibitory effect on elevated blood pressure.

We performed screening of the inhibitors on foods from East Asia. Results have clearly shown that the edible lichens, *Sulcaria sulcata* and *Lobaria kurokawae* (Fig. 1), contained the active substances. *S. sulcata* and *L. kurokawae* are consumed as foods in parts of Japan and China. Strong renin and chymase inhibitory activities exist in methanol, ethanol and water extracts of *S. sulcata* and *L. kurokawae* (Table 1). On the other hand, their extracts do not inhibit angiotensin converting enzyme (ACE). The inhibitory activities of the water extracts were retained after boiling or autoclave treatment (Table 1). Therefore, the inhibitory substances of the water extracts are very thermostable. Moreover, the water extracts decreased blood pressure in spontaneously hypertensive rats (Table 2).

These results showed that newly functional food materials with renin and chymase inhibitory activities could be produced using the edible lichens *S. sulcata* and *L. kurokawae*. These food materials may be used in manufacturing nutritious foods with inhibitory effects on elevated blood pressure levels.

(S. Nirasawa, Y. Q. Cheng [China Agricultural University] and S. Takahashi [Akita Research Institute for Food and Brewing])
Bioethanol production from oil palm trunk fiber

Oil palm (*Elaeis guineensis*) used in palm oil production must be replanted at 20 to 25-year intervals in order to maintain oil productivity (Yamada et al. 2010). Consequently, the felled palm trunks represent one of the most important biomass resources in Malaysia and Indonesia (Shuit et al. 2009; Sumathi et al. 2008). To utilize the felled palm trunks specifically for bioethanol production, we characterized the sugars in the sap of the felled trunks and found large quantities of sap with high glucose content (Kosugi et al. 2010). This study reports on ethanol production using separated parenchyma (PA) and vascular bundle (VB) from oil palm trunk (Fig. 1). For efficient utilization of cellulosic materials as well as starchy materials, oil palm trunk was separated into PA and VB. Separated PA, alkali-pretreated starch-free PA (sfPA) and VB resulted in high ethanol conversion yields (Table 1). Separated PA and VB from oil palm trunk is a promising fermentation strategy for producing ethanol, without loss of starchy and cellulosic materials (Prawitwong et al. 2012).

(A. Kosugi)
Fig. 1. Sap and fiber residues from oil palm trunk. Oil palm trunk was separated into parenchyma (PA) and vascular bundle (VB) components. The fractions were easily and distinctly separated. The ratio of PA and VB in the trunk was estimated at approximately 55:45 (dry weight %).

Table 2. Potential ethanol production from oil palm trunk fiber using a separation process (Prawitwong et al. 2012)

<table>
<thead>
<tr>
<th>Source material</th>
<th>Input (g)</th>
<th>SR (g)</th>
<th>Pretreatments</th>
<th>Available sugars (g)</th>
<th>Ethanol (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trunk fiber</td>
<td>100.0</td>
<td>-</td>
<td>-</td>
<td>25.8</td>
<td>34.0</td>
</tr>
<tr>
<td>Separated PA</td>
<td>55.0</td>
<td>29.3</td>
<td>Autoclave</td>
<td>25.7</td>
<td>11.2</td>
</tr>
<tr>
<td>Pretreated sfPA</td>
<td>-</td>
<td>16.9</td>
<td>5% NaOH</td>
<td>-</td>
<td>13.1</td>
</tr>
<tr>
<td>Separated VB</td>
<td>45.0</td>
<td>44.9</td>
<td>-</td>
<td>0.08</td>
<td>0.03</td>
</tr>
<tr>
<td>Pretreated VB</td>
<td>-</td>
<td>27.1</td>
<td>5% NaOH</td>
<td>-</td>
<td>22.0</td>
</tr>
<tr>
<td>Total</td>
<td>25.0</td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Calculated assuming 100 g of squeezed oil palm trunk is used in the separation process
* SR (solids remaining) after each pretreatment, calculated from the data in Table 1
* Available sugars calculated from the data in each component
* Ethanol, calculated from theoretical maximum yield for each saccharification and fermentation
Net energy ratio of ethanol production from sap squeezed from old oil palm trunks

In this study, a method was developed to estimate the NER or net energy ratio (i.e., ratio of output energy to input energy) of ethanol production from sap squeezed from oil palm trunks. A bench-scale shredder and compressed mill apparatus was constructed to squeeze the sap containing fermentable sugars from oil palm trunks. Energy input and energy output for squeezing sap were estimated through squeezing trials, and the NER was calculated.

Old oil palm trunks (30-45cm in diameter, 12m in length) were processed into trunk cores (20cm in diameter, 1.2m in length) by peeling the bark and the outer parts. The total amount of energy spent for processing was estimated to be the input energy (Table 1). Output energy, meanwhile, was estimated from the sum of calories derived from ethanol produced from sap and squeezed residues (50% moisture) (Fig. 1). From the study, it was determined that the ratio of input energy to output energy was 4.8 (Fig. 2A).

The energy ratio in ethanol from sugar cane was 8.3 because of self-sufficient energy from bagasse. The energy ratio in ethanol from oil palm sap was also high enough for practical use.

We can estimate the energy from large trunks (40cm in diameter, 10m) by using a multiplying factor of 33.74 on the trunk core.

Energy for transportation was estimated to be 47.2MJ, based on the assumption that the distance from plantation to ethanol plant was 8km (Fig. 2B). On the other hand, energy for cultivation of oil palm was not counted because the materials used were waste products of palm oil production. Likewise, energy for transportation of trunk cores was not counted because the materials used were wastes from the timber factory.

(Yoshinori Murata, Takamitsu Arai, Akihiko Kosugi)

Table 1. Input energy involved in squeezing sap (core: 20cm in diameter, 1.2m in length)

<table>
<thead>
<tr>
<th>Process</th>
<th>Energy (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peeling</td>
<td>0.24</td>
</tr>
<tr>
<td>Shredder</td>
<td>0.17</td>
</tr>
<tr>
<td>Mill</td>
<td>0.23</td>
</tr>
<tr>
<td>Total Energy</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Energy Flow in Ethanol Production and in Sap-Squeezed Residues

Input:
- Sap 16.9kg
- Brix 7.9%
- (glucose 1.3kg)

Output:
- Ethanol 0.79L
- (16.8 MJ*1)
- Effective heat (15.2 MJ*4)

Energy Calculation

32.0MJ = 16.8MJ + 15.2MJ

References:
Production of binderless particleboard and compressed lumber using oil palm trunk as feedstock

Palm oil, produced from the fruit of oil palm (Elaeis guineensis), is one of the most important agricultural products in Southeast Asia, particularly in Malaysia and Indonesia. Oil palm is replanted every 25 to 30 years to maintain fruit production, and a large amount of biomass, mainly oil palm trunk (OPT), is generated when they are felled. At present, this trunk is not efficiently used. On the other hand, for wood-based industries, the shortage of wood from natural forests is becoming a major concern. Hence, research on unutilized biomass has been actively undertaken to find alternative uses and decrease the demand for limited natural resources. Consequently, we have developed two types of products, namely binderless particleboard and compressed lumber, using OPT as feedstock.

A binderless particleboard is a particleboard manufactured without the addition of adhesives (i.e., self-binding). It is produced simply by hot pressing formed particles at appropriate temperature and pressure. Since it does not use synthetic adhesives, raw material costs and impact toward environment are smaller compared with typical particleboards with synthetic adhesives. Also, by reducing feedstock to particles, it is assumed to overcome heterogeneity of OPT depending on the section that is used (interior or exterior; bottom or top). A binderless board produced by laboratory scale experiment is shown in Fig. 1. Under the conditions we have tried, the board’s physical properties reach the maximum at press temperature equal to 200 °C.

Compressed lumber is the densified board produced by hot pressing a block of feedstock. Normally in the case of wood, the strength of the product is enhanced by the densification process. The same holds true for compressed lumber made from OPT. The compressed lumbers produced are shown in Fig. 2. OPTs that underwent steam process in a closed chamber at a temperature of 130 °C before compression exhibited better physical properties and dimensional stability than those that did not undergo the process.

Unlike wood, the main components of which are cellulose, hemicellulose and lignin, OPT also contains sugars and starch at certain levels as sap or in parenchyma tissues. When binderless particleboards were produced with monomeric and dimeric sugars extracted from OPT, the properties of the board obtained was inferior to the board made from non-extracted samples (Fig. 3). On the other hand, addition of glucose and sucrose enhanced the properties of the produced board. Since such effects were not observed with the starch-added sample, it is suggested that such sugars in sap contribute to the self-binding mechanism of binderless particleboard and probably to some features of compressed OPT lumber.

However, one weak point noted regarding OPT binderless particleboard is water durability. So, at the moment, the board should only be used indoors, such as for interior finishing or furnitures.

(Tomoko Sugimoto, Rokiah Hashim [Universiti Sains Malaysia (USM)], Othman Sulaiman [USM], Masatoshi Sato [the University of Tokyo])
Selective logging criteria to ensure healthy seed production for dipterocarp species whose pollination depends on strong flyer insects

Timber in Malaysia has been produced from tropical rainforests that are recognized as one of the highest biodiversity hotspots in the world. Trees of timber species larger than 50 cm in trunk diameter at breast height (dbh) are being harvested in ongoing selective logging operations in Malaysia. The harvesting has lowered remaining adult tree density, which might inhibit pollen travel from one tree to another by pollinating insects. This is a critical issue affecting the production of healthy seeds. Healthy seeds are the source of forest regeneration, but it has been reported that mother trees at areas with lowered population density show frequent self-pollination resulting in less vigorous seeds. A lowered population density show frequent self-pollination, as shown by the number of effective pollen donors (from 40 cm to 100 cm dbh) in the simulation. While only trees greater than 80 cm dbh can be harvested to conserve 50% of outcrossing pollen over the mother trees in S. curtisii (one of the ‘red meranti’ species), our results showed that trees greater than 60 cm dbh can be harvested for ‘balau’ because of the small beetles’ stronger flying ability (Fig. 2).

Our results have shown that selective logging criterion should be determined for every timber trading group of dipterocarps because reproductive characteristics within the timber trading group are similar. However, our reproductive model and the simulation assumed similarity of pollinators and conspecific tree densities.

Trees of timber species larger than 50 cm in trunk diameter at breast height (dbh) are being harvested in ongoing selective logging operations in Malaysia. The harvesting has lowered the remaining adult tree density, which might inhibit pollen travel from one tree to another by pollinating insects. This is a critical issue affecting the production of healthy seeds. Healthy seeds are the source of forest regeneration, but it has been reported that mother trees at areas with lowered population density show frequent self-pollination resulting in less vigorous seeds.

Selective logging criteria to ensure healthy seed production for dipterocarp species whose pollination depends on strong flyer insects

Timber in Malaysia has been produced from tropical rainforests that are recognized as one of the highest biodiversity hotspots in the world. Trees of timber species larger than 50 cm in trunk diameter at breast height (dbh) are being harvested in ongoing selective logging operations in Malaysia. The harvesting has lowered the remaining adult tree density, which might inhibit pollen travel from one tree to another by pollinating insects. This is a critical issue affecting the production of healthy seeds. Healthy seeds are the source of forest regeneration, but it has been reported that mother trees at areas with lowered population density show frequent self-pollination resulting in less vigorous seeds. A lowered population density show frequent self-pollination, as shown by the number of effective pollen donors (from 40 cm to 100 cm dbh) in the simulation. While only trees greater than 80 cm dbh can be harvested to conserve 50% of outcrossing pollen over the mother trees in S. curtisii (one of the ‘red meranti’ species), our results showed that trees greater than 60 cm dbh can be harvested for ‘balau’ because of the small beetles’ stronger flying ability (Fig. 2).

Our results have shown that selective logging criterion should be determined for every timber trading group of dipterocarps because reproductive characteristics within the timber trading group are similar. However, our reproductive model and the simulation assumed similarity of pollinators and conspecific tree densities.
When the results are applied to different types of forests, the simulation results do not relate to actual conditions or practices.

(Naoki Tani, Yoshihiko Tsumura [FFPRI], Soon Leong Lee [FRIM], Norwati Muhammad [FRIM])

Table 1. The comparison of number of effective pollen donors between 'balau' and 'red meranti'

<table>
<thead>
<tr>
<th>Species</th>
<th>Section</th>
<th>Timber trading name</th>
<th>Flowering year</th>
<th>Flowering magnitude</th>
<th>Effective number of pollen donors (N_e)</th>
<th>Effective number of pollen donors per tree (N_e/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorea maxwelliana</td>
<td>Shorea</td>
<td>Balau</td>
<td>2002</td>
<td>Sporadic</td>
<td>28.808</td>
<td>0.200</td>
</tr>
<tr>
<td>Shorea</td>
<td>Hura</td>
<td>Balau</td>
<td>2005</td>
<td>Mass</td>
<td>44.154</td>
<td>0.307</td>
</tr>
<tr>
<td>Shorea leprosula</td>
<td>Mutica</td>
<td>Red meranti</td>
<td>2002</td>
<td>Sporadic</td>
<td>8.817</td>
<td>0.134</td>
</tr>
<tr>
<td>Shorea parvifolia</td>
<td>Mutica</td>
<td>Red meranti</td>
<td>2002</td>
<td>Sporadic</td>
<td>11.042</td>
<td>0.133</td>
</tr>
<tr>
<td>Shorea curtisii</td>
<td>Mutica</td>
<td>Red meranti</td>
<td>1998</td>
<td>Mass</td>
<td>27.210</td>
<td>0.189</td>
</tr>
<tr>
<td>Mutica</td>
<td>Mutica</td>
<td>Red meranti</td>
<td>2002</td>
<td>Sporadic</td>
<td>24.349</td>
<td>0.169</td>
</tr>
<tr>
<td>Mutica</td>
<td>Mutica</td>
<td>Red meranti</td>
<td>2005</td>
<td>Mass</td>
<td>34.411</td>
<td>0.239</td>
</tr>
</tbody>
</table>

Fig. 1. Pollen dispersal pattern of *Shorea maxwelliana* recognized as 'balau' in two flowering events with different flowering magnitudes

Fig. 2. Reduction rate of outcrossing pollen over the mother trees after selective logging simulation with every 1cm increment of cutting limit from 40 to 100cm
TOPIC 10

Digestibility of animal-based and plant-based diets in the tropical sea cucumber, Holothuria scabra

The population of many sea cucumber species has been dwindling due to intensive fishery and trading in Southeast Asian countries, hence there is a need to artificially produce sea cucumbers by hatchery production and aquaculture. *Holothuria scabra*, commonly known as sandfish, has been the most actively produced among tropical sea cucumbers, but production efficacy remains low partly owing to the lack of information on its diet. *H. scabra* is a benthic deposit feeder, and it ingests a mixture of organic matter with sea sediment for feeding. It is, therefore, difficult to determine what important nutrient sources are actually in the sediment. This study aimed to elucidate the relative importance of animal- and plant-based diets for juvenile *H. scabra* by analyzing the digestibility of different feed ingredients.

Apparent digestibility coefficient (ADC) of shrimp meal and mussel meal (animal-based), and diatom and powdered seaweed (plant-based) was determined by tank rearing experiments. Compared to plant-based diets, the animal-based diets contained a higher fraction of organic matter and crude protein; on the other hand, the plant-based diets contained a higher fraction of crude carbohydrate. ADC of organic matter was significantly higher in the animal-based diets (77.1 – 86.2%) than in plant-based diets (32.3 – 55.1%). ADC of protein (ADCprotein) was significantly higher in shrimp meal, mussel meal and diatom (75.2 – 88.7%) than in seaweed (34.4%), indicating that animal diets are more reliable sources of digestible proteins. ADC of carbohydrate (ADCcarbo) was generally lower than ADCprotein and diatom and mussel meal (58.3 – 58.5%) had significantly higher ADCcarbo than shrimp meal and seaweed (28.0 – 31.6%) (Fig. 1). The high ADCcarbo in mussel meal may be attributable to its high content of glycogen that is readily digestible by animals unlike hard-digestible cellulose contained in large amounts in seaweed. Total assimilated nutrient (TAN) was estimated as the product of daily diet ingestion rate (IR) and ADC. The mean body weight of the experimental *H. scabra* was 10 g. TAN was largely affected by ADC since IR did not vary significantly among the diets. Shrimp meal had the highest TAN for organic matter (390 mg/day) and protein (347 mg/day) among the four diets, and diatom had the highest TAN for carbohydrate (247 mg/day) (Fig. 2).

H. scabra hatcheries commonly use diatoms and seaweeds as feed. This study indicates that there is a possibility that effective artificial feeds can be formulated by adding animal proteins to diatoms. High digestibility of animal-based diets also indicates that *H. scabra* is a good candidate for use in polyculture with finfish where feeds with high fish meal content are used.

(S. Watanabe, Z.G.A. Orozco [University of Tokyo], J.G. Sumbing [SEAFDEC/AQD], Ma. J.H. Lebata-Ramos [SEAFDEC/AQD])

![Fig. 1. Apparent digestibility coefficient of organic matter (ADC_{OM}), crude protein (ADC_{protein}) and crude carbohydrate (ADC_{carbo}) of seaweed (SW), diatom (D), shrimp meal (S) and mussel meal (M) in juvenile *Holothuria scabra*. ADC was obtained from the difference in nutrient contents between diet and feces. Different letters (i.e., a and b) indicate statistically significant difference (p<0.05).](image1)

![Fig. 2. Daily total assimilated nutrients (TAN) in juvenile *H. scabra* was obtained as the product of ADC and daily feed ingestion rate; assimilated organic matter (TAN_{OM}), crude protein (TAN_{protein}) and crude carbohydrate (TAN_{carbo}). The mean body weight of *H. scabra* was 10 g. Different letters (i.e., a, b and c) indicate statistically significant difference (p<0.05).](image2)
PROGRAM D
Information Analysis
“Collection, analysis and dissemination of information for grasping trends of international agriculture, forestry and fisheries”

Under the Third Medium-Term Plan of JIRCAS, activities for the collection, analysis, and dissemination of information for identifying trends related to international agriculture, forestry, and fisheries were separately specified from their research and investigation activities. These activities were divided into two main subjects: A) the analyses of the current situation and forecasts concerning food supply and demand and the production structure of agriculture, forestry, and fisheries in foreign countries, and B) the collection, analysis, and dissemination of information and materials related to the international food situation, to the agricultural, forestry, and fishery industries as well as to rural areas.

Subject A was made in order to contribute to the solution of global food and environmental problems. Subject B was made in order to formulate and conduct research and other projects related to agriculture, forestry, and fisheries in developing regions.

Information was collected in a regular, institutional, and systematic manner through collaboration with related organizations in Japan and overseas, and through long-term dispatch of staff to priority areas of activities. The respective information and materials were provided to a broad range of researchers, government agencies, and private companies.

Evaluation of fiscal year 2013 accomplishments showed that Program D performed well in comparison with the original annual implementation plan. Below is a summary of Program D’s outputs, among others.

Under Subject A, JIRCAS developed a standard econometric model framework for assessing food supply-demand situation at country level through the ASEAN Food Security Information System (AFSIS) Project. This was achieved in collaboration with AFSIS, which is being implemented by the ASEAN Secretariat and the Statistics Department of the Ministry of Agriculture, Forestry and Fisheries (MAFF) of Japan, and a Technical Cooperation Program (TCP) of the UN FAO’s Regional Office for Asia and the Pacific. A prototype model was introduced at a co-organized workshop held in Bangkok in July 2013. For Laos and Cambodia, where not enough study on the subject has been made so far, multi-commodity food supply-demand models were developed, and they showed that improving the milling rate would substantially influence the change in rice price. In Northern China, the environmental impact of nitrogen induced by livestock production and consumption was evaluated by modifying a provincial model on Chinese food supply-demand developed in 2011. Continuous efforts were also made to collect information on agricultural market projections through participation in meetings such as the World Outlook Conference, where subject-matter experts congregate. Information on agriculture and water was also collected and cooperation with water-issue organizations, such as the World Water Council and the International Commission on Irrigation and Drainage, was enhanced. The situation of water users’ associations in Indonesia was also investigated as part of research on agricultural water use services. In addition, a staff member of JIRCAS has been sent on a long-term assignment to the International Renewable Energy Agency (IRENA) to conduct bio-energy resources and supply cost assessments. The results were utilized in the “Remap 2030” report.

Under Subject B, JIRCAS actively participated in the Global Rice Science Partnership (GRiSP), a Consultative Group on International Agricultural Research (CGIAR) research program, and the Coalition for African Rice Development (CARD), playing an important role in contributing to technology development and in connecting related national and international stakeholders. At the 5th Tokyo International Conference on African Development (TICAD V), JIRCAS, together with the CGIAR Fund Office and others, co-organized a pre-event workshop titled “New Stages of Agricultural Research in Africa.” JIRCAS also participated in G20-related networks for agricultural research, such as the Meeting of Agricultural Chief Scientists (MACS), the Wheat Initiative (WI), and the Tropical Agricultural Platform (TAP), and contributed to international consensus building on agricultural development. Using an internal competitive fund known as the “President’s Incentive Budget,” various innovative activities including incubation researches, need-finding surveys, and networking events were carried out. Among others, research needs in Myanmar were examined by organizing several visits in 2013. Also, the situation of silica deficiency in rice-producing areas in Africa was studied and
analyses were made on the influential factors on silica content in soils.

In November 2013, JIRCAS organized an international symposium titled “New Direction of Sustainable Technology Development in Asia: Changing Rural Livelihood and Japanese Advantage” to identify new research subjects, which could harness Japanese competitiveness at the same time, in rapidly changing Asia. At the symposium, JIRCAS looked back at its 20-year history in order to foresee into its future. Besides, JIRCAS continuously gathered local information on agricultural research priorities in Southeast Asia and Africa by maintaining liaison offices. Regional representatives also attended various meetings and events to exchange ideas on current and future collaborations.

TOPIC 1

Limited Si-nutrient status of rice plants in relation to plant-available Si of soils, nitrogen fertilizer application, and rice-growing environment across Sub-Saharan Africa

Rice is a specific silica-accumulator among higher plants. The Si in rice enhances resistance to biotic and abiotic stresses. The booming demand for rice in Sub-Saharan Africa (SSA) requires rapid increases in rice production, and hence more Si supply will be needed from soils, irrigation water, and external inputs. However, there have been no Si management practices or any extensive surveys conducted to identify the nature and magnitude of the problems with plant Si nutrient status and Si availability in the soils for rice production in SSA. Therefore, an extensive survey is conducted for evaluating variability of Si concentration in rice straw in relation to soil properties, fertilizer management practices, and rice-growing environments across a wide range of local farmers’ fields in SSA.

The Si concentration in straw ranges 1.7-8.4% among the harvest samples at 99 local farmers’ fields in Benin, Ghana, Guinea, Kenya, Madagascar, Mozambique, and Nigeria, and the values in 68% of the fields are below the critical deficiency level of 5%* (Fig. 1; Fig. 2). The amounts of water-soluble Si in soils after 1-week anaerobic incubation at 40 °C sufficiently explain the variability in Si concentration in straw among the samples, and thus can be used for assessing the plant-available Si in soils for rice fields in SSA. The application of Si management practices such as straw incorporation can be accelerated by matching vulnerable fields to biotic stresses and the Si-deficient factors in the current study. Further studies should demonstrate quantitative effect of improving Si nutrient status on rice productivity such as through the reduction of blast infection.

(Y. Tsujimoto, S. Muranaka, H. Asai, K. Saito [Africa Rice Center])

Table 1. Si concentration in straw, N application rate, and soil properties among different AEZ zones.

<table>
<thead>
<tr>
<th>AEZ zone</th>
<th>AEZ zone means</th>
<th>Si conc. in straw (%)</th>
<th>Amount of N applied kg ha⁻¹</th>
<th>Soil water soluble Si mg kg⁻¹</th>
<th>Soil pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-Arid</td>
<td>8</td>
<td>4.9bcd</td>
<td>26c</td>
<td>51.0a</td>
<td>7.0a</td>
</tr>
<tr>
<td>Sub-Humid</td>
<td>68</td>
<td>4.6a</td>
<td>37a</td>
<td>43.8a</td>
<td>6.0a</td>
</tr>
<tr>
<td>Humid</td>
<td>11</td>
<td>3.9b</td>
<td>42a</td>
<td>28.7bc</td>
<td>5.7bc</td>
</tr>
<tr>
<td>Highland</td>
<td>12</td>
<td>3.4b</td>
<td>36e</td>
<td>23.9b</td>
<td>5.4e</td>
</tr>
<tr>
<td>SSA total</td>
<td>99</td>
<td>4.4</td>
<td>36</td>
<td>40.3</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Values of the same alphabets do not differ at 5% (Tukey HSD).
The sensitive analysis was performed using multiple environments and water soluble Si of soils. The variability of Si concentration in straw (R^2 = 0.59). Rainfed lowland
- Non-fertilized (n=2)
- Fertilized (n=18)

Rainfed upland
- Non-fertilized (n=2)
- Fertilized (n=18)

Irrigated lowland
- Non-fertilized (n=2)
- Fertilized (n=18)

Fig. 1. Location of the 99 farmers fields in plant and soil samples across SSA

‘Fertilized’ consist of 3 fields with organic materials and 61 fields with chemical fertilizer. A 5-class agroecological zone (AEZ) map is derived from Harvest Choice (http://harvestchoice.org)

Fig. 2. Relationship between the amounts of water-soluble Si in soil and Si conc. in straw

Vulnerable to environmental stresses

Si-deficiency (5%)

Fig. 3. Estimated Si concentration in straw against N application rate in different rice-growing environments and water soluble Si of soils. The sensitive analysis was performed using multiple regression model with observed variables to explain the variability of Si concentration in straw (R = 0.59).
TRAINING AND INVITATION PROGRAMS

INFORMATION EVENTS
In keeping with its role as an international research center, JIRCAS has implemented several invitation programs for foreign researchers and administrators at counterpart organizations. These programs facilitate the exchange of information and opinions on agriculture, forestry, and fisheries research. At the same time, their implementation and administration serve as an opportunity to strengthen research ties among scientists and administrators in participating countries, mostly in the developing regions. Current programs are described in detail below.

Administrative Invitation Program

Under the Administrative Invitation Program, JIRCAS invites administrators from counterpart organizations to its Tsukuba premises to engage in discussions and reviews of ongoing researches to ensure that collaborative projects run smoothly. In addition, the program exposes administrators to the current activities at JIRCAS and other MAFF-affiliated Incorporated Administrative Agencies (IAAs). Furthermore, the program provides opportunities for the exchange of information and opinions concerning policy-making and project design at the administrative level, thereby contributing to deeper mutual understanding and international collaboration. Thirty-nine individual visits to JIRCAS were made during FY 2013 under the Administrative Invitation Program. Invited administrators and their home institutions are listed below.

<table>
<thead>
<tr>
<th>Administrative Invitations, FY 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vongvilay Vongkhamsao</td>
</tr>
<tr>
<td>Papa Abdoulaye Seck</td>
</tr>
<tr>
<td>Marco Cletus Sebastiaan Wopereis</td>
</tr>
<tr>
<td>Savitri Mohapatra</td>
</tr>
<tr>
<td>Robin Arani Buruchara</td>
</tr>
<tr>
<td>Chen Yongfu</td>
</tr>
<tr>
<td>Li Ninghui</td>
</tr>
<tr>
<td>Yin Changbin</td>
</tr>
<tr>
<td>Jin Ke</td>
</tr>
<tr>
<td>Lei Cailin</td>
</tr>
<tr>
<td>Li Jinbin</td>
</tr>
<tr>
<td>Li Chengyun</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Chu Duc Ha</td>
</tr>
<tr>
<td>Ha Minh Thanh</td>
</tr>
<tr>
<td>Chanthakhone Boualaphan</td>
</tr>
<tr>
<td>Mohammad Ashik Iqbal Khan</td>
</tr>
<tr>
<td>Maganti Sheshu Madhav</td>
</tr>
<tr>
<td>Acharaporn Na Lampang Noenplab</td>
</tr>
<tr>
<td>Poonsak Mekwatanakarn</td>
</tr>
<tr>
<td>Dwinita Wikan Utami</td>
</tr>
<tr>
<td>Anggiani Nasution</td>
</tr>
<tr>
<td>Kshirod Kumar Jena</td>
</tr>
<tr>
<td>Thelma F. Padolina</td>
</tr>
<tr>
<td>Loida M. Perez</td>
</tr>
<tr>
<td>Bo Zhou</td>
</tr>
<tr>
<td>Jung-Pil Suh</td>
</tr>
<tr>
<td>Zhou Yingheng</td>
</tr>
<tr>
<td>Linkham Douangsavanh</td>
</tr>
<tr>
<td>Othman Bin Sulaiman</td>
</tr>
<tr>
<td>Robert Josef Holmer</td>
</tr>
<tr>
<td>Warunee Varanyanond</td>
</tr>
<tr>
<td>Martinus Cornelis Theodorus Scholten</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Hiroyuki Konuma</td>
</tr>
<tr>
<td>Françoise Ruget</td>
</tr>
<tr>
<td>Myriam Yvonne Odette Adam</td>
</tr>
<tr>
<td>Inez Hortense Slamet-Loedin</td>
</tr>
<tr>
<td>Manabu Ishitani</td>
</tr>
<tr>
<td>Carolina Saint Pierre</td>
</tr>
</tbody>
</table>
Counterpart Researcher Invitation Program

The Counterpart Researcher Invitation Program provides invitations for periods of up to six months to researchers engaged in collaborative work with JIRCAS research staff. Counterparts conduct in-depth research at JIRCAS, at other MAFF-affiliated IAAs, at prefectural research institutes, or at national universities. This invitation program aims to enhance the quality of research conducted overseas and to facilitate exchanges of individual research staff between JIRCAS and the counterpart institutions. Thirty-six researchers were invited under this program during FY 2013. Invited researchers, their affiliated research organizations, and their research activities are summarized below.

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Activity Description</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junjarus Sermsathanaswadi</td>
<td>Enzyme Technology Laboratory, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Thailand</td>
<td>Functional analysis of carbohydrate binding domain involving a xylanosome, a multicomponent enzyme (cellulase/hemicellulase) complex</td>
<td>Jun. 16-Nov. 8, 2013</td>
</tr>
<tr>
<td>Samuel Keyes</td>
<td>Engineering Sciences Unit, Engineering and the Environment, University of Southampton, United Kingdom</td>
<td>Evaluation of root traits for enhanced P uptake</td>
<td>Jun. 20-Jul. 4, 2013</td>
</tr>
<tr>
<td>Alias bin Man</td>
<td>FRI Kampung Acheh, Fisheries Research Institute, Malaysia</td>
<td>Environment, biota survey and statistical data collection for the modeling in Selangor area</td>
<td>Jun. 30-Jul. 12, 2013</td>
</tr>
<tr>
<td>Khaled Masmoudi</td>
<td>International Centre for Biosaline Agriculture (ICBA), United Arab Emirates</td>
<td>Discussion about future collaboration on environmental stress tolerance in plants</td>
<td>Jun. 30-Jul. 4, 2013</td>
</tr>
<tr>
<td>Theophile Odjo</td>
<td>Faculty of Agricultural Sciences, University of Abomey-Calavi, Benin</td>
<td>Improving productivity of Rice for Africa by introducing useful traits which confer tolerance to biotic and abiotic stresses</td>
<td>Jul. 1-Sept. 29, 2013</td>
</tr>
<tr>
<td>Singty Voradeth</td>
<td>Agricultural Research Center (ARC), National Agriculture and Forestry Research Institute (NAFRI), Lao PDR</td>
<td>Development and application of a differential system for rice blast resistance in Laos</td>
<td>Jul. 2-Sept. 29, 2013</td>
</tr>
<tr>
<td>Yang Xiaomei</td>
<td>Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), P.R. China</td>
<td>Development of a recycling technology for organic material inputs in corn-wheat cropping system</td>
<td>Aug. 18-Sept. 27, 2013</td>
</tr>
<tr>
<td>Tana</td>
<td>Grassland Production and Management Division, Institute of Grassland Research, Chinese Academy of Agricultural Sciences (CAAS), P.R. China</td>
<td>Development of cultural practices with environmentally-sound material cycle in locations with unfavorable conditions</td>
<td>Sept. 3-9, 2013</td>
</tr>
<tr>
<td>Zhou Ying</td>
<td>Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), P.R. China</td>
<td>Workshop on China Recycling-based Project</td>
<td>Sept. 4-8, 2013</td>
</tr>
<tr>
<td>Li Ninghui</td>
<td>Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), P.R. China</td>
<td>Development of organic matter application technologies that preserve the environment of the maize-wheat cropping system</td>
<td>Sept. 4-8, 2013</td>
</tr>
<tr>
<td>Name</td>
<td>Organization</td>
<td>Project Description</td>
<td>Dates</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>Lou Yilai</td>
<td>Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), P.R. China</td>
<td>Estimation of the present state of fertilizer use and livestock production and their environmental load</td>
<td>Sept. 4-8, 2013</td>
</tr>
<tr>
<td>Chonlada Meeanan</td>
<td>Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Thailand</td>
<td>Study on culture, molecular sequencing techniques and quality analysis of giant tiger prawn under co-culture conditions with brackish water shrimp</td>
<td>Jul. 28-Aug. 13, 2013</td>
</tr>
<tr>
<td>Md. Abdus Salam</td>
<td>Agricultural Economics Division, Bangladesh Rice Research Institute (BRRI), Bangladesh</td>
<td>Impact assessment of climate change on production and supply and demand of rice in Bangladesh</td>
<td>Aug. 18-Dec. 21, 2013</td>
</tr>
<tr>
<td>Asad Jan</td>
<td>Institute of Biotechnology and Genetic Engineering (IBGE), Khyber Pakhtunkhwa Agricultural University Peshawar, Pakistan</td>
<td>Search for novel genes conferring abiotic stress tolerance in plants</td>
<td>Aug. 12-Sept. 2, 2013</td>
</tr>
<tr>
<td>Josefine Nestler</td>
<td>Laboratory of Frank Hochholdinger, University of Bonn, Landwirtschaftliche Fakultät, INRES, Crop Functional Genomics, Germany</td>
<td>Investigation of root traits and candidate genes associated with P uptake efficiency</td>
<td>Sept. 6-28, 2013</td>
</tr>
<tr>
<td>Sathya Khay</td>
<td>Plant Protection Office, Cambodian Agricultural Research and Development Institute (CARDI), Cambodia</td>
<td>Development of a differential system for rice blast resistance in Cambodia</td>
<td>Sept. 16-29, 2013</td>
</tr>
<tr>
<td>Orathai Sawatdichaikul</td>
<td>Institute of Food Research and Product Development (IFRPD), Kasetsart University, Thailand</td>
<td>Computational analyses of the interaction between renin protein and active compounds in Thai’s functional foods</td>
<td>Oct. 3-Nov. 1, 2013</td>
</tr>
<tr>
<td>Liliane Marcia Mertz Henning</td>
<td>Empresa Brasileira de Pesquisa Agropecuária, Embrapa Soja, Brazil</td>
<td>Technical learning of physiological experiments for evaluating drought resistance of soybean and expression analysis</td>
<td>Oct. 28-Dec. 21, 2013</td>
</tr>
<tr>
<td>Glenn Gregorio</td>
<td>Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute (IRRI), Philippines</td>
<td>Workshop, “Improving Phosphorus Efficiency in Rice: Novel traits and underlying genes”</td>
<td>Nov. 24-29, 2013</td>
</tr>
<tr>
<td>Philippe Hinsinger</td>
<td>National Institute for Agricultural Research (INRA), INRAUMR Eco&Sols Montpellier SupAgro-CIRAD-INRA-IRD, France</td>
<td>Workshop, “Improving Phosphorus Efficiency in Rice: Novel traits and underlying genes”</td>
<td>Nov. 23-28, 2013</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Event Details</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Eva Oburger</td>
<td>Rhizosphere Ecology and Biogeochemistry Group (RHIZO), Department of Forest and Soil Sciences, BOKU - University of Natural Resources and Life Sciences, Austria</td>
<td>Workshop, “Improving Phosphorus Efficiency in Rice: Novel traits and underlying genes” Nov. 23-Dec. 1, 2013</td>
<td></td>
</tr>
<tr>
<td>John Peter Hammond</td>
<td>School of Agriculture, Policy and Development, University of Reading, United Kingdom</td>
<td>Workshop, “Improving Phosphorus Efficiency in Rice: Novel traits and underlying genes” Nov. 23-30, 2013</td>
<td></td>
</tr>
<tr>
<td>Michael Timothy Rose</td>
<td>School of Chemistry, Monash University, Australia</td>
<td>Workshop, “Improving Phosphorus Efficiency in Rice: Novel traits and underlying genes” Nov. 24-Dec. 10, 2013</td>
<td></td>
</tr>
<tr>
<td>Miroslaw Kwaśniewski</td>
<td>University of Silesia, Poland</td>
<td>Workshop, “Improving Phosphorus Efficiency in Rice: Novel traits and underlying genes” Nov. 23-30, 2013</td>
<td></td>
</tr>
<tr>
<td>Stephan Marcus Haefele</td>
<td>Australian Centre for Plant Functional Genomics, School of Agriculture Food and Wine, Plant Genomics Centre, University of Adelaide, Australia</td>
<td>Workshop, “Improving Phosphorus Efficiency in Rice: Novel traits and underlying genes” Nov. 23-Dec. 1, 2013</td>
<td></td>
</tr>
<tr>
<td>Terry James Rose</td>
<td>Southern Cross Plant Science Y Block, Southern Cross University, Australia</td>
<td>Workshop, “Improving Phosphorus Efficiency in Rice: Novel traits and underlying genes” Nov. 24-29, 2013</td>
<td></td>
</tr>
<tr>
<td>Rattiya Waenukul</td>
<td>Pilot Plant Development and Training Institute (PDTI), King Mongkut’s University of Technology Thonburi (KMUTT), Thailand</td>
<td>Study of biological saccharification technology using Clostridium thermocellum Dec. 16, 2013-Mar. 28, 2014</td>
<td></td>
</tr>
<tr>
<td>Yan Yongliang</td>
<td>Institute of Crop Germplasm Resources, Xinjiang Academy of Agricultural Sciences, P.R. China</td>
<td>Evaluation of soybean for environmental stress tolerance under field conditions and development of soybean elite breeding lines Feb. 5-Mar. 6, 2014</td>
<td></td>
</tr>
<tr>
<td>Pulletikurty Venkata Satish</td>
<td>International Crops Research Institute for Semi-Arid Tropics (ICRISAT), India</td>
<td>Development of sustainable soil fertility management for sorghum and sweet sorghum through effective use of biological nitrification inhibition (BNI) Mar. 24-Apr. 25, 2014</td>
<td></td>
</tr>
<tr>
<td>Nguyen Cong Thuan</td>
<td>College of Environment and Natural Resources, Can Tho University, Vietnam</td>
<td>Study on nitrogen and carbon supply from a biogas digester for freshwater fish farming Mar. 15-31, 2014</td>
<td></td>
</tr>
</tbody>
</table>
Project Site Invitation Program

In FY 2007, JIRCAS launched this invitation program to invite researchers from developing countries to the project sites in developing countries where JIRCAS researchers are engaged in JIRCAS-funded collaborative research activities on various research themes relevant to the projects on site, and other countries where workshops or planning meetings are held. Fifty invited researchers implemented their programs during FY2013 as listed below.

<table>
<thead>
<tr>
<th>Project Site Invitations, FY 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werapon Ponragdee</td>
</tr>
<tr>
<td>Hirendra Nath Barman</td>
</tr>
<tr>
<td>Anita Boling</td>
</tr>
<tr>
<td>Lizzida Llorca</td>
</tr>
<tr>
<td>Jessa Perez</td>
</tr>
<tr>
<td>Sangkhom Inthapanya</td>
</tr>
<tr>
<td>Daovy Kongmanila</td>
</tr>
<tr>
<td>Viengsakoun Napasirth</td>
</tr>
<tr>
<td>Kongsackda Inthaphouthone</td>
</tr>
<tr>
<td>Ho Thanh Tham</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Asih Kurniawati</td>
</tr>
<tr>
<td>Luming Ding</td>
</tr>
<tr>
<td>Mohd Azlan Bin Pauzi</td>
</tr>
<tr>
<td>Ahmad Wahyudi</td>
</tr>
<tr>
<td>Dusit Aue-umneoy</td>
</tr>
<tr>
<td>Chompoo Juntee</td>
</tr>
<tr>
<td>Orwintinee Chusri</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>Antonio Juan Gerardo Ivancovich</td>
</tr>
<tr>
<td>Adrian Dario De Lucia</td>
</tr>
<tr>
<td>Monica Isabel Heck</td>
</tr>
<tr>
<td>Alicia Noelia Bogado</td>
</tr>
<tr>
<td>Anibal Morel</td>
</tr>
<tr>
<td>Romina Mabel Chávez Jara</td>
</tr>
<tr>
<td>Miori Uno Shimakawa</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Christian Espinola</td>
</tr>
<tr>
<td>Rafael Moreira Soares</td>
</tr>
<tr>
<td>Fernando Diego Baldelomar Argote</td>
</tr>
<tr>
<td>Noelle Giacomini Lemos</td>
</tr>
<tr>
<td>Sergio Herminio Brommonschenkel</td>
</tr>
<tr>
<td>Silvina Stewart</td>
</tr>
<tr>
<td>Du Fulin</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
</tbody>
</table>
JIRCAS Visiting Research Fellowship Program at Tsukuba and Okinawa

The current JIRCAS Visiting Research Fellowship Program has its beginnings in FY 1992 with the launching of the JIRCAS Visiting Research Fellowship Program at Okinawa under which researchers are invited to conduct research on topics relating to tropical agriculture for a period of one year at the Tropical Agriculture Research Front (formerly Okinawa Subtropical Station). Since October 1995, a similar program (JIRCAS Visiting Research Fellowship Program at Tsukuba) has been implemented at JIRCAS’s Tsukuba premises, which aims to promote collaborative research that address various problems confronting countries in the developing regions. In FY 2006, these fellowship programs were modified and merged into one. In FY 2013, a total of four researchers were invited to conduct research at JIRCAS HQ.

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Project Description</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di Tingjun</td>
<td>Bureau of Agriculture of Shuifu County, P.R. China</td>
<td>Analysis of the effect of rhizosphere pH on the release of biological nitrification inhibitors from sorghum roots</td>
<td>Oct. 1, 2013-Sept. 30, 2014</td>
</tr>
<tr>
<td>Md. Motaher Hossain</td>
<td>Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Bangladesh</td>
<td>Development of new soybean breeding materials resistant to soybean rust</td>
<td>Oct. 31, 2013-Jan. 31, 2014</td>
</tr>
<tr>
<td>Vu Thi Thu Hien</td>
<td>Department of Molecular Biology, Agricultural Genetics Institute (AGI), Vietnam</td>
<td>Identification of environmental stress tolerance genes in soybean and their application to soybean improvement</td>
<td>Oct. 16, 2013-Sept. 30, 2014</td>
</tr>
<tr>
<td>Wichittra Bomrungnok</td>
<td>Department of Food Science and Technology, School of Science and Technology, University of the Thai Chamber of Commerce, Thailand</td>
<td>Development of a process for lactic acid production at high temperature from oil palm trunk</td>
<td>Oct. 28, 2013-Sept. 26, 2014</td>
</tr>
</tbody>
</table>
JIRCAS Visiting Research Fellowship Program at Project Sites

This fellowship program has been implemented since May 2006 at collaborating research institutions located in developing countries where collaborative researches are being carried out by JIRCAS researchers. It aims to promote the effective implementation of ongoing collaborative researches at the project sites through the participation of local research staff. Furthermore, through this fellowship program, JIRCAS intends to contribute to capacity-building of the collaborating research institutions. In FY2013, one researcher was invited to Mongolia. The fellow and her research subject are listed below.

For inquiries on the JIRCAS Visiting Research Fellowship Program, please contact the Research Coordination Section (Tel. +81-29-838-6335; Fax +81-29-838-6337; e-mail: irs-jircas@ml.affrc.go.jp)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Research Project</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zolzaya Sed-Ochir</td>
<td>School of Biological Resources and Management, Mongolian State University of Agriculture (MSUA), Mongolia</td>
<td>Development of a technique for processing and conservation of underutilized feed resources in Mongolia and determination of their nutritional values</td>
<td>Oct. 1, 2013-Sept. 30, 2014</td>
</tr>
</tbody>
</table>

Other Fellowships for Visiting Scientists

The Government of Japan sponsors a postdoctoral fellowship program and a researcher exchange program for foreign scientists through the Japan Society for the Promotion of Science (JSPS). The program places post-doctoral and sabbatical fellows in national research institutes throughout Japan according to research theme and prior arrangement with host scientists, for terms of generally one month to three years. Fellowships can be undertaken in any of the ministries, and many fellows are currently working at various IAAs affiliated with MAFF. The visiting scientists who resided at JIRCAS in FY2013 are listed below.

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Research Project</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Jeanie Telebanco-Yanoria</td>
<td>International Rice Research Institute, Philippines</td>
<td>Development of IR64 multiline variety and identification of blast resistance genes from NERICA</td>
<td>Nov. 1, 2011 - Oct. 31, 2013</td>
</tr>
<tr>
<td>Babil Pachakkil Kalari Thotathil</td>
<td>None</td>
<td>Molecular and cytological genetic studies on diversity of yam genetic resources</td>
<td>Apr. 2, 2012 – Mar. 31, 2014</td>
</tr>
<tr>
<td>Salirian Rachael Claff</td>
<td>None</td>
<td>Zinc uptake of rice as affected by interactions of soil zinc pools and iron oxide root plaques</td>
<td>Oct. 9, 2012 - Oct. 8, 2014</td>
</tr>
</tbody>
</table>

JSPS Postdoctoral Fellowship for Foreign Researchers

(April 2013 to March 2014)

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Research Project</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Jeanie Telebanco-Yanoria</td>
<td>International Rice Research Institute, Philippines</td>
<td>Development of IR64 multiline variety and identification of blast resistance genes from NERICA</td>
<td>Nov. 1, 2011 - Oct. 31, 2013</td>
</tr>
<tr>
<td>Babil Pachakkil Kalari Thotathil</td>
<td>None</td>
<td>Molecular and cytological genetic studies on diversity of yam genetic resources</td>
<td>Apr. 2, 2012 – Mar. 31, 2014</td>
</tr>
<tr>
<td>Salirian Rachael Claff</td>
<td>None</td>
<td>Zinc uptake of rice as affected by interactions of soil zinc pools and iron oxide root plaques</td>
<td>Oct. 9, 2012 - Oct. 8, 2014</td>
</tr>
</tbody>
</table>
JSPS Invitation Fellowship for Research in Japan
(April 2013 to March 2014)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashiq Rabbani Malik</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-Term</td>
<td>University of Zurich, Switzerland</td>
<td>Clinal variation in body size and associated life history traits in the yellow dung fly</td>
<td>Mar. 17 - Apr. 12, 2013</td>
</tr>
<tr>
<td>Wolf Ulrich Blankenhorn</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DOA/JIRCAS Collaborative Workshop on Future of Multi-Purpose Sugarcane (MPS)

To discuss the practical utilization of multi-purpose sugarcane (MPS*), which was developed as a result of collaborative research between JIRCAS and the Department of Agriculture (DOA), Thailand, the “DOA/JIRCAS Collaborative Workshop on Future of Multi-Purpose Sugarcane (MPS)” was held in Khon Kaen City, Thailand on 19 September 2013. About 40 participants from Japan and Thailand, including many from local sugar mills, attended the workshop. Alternative uses of MPS were introduced, and several approaches for its practical utilization were discussed.

In the opening session, Dr. Thongchai Tangpremsri, director of the Field and Renewable Energy Crops Research Institute, DOA, expressed thanks to JIRCAS for its long-running collaboration and contribution to the development of MPS. Dr. Masami Yasunaka, vice president of JIRCAS, also expressed his gratitude to the DOA and participants.

In session 1 (Development of MPS and novel sugar-ethanol production system), the development and characteristics of MPS were presented by JIRCAS and Khon Kaen Field Crops Research Center, DOA. Then, the novel sugar-ethanol production system, in which MPS can be used, was introduced by Asahi Group Holdings, Ltd. Lastly, JIRCAS proposed to establish an “MPS network” to exchange information on the cultivation, evaluation, and utilization of MPS.

In session 2 (New technologies to utilize MPS), the development and utilization of forage sugarcane were presented by NARO Kyusyu Okinawa Agricultural Research Center and Khon Kaen University. Then, the utilization of extracted materials from sugarcane was introduced by Mitsui Sugar Co., Ltd. Finally, risk assessment of sugarcane white leaf disease (SCWL) by epidemiological study, which is one of the achievements of JIRCAS’s integrated pest management (IPM) project, was presented.

MPS was selected from the progeny of hybrids between sugarcane varieties and wild sugarcane lines. It has higher fiber and lower sucrose content than conventional varieties cultivated for sugar production. Because of high biomass production, sugar yield per area is higher than conventional varieties. More MPS ratooning cultivation is possible in Northeast Thailand, where severe dry seasons suppress ratoon cultivation. It is thought that MPS is more suited for sugar and ethanol production and for bagasse cogeneration.

3rd JIRCAS-CTU Climate Change Project Workshop held in Can Tho City, Viet Nam

A workshop titled “JIRCAS-CTU Climate Change Project Workshop 2013” was held in Can Tho City, Viet Nam on 26 September 2013. The workshop is an annual gathering of scientists, engineers, lecturers and researchers, aimed at reporting and discussing the achievements resulting from the activities in Mekong Delta under the “Development of Agricultural Technologies to Respond to Climate Change” flagship project of JIRCAS.

A total of 30 people from Can Tho University, JIRCAS, Cuu Long Delta Rice Research Institute, and Southern Institute of Water Resources Research participated in the workshop.

Dr. Masami Yasunaka, vice president of JIRCAS, and Dr. Nguyen Hieu Trung, dean of the College of Environment and Natural Resources, Can Tho University, delivered the opening remarks. Fourteen researchers presented their research results (to date) in 3 thematic sessions, namely, “Mitigation of GHG emission from rice paddies and livestock,” “Adaptation and carbon sequestration,” and “Establishment of rural development model with low GHG
emission.” The participants engaged in active discussions, and opinions were exchanged during the workshop.

The workshop ended successfully with the expectation that all research achievements will be integrated at the end of the project period.

International Workshop: Direction of blast studies in Asia, Africa, and Japan

The international workshop titled “Direction of blast studies in Asia, Africa, and Japan” took place at JIRCAS Tsukuba on 25 September 2013. The workshop was an organized activity under the research subject, “Blast Research Network for Stable Rice Production,” of the JIRCAS research project, “Rice innovation for environmentally sustainable production systems.”

Around 40 rice scientists from 12 countries (Japan, China, Korea, Vietnam, Laos, Cambodia, Thailand, Bangladesh, India, Philippines, Indonesia, and Benin) and one international organization (the International Rice Research Institute or IRRI) were gathered. Ongoing blast studies in tropical areas of Asia, in temperate regions from Asia to Europe, and in Africa, were demonstrated by scientists from JIRCAS, IRRI, and the Kyushu-Okinawa Agricultural Research Center (ARC) of the National Agriculture and Food Research Organization (NARO), Japan. They also discussed the future direction of blast research.

Dr. K. K. Jena, IRRI scientist, explained the blast studies conducted by Working Group 2 of the Temperate Rice Research Consortium (TRRC), which was organized by IRRI, and mentioned that a new resistance gene, *Pi40(t)*, would be useful for rice breeding. Mr. T. Odjo, from the University of Abomey-Calavi, Bennie, showed the results of research on the genetic diversity of blast races and rice germplasm in West Africa. He indicated that these findings were the first information derived from the systematic investigations, using the differential system as basic tool, in this region. Dr. Y. Fukuta, JIRCAS project leader, presented the outline and achievements under the JIRCAS research subject, “Blast Research Network for Stable Rice Production.” He recommended the distribution of the differential system for pathogenicity and genetic studies in blast disease and suggested one promising way of developing durable protection methods against blast, through evaluation of genetic diversity among rice varieties, such as multiline varieties. Furthermore, Dr. D. Zhou, from IRRI, reviewed IRRI’s research activities concerning host plant resistance to rice blast. Dr. H. Sato, from Kyushu-Okinawa ARC, discussed blast studies in Japan. He also introduced the application of partial resistance genes and the development of a multiline variety with Koshihikari genetic background. Dr. Y. Nakajima, from Aichi Agricultural Research Center, concluded the workshop by giving his comments and stressing the importance of the differential system for pathological studies and of partial resistance gene(s) for the genetic improvement of rice varieties.

The importance of development and application of the differential system for blast research works was reviewed during the international workshop, and the collaboration for its wide-area distribution was also confirmed with other international research networks such as the TRRC by IRRI. “Partial resistance gene(s)” and “multiline
JIRCAS Workshop on Tropical Coastal Aquaculture Project

JIRCAS, in cooperation with SEAFDEC/AQD, held a workshop on October 9-10, 2013 in Iloilo, the Philippines, as part of the ongoing research project entitled “Development of aquaculture technologies for sustainable and equitable production of aquatic products in tropical coastal areas.” This JIRCAS 5-year project, which started in 2011, is an international collaboration between KMITL in Thailand, SEAFDEC/AQD in the Philippines, FRI in Malaysia, and FRA in Japan, to develop sustainable and environmentally friendly aquaculture technologies and to improve the livelihoods of small-scale farmers in Southeast Asian countries through application of these technologies. Since the fiscal year 2013 was the midway of the project, a workshop was conducted to review current research activities and exchange views on how to reach the project goal. A total of 33 participants from 7 organizations in 4 countries attended the workshop.

Thirteen speakers presented their research findings on three subjects, namely, (1) development of co-culture systems of giant tiger prawns in Thailand; (2) development of integrated multi-trophic aquaculture (IMTA) systems in the Philippines; and (3) establishment of a fishery management plan for blood cockles in Malaysia. In the co-culture research, it became clear that a green seaweed species not only absorbed the excess nutrients but also promoted growth and enhanced body color on giant tiger prawns. Similarly, in the IMTA research, it was evident that a sea cucumber species was able to efficiently utilize aquaculture feed and fish feces for its growth. In the blood cockle research, new methods for identifying their planktonic larvae and detecting fatal paralytic shellfish poisoning toxins were developed. Furthermore, various ideas for the dissemination of developed aquaculture technologies and possible future international collaborations were proposed in General Discussion. Thus, the development of sustainable and environmentally friendly aquaculture technologies can be highly expected.
JIRCAS, together with Kasetsart University of Thailand, co-organized an international symposium entitled “The 1st International Symposium on Microbial Technology for Food and Energy Security” on 25-27 November 2013 in Bangkok, Thailand. One hundred fifty participants, mostly from Thailand, Japan, Indonesia, China and Germany, discussed the application of microbial knowledge and technology to resolve problems related to food and energy production. The symposium held sessions on Food Security (Day 1) and on Energy Security (Day 2).

Four keynote speeches were delivered during the symposium: Dr. Hiroyuki Konuma, FAO assistant director-general and regional representative of the Regional Office for Asia and the Pacific, presented “Policy of Food and Energy Security for Global Prospects”; Dr. Yoshiaki Kitamura, director of the Applied Microbiology Division at the National Food Research Institute, NARO, Japan, discussed “The Innovation with Smart Microbes towards Bio-Industrialization: Past, Present and Future”; Prof. Dr. Kenji Iiyama, vice chairman of Non-Wood Green Products Association of Japan (an NPO), prelected “Overview of Bio-based Process Technology”; and Dr. Wolfgang Schwarz, assistant professor at the Department of Microbiology, Technical University Muenchen, Germany, explained “Current Developments of Microbial Technology in Bio-fuel and Bio-based Products.”

Experts, researchers and engineers from various Asian countries, in addition to private practitioners and companies, presented more than 27 scientific presentations including JIRCAS project achievements on “Advanced application of local food resources in Asia” and “Development of biofuel and biomaterial production technologies using biomass resources in Southeast Asia.” The general discussions for both sessions were concluded by acknowledging the importance of microbial knowledge and technologies, and the need to share and utilize the research outputs as common resources among countries. Lastly, the joint declaration on the Asian Food Resource Network was adopted by symposium participants during the plenary session.
<table>
<thead>
<tr>
<th>No.</th>
<th>Event Description</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Seminar on sorghum and biological nitrification inhibition (BNI)</td>
<td>April 22, 2013</td>
<td>Tsukuba, Japan</td>
</tr>
<tr>
<td>2</td>
<td>5th Steering Committee Meeting, JIRCAS Islands Environment Conservation Project</td>
<td>April 24, 2013</td>
<td>Majuro Atoll, Republic of the Marshall Islands</td>
</tr>
<tr>
<td>3</td>
<td>TICAD V Pre-event Workshop New Stages of Agricultural Research in Africa</td>
<td>May 26, 2013</td>
<td>Yokohama, Kanagawa, Japan</td>
</tr>
<tr>
<td>4</td>
<td>TICAD V Pre-event Workshop New Stages of Agricultural Research in Africa</td>
<td>May 31, 2013</td>
<td>Tokyo, Japan</td>
</tr>
<tr>
<td>5</td>
<td>Special Lecture by the President of the Republic of Tunisia</td>
<td>June 3, 2013</td>
<td>Tokyo, Japan</td>
</tr>
<tr>
<td>6</td>
<td>6th International Workshop on Remote Sensing and Environmental Innovations in Mongolia (Special Session : Assessing agricultural resources in Mongolia)</td>
<td>June 10-11, 2013</td>
<td>Ulaanbaatar, Mongolia</td>
</tr>
<tr>
<td>7</td>
<td>Training/workshop on monitoring of GHG emission from livestock</td>
<td>June 26, 2013</td>
<td>Can Tho City, Viet Nam</td>
</tr>
<tr>
<td>8</td>
<td>FAO TCP Facility Project Workshop: Crop Supply and Demand Analysis in Cambodia and Laos</td>
<td>July 8, 2013</td>
<td>Bangkok, Thailand</td>
</tr>
<tr>
<td>9</td>
<td>Workshop of SATREPS project “Multi-beneficial Measures for Mitigation of Climate Change in Vietnam and Indochina Countries by Development of Biomass Energy” and Study meeting of Jatropha curcas in three SATREPS projects</td>
<td>July 24-25, 2013</td>
<td>Ishigaki, Okinawa, Japan</td>
</tr>
<tr>
<td>10</td>
<td>3rd GrassRISK Project Progress Meeting</td>
<td>August 20, 2013</td>
<td>Ulaanbaatar, Mongolia</td>
</tr>
<tr>
<td>12</td>
<td>Training/workshop on greenhouse gas (GHG) measurement and carbon footprint (CFP) assessment in ruminants livestock</td>
<td>August 26-30, 2013</td>
<td>Khon Kaen City, Thailand</td>
</tr>
<tr>
<td>13</td>
<td>Workshop on Technology Transfer: Binderless board and compressed lumber from Oil Palm Trunk by USM-JIRCAS-UT International Collaboration Research</td>
<td>August 27, 2013</td>
<td>Banting, Selangor, Malaysia</td>
</tr>
<tr>
<td>14</td>
<td>Current situation and issues of recycling-based agricultural production system in upland farming areas of Northern China</td>
<td>September 5, 2013</td>
<td>Tsukuba, Japan</td>
</tr>
<tr>
<td>15</td>
<td>Meeting on research of biological nitrification inhibition in wheat</td>
<td>September 10, 2013</td>
<td>Yokohama, Kanagawa, Japan</td>
</tr>
<tr>
<td>16</td>
<td>DOA/JIRCAS Collaborative Workshop on Future of Multi-Purpose Sugarcane (MPS)</td>
<td>September 19-20, 2013</td>
<td>Khon Kaen, Thailand</td>
</tr>
<tr>
<td>#</td>
<td>Event Description</td>
<td>Date</td>
<td>Location</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>-----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>17</td>
<td>Workshop: “Direction of blast studies in Asia, Africa, and Japan” for “Blast Research Network for Stable Rice Production” under the JIRCAS research project “Rice innovation for environmentally sustainable production systems” Annual meeting of Blast Research Network for Stable Rice Production Research from 2013 to 2014</td>
<td>September 25-27, 2013</td>
<td>Tsukuba, Japan</td>
</tr>
<tr>
<td>18</td>
<td>JIRCAS-CTU climate change project workshop 2013</td>
<td>September 26, 2013</td>
<td>Can Tho City, Viet Nam</td>
</tr>
<tr>
<td>19</td>
<td>9th Seminar on rural development based on clean development mechanism (CDM) and key farmers’ workshop</td>
<td>September 27, 2013</td>
<td>Can Tho City, Viet Nam</td>
</tr>
<tr>
<td>20</td>
<td>JIRCAS Workshop: Development of Aquaculture Technologies for Sustainable and Equitable Production of Aquatic Products in Tropical Coastal Areas</td>
<td>October 9-10, 2013</td>
<td>Iloilo, Philippines</td>
</tr>
<tr>
<td>21</td>
<td>Workshop on “Improvement of Soil Fertility with Use of Indigenous Resources in Rice Systems in Ghana”</td>
<td>October 15-16, 2013</td>
<td>Tamale City, Ghana</td>
</tr>
<tr>
<td>22</td>
<td>5th Seminar on Conservation and Management of Freshwater Lens, JIRCAS Islands Environment Conservation Project</td>
<td>October 24, 2013</td>
<td>Majuro Atoll, Republic of the Marshall Islands</td>
</tr>
<tr>
<td>23</td>
<td>JIRCAS Workshop “Evaluation and utilization of the resistance to soybean rust”</td>
<td>November 7, 2013</td>
<td>Foz do Iguacu, Brazil</td>
</tr>
<tr>
<td>24</td>
<td>Annual Meeting of Soybean Rust Project (Development of breeding technologies toward improved production and stable supply of upland crops)</td>
<td>November 8, 2013</td>
<td>Foz do Iguacu, Brazil</td>
</tr>
<tr>
<td>25</td>
<td>JIRCAS International Symposium 2013 New Direction of Sustainable Technology Development in Asia: Changing Rural Livelihood and Japanese Advantage</td>
<td>November 20-21, 2013</td>
<td>Tokyo, Japan</td>
</tr>
<tr>
<td>26</td>
<td>Improving Phosphorus Efficiency in Rice: Novel traits and underlying genes</td>
<td>November 25-27, 2013</td>
<td>Tsukuba, Japan</td>
</tr>
<tr>
<td>28</td>
<td>4th Progress Meeting on the Project “Development of sustainable soil fertility management for sorghum and sweet sorghum through effective use of biological nitrification inhibition (BNI)”</td>
<td>November 28, 2013</td>
<td>Patancheru, India</td>
</tr>
<tr>
<td>29</td>
<td>JIRCAS International Seminar: Situation of GRiSP and implication to Japan</td>
<td>December 9, 2013</td>
<td>Tsukuba, Japan</td>
</tr>
<tr>
<td>30</td>
<td>MAFF-Funded Project: Development of Drought-tolerant Crops for Developing Countries; Annual Meeting 2013</td>
<td>December 11, 2013</td>
<td>Tsukuba, Japan</td>
</tr>
<tr>
<td>31</td>
<td>Seminar on Porous Structure and Use of Biomass</td>
<td>December 20, 2013</td>
<td>Tsukuba, Japan</td>
</tr>
<tr>
<td></td>
<td>Event Description</td>
<td>Date</td>
<td>Location</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>32</td>
<td>2014 Seminar for the JIRCAS-Tigray project</td>
<td>January 14, 2014</td>
<td>Mekelle City, Ethiopia</td>
</tr>
<tr>
<td></td>
<td>“Establishment of sustainable rural society with low GHG emission”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Development of Conservation Agriculture based cropping system for sustainable soil management in West Africa</td>
<td>February 5, 2014</td>
<td>Ouagadougou, Burkina Faso</td>
</tr>
<tr>
<td>34</td>
<td>International Workshop: Small scale oil palm farmers in Southeast Asia - Partnerships for sustainable production -</td>
<td>February 11, 2014</td>
<td>Krabi, Thailand</td>
</tr>
<tr>
<td>35</td>
<td>JIRCAS-CTU AWD project workshop 2014</td>
<td>February 20, 2014</td>
<td>Long Xuyen City, Vietnam</td>
</tr>
<tr>
<td>36</td>
<td>International Workshop on the International Network Development and Information Sharing for Management of Sugarcane White Leaf Disease in Southeast Asia</td>
<td>February 27-28, 2014</td>
<td>Khon Kaen, Thailand</td>
</tr>
<tr>
<td>37</td>
<td>ICASEPS-JIRCAS Seminar: How we realize win-win situation between large scale oil palm companies and smallholders? -Summary of ICASEPS-JIRCAS collaborative study-</td>
<td>March 4, 2014</td>
<td>Bogor, Indonesia</td>
</tr>
<tr>
<td>38</td>
<td>Workshop of the GrassRISK Project 2014</td>
<td>March 5, 2014</td>
<td>Ulaanbaatar, Mongolia</td>
</tr>
<tr>
<td>39</td>
<td>3rd Steering Committee Meeting of the GrassRISK Project</td>
<td>March 6, 2014</td>
<td>Ulaanbaatar, Mongolia</td>
</tr>
<tr>
<td>40</td>
<td>2nd Seminar of Project JIRCAS-Caaguazu</td>
<td>March 7, 2014</td>
<td>Coronel Oviedo City, Paraguay</td>
</tr>
<tr>
<td>41</td>
<td>Research meeting on the ICT-related technologies which are possible to apply at pastoral regions in Africa</td>
<td>March 25, 2014</td>
<td>Tsukuba, Japan</td>
</tr>
<tr>
<td>42</td>
<td>Research network meeting for the reduction of greenhouse gas emissions from livestock sector</td>
<td>March 29, 2014</td>
<td>Tsukuba, Japan</td>
</tr>
</tbody>
</table>
PUBLISHING AT JIRCAS

OFFICIAL JIRCAS PUBLICATIONS

<table>
<thead>
<tr>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) JARQ (Japan Agricultural Research Quarterly)</td>
</tr>
<tr>
<td>Vol. 47 No. 3, No. 4</td>
</tr>
<tr>
<td>Vol. 48 No. 1, No. 2</td>
</tr>
<tr>
<td>2) Annual Report 2012</td>
</tr>
<tr>
<td>3) JIRCAS Newsletter</td>
</tr>
<tr>
<td>No. 68, No. 69, No. 70</td>
</tr>
<tr>
<td>4) JIRCAS Working Report Series</td>
</tr>
<tr>
<td>No. 81 Identification of Stable Resistance to Soybean Rust for South America</td>
</tr>
<tr>
<td>5) JIRCAS International Agriculture Series</td>
</tr>
<tr>
<td>No. 23 Farm Management and Environment of Rainfed Agriculture in Laos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Japanese</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) JIRCAS News</td>
</tr>
<tr>
<td>No. 68, No. 69, No. 70</td>
</tr>
</tbody>
</table>
RESEARCH STAFF ACTIVITY 2013-2014

Refereed journal articles

Ishida Satoshi, Yoshimoto Shuhei, Kobayashi Tsutomu, Koda Kazuhisa and Nakazato

Lee Chai Ting, Lee Soon Leong, Tnah Lee Hong, Ng Kevin Kit Siong, Ng Chin Hong, Cheng Shawn, Tani Naoki (2013) Isolation and characterization of 16 microsatellite mark-

Oki, S., Akiyoshi, T., Hoshino, D., Shibata, M., Matsushita, M., Hoshizaki, K. (2013) Interactive effect of canopy and fluvial dis-
turbances on sapling community structure and species diversity in a montane riparian forest. Ecossience DOI : 10.2980/20-2-3609.

Takeshi Watanabe, Hong Man Luu, Ngoc Han Nguyen, Osamu Ito, Kazuyuki Inubushi (2013) Combined effects of the continual application of composted rice straw and chemical fertilizer on rice yield under a double rice cropping system in the Mekong Delta, Vietnam. JARQ 47(4) : 397-404.

THIRD MEDIUM-TERM PLAN OF THE JAPAN INTERNATIONAL RESEARCH CENTER FOR AGRICULTURAL SCIENCES

The Japan International Research Center for Agricultural Sciences (JIRCAS) has been contributing to the improvement of technologies for agriculture, forestry, and fisheries, in tropical and subtropical areas as well as other overseas developing regions (hereinafter referred to as “developing regions”), by performing technical trials and research activities.

During the First Medium-Term Goal period (FY2001 to 2005), JIRCAS worked on research and development (R&D) for the sustainable development of agriculture, forestry, and fisheries, as well as on the expansion of international research exchanges and networks, taking into account both domestic and overseas situations, such as the adoption of the U.N. Millennium Development Goals for the eradication of poverty and hunger in the world.

During the Second Medium-Term Goal period (FY2006 to 2010), JIRCAS created a multilateral collaborative research system, promoted collaborative research with world-class research organizations led by the Consultative Group on International Agricultural Research (CGIAR), established a dynamic research system, and implemented major research activities as projects at JIRCAS. In fiscal 2008, JIRCAS took over international activities from the dissolved Japan Green Resources Agency and strengthened its field activities.

Based on the outcomes of JIRCAS’s research strategy and in accordance with the Basic Plan for Agriculture, Forestry and Fisheries Research (determined at the meeting of the Agriculture, Forestry and Fisheries Research Council on March 30, 2010), three research agendas have been identified over the course of this Medium-Term Goal period, namely: (1) the development of agricultural technologies in developing regions, based on sustainable management of resources, (2) the development of technology for increased productivity and stable production of agricultural products in the tropics and other unstable environments, and (3) the development of technology for income and livelihood improvement of the rural population in developing regions. Research resources will be allocated to these agendas on a priority basis, and a system that will allow the research results to be put into practice most effectively in developing regions will be established. To best understand the highly diverse subjects and goals of technological development in developing regions, JIRCAS will also strengthen its capability related to the collection, analysis, and dissemination of information on international agriculture, forestry, and fisheries.

Through this series of activities, JIRCAS is committed to fulfill its responsibilities as Japan’s only research institution mandated to carry out comprehensive international research in agriculture, forestry, and fisheries, and to contribute to the enhancement of food security in the country by solving global food problems.

I. Measures to be taken to achieve the goal of efficient business management

A) Cost reduction

1. Reduction in costs such as general and administrative expenditures

a) Administrative operations implemented by operational grants will be reviewed and efficiency will be further promoted. Average annual reduction targets are at least 3% with respect to the previous year for general and administrative expenditures (excluding personnel expenditures), and at least 1% with respect to the previous year for research expenditures. The general and administrative expenditures will be thoroughly examined and reviewed to determine whether there is any further room for cost reduction.

b) With regard to pay standards, the salaries including allowances for directors and staff will be carefully scrutinized in light of the general pay standards for government employees. As JIRCAS’s payment level for fiscal 2009 was 104.7 against a base figure of 100 for government employees (for administrative/technical personnel, age considered), its pay standards will be reviewed and reduced
to the equivalent level for government employees by fiscal 2011; and in succeeding years the pay-
ment level will be in accordance with the pay regulations for government officials. The results of
the assessment and progress of implementation will be made public. With regard to total personnel
expenses, ongoing cost reduction efforts of more than 5% over a period of five years from fiscal
2006, according to the Act on Promotion of Administrative Reform for Realization of Small and
Efficient Government (Act No. 47 of 2006), are to be consistently maintained through fiscal 2011.
The reduction target for JIRCAS’s total personnel expenses for this fiscal year (excepting retirement
allowances, welfare expenditures [legal and non-legal welfare expenditures], and salaries revised
in accordance with the recommendation of the National Personnel Authority) is more than 6% with
respect to the fiscal 2005 level. Based on the Treatment Related to Salary Revisions for Government
Officials (determined at the Cabinet meeting on November 1, 2010), and in accordance with the
government’s personnel cost-cutting efforts, JIRCAS will conduct a rigorous review of its personnel
expenses as part of the planned fundamental review of the incorporated administrative agency (IAA)
system. Personnel expenses related to staff taken on from the Japan Green Resources Agency, which
had already achieved a personnel expenses reduction of more than 5%, are not subject to the current
personnel expenses reform, in accordance with the Treatment of Across-the-board Personnel Cost
Cuts for Organizations such as Incorporated Administrative Agencies Which Cooperate in Accepting
Staff from Dissolved Agencies (notice of June 9, 2008 from the Administrative Reform Promotion
Office, and other government departments, to personnel in charge at the ministries).
Personnel expenses related to the following permanent staff are not included in the reduction targets:
(i) Fixed-term staff employed by means of competitive or contracted research funds, or external funds
from the private sector for collaborative work.
(ii) Fixed-term researchers (a) employed by means of government commission fees or subsidies; or (b)
engaged in important research agendas (strategically important science and technologies designated
in the Third Basic Program for Science and Technology [determined at the cabinet meeting on March
28, 2006], in line with national policy), who are employed by means of operational grants; or (c) 37
years of age or younger as of the end of fiscal 2005.

2. Review of Contracts

a) According to the Inspection and Review of Contracts of Incorporated Administrative Agencies (de-
termined at the cabinet meeting on November 17, 2009) and other related policies, and based on the
plan to review free contracts, a thorough review will be conducted on uncompetitive free contracts,
and improvements will be made on biddings involving only one bidder/applicant in general competi-
tive biddings.
b) Contract methods (such as the use of multi-year vs. single-year contracts) will be reviewed from a
cost-saving viewpoint, with reference to other IAA.
c) With regard to contracts with organizations deemed to be in close relation to JIRCAS, information
provision will be reviewed to enhance transparency.

B) Implementation and feedback from evaluations and checks

1. To ensure work priority and transparency, JIRCAS will conduct evaluations and checks on its opera-
tions and research activities in a fair manner by utilizing external specialists prior to annual evaluation by
the IAA Evaluation Committee. To allocate research resources on a priority basis, JIRCAS will clarify
the basic policy and specific methods of supplying the respective results, along with the results from the
IAA Evaluation Committee, to the administrative management. Research activities in particular will be
reviewed on a flexible basis, with their necessity and progress taken into account. Evaluation and feed-
back results will be made available on JIRCAS’s website.

2. For the purpose of evaluating research activities, a process sheet enumerating the annual goals will
be prepared prior to the start of research. The process sheet is important for two main reasons: First, it
ensures the improvement of technologies concerning agriculture, forestry, and fisheries in developing
regions to address their food problems, thereby contributing to Japan’s food security; Second, it becomes
the basis for conducting evaluations at high international standards. Numerical goals and specific indica-
tors will be set wherever possible. Research resource input and obtained results will be analyzed and
utilized to evaluate research activities.
3. JIRCAS will endeavor to streamline and upgrade its evaluation methods by ensuring the mutual utilization of data needed for a multiple evaluation system. It will also improve this evaluation system where necessary.

4. Based on third-party evaluation, including that of administrative departments, each of the 10 or more research outcomes which are useful to developing regions will be designated as a ‘Major Outcome for Dissemination’ within the Third Medium-Term Goal period. The dissemination and use of such designated and other research results will be understood, analyzed, and utilized for the improvement of administrative management.

5. JIRCAS will make performance evaluations of its personnel and appropriately integrate the results into their treatment.

C) Effective use, improvement, and upgrading of research resources

1. Research funds

 a) Research activity evaluation results will be appropriated into budget allocations for the effective and efficient promotion of the Medium-Term Goals research programs supported by operational grants.
 b) To further promote research and development, efforts will be made to obtain external funds, such as funds for commissioned projects and competitive funds, and to utilize them more efficiently.

2. Research facilities and equipment

 Research facilities and equipment are classified into three categories based on their age-related condition and JIRCAS’ research prioritization, as follows: (i) facilities that will not conduce to research promotion without renovation and upgrading, (ii) facilities that will hamper the progress of research without renovation due to their severe age-related condition, and (iii) facilities required to be renovated by law or regulations. Planned renovation and upgrading of facilities essential to research promotion will be implemented while the use of such facilities will be promoted to increase the rate of utilization. With regard to the Island Environment Technology Development Laboratories, which are open facilities located at Tropical Agriculture Research Front, research proposals will be made to other research centers and publicity activities will be augmented to encourage the use of the facilities.

3. Organization

 To achieve the Third Medium-Term Goals, the administrative and research organizations will be reviewed in a flexible manner, based on research evaluation results, to promote collaborative work with other IAAs in the agricultural field.

4. Improvement of staff qualifications and development of human resources

 a) JIRCAS will revise its human resource development program in accordance with the Act on Enhancement of Research and Development Capacity and Efficient Promotion of Research and Development by Advancement of Research and Development System Reform (Act No. 63 of 2008), as well as changes in the surrounding environment of research and development, and other factors.
 b) Efforts will be made to improve the qualifications of researchers who play key roles in international collaborative research, by dispatching them abroad and conducting collaborative studies with invited overseas researchers.
 c) JIRCAS will create a competitive and cooperative environment for research personnel, provide them with effective incentives, develop their career path by utilizing a range of employment systems, conduct effective personnel exchanges with other research organizations including IAAs, and promote various forms of human resource exchange with governmental departments. JIRCAS will also cooperate with other agricultural IAAs in developing the international skills of their staff.
 d) JIRCAS will make efforts to improve its personnel’s qualifications by mandating that administrative and technical staff actively participate in various training sessions organized and implemented by external organizations or other IAAs. Efforts will also be made to improve the system that allows
technical staff to engage positively in research support.

e) The management ability and leadership of research project leaders will be improved through the implementation of various training systems.

D) Improvement, upgrading, and promotion of the efficiency of the research support sector

1. Research support work will be streamlined wherever possible by conducting work in conjunction with other agricultural IAAs, such as the joint implementation of training programs and joint creation of manuals.

2. The work of the General Affairs Section will be reviewed to ensure efficiency in the operational system. The efficiency of clerical management will be promoted by speeding up and simplifying clerical procedures.

3. JIRCAS will provide efficient local support to researchers dispatched abroad when they perform experimental and accounting work.

4. Efforts will be made to streamline, upgrade and enhance technical support activities by reviewing work and focusing on areas that require highly specialized technology and knowledge that meet the needs of advanced experimental and research work.

5. The Ministry of Agriculture, Forestry and Fisheries Research Network (MAFFIN) will be utilized to streamline, upgrade and enhance work on the collection and dissemination of research information; and efforts will be made, both to promote information-sharing across JIRCAS and to streamline operations, through the use of groupware.

6. Efforts will also be made to rationalize research support staffing by reviewing overall support work and continuing to promote outsourcing.

E) Promotion and enhancement of collaboration and cooperation between industry, academia, and government

1. To further promote collaborative research and researcher exchange, efforts will be made to improve information exchange and alliances with national and public research organizations, universities, and the private sector.

2. JIRCAS will actively support alliances and cooperation with other agricultural IAAs, including personnel exchanges, keeping in mind the division of roles.

3. Cooperation will be provided to the National Agriculture and Food Research Organization (NARO), as necessary, in implementing breeding research and other work.

II. Measures to improve the quality of service and execution of other duties relating to the public

A) Research and investigations

1. Priority research promotion

The research activities described in the attachment will be promoted on a priority basis.

a) To fulfill JIRCAS’s responsibilities as Japan’s only research institution mandated to carry out comprehensive international research in agriculture, forestry, and fisheries for developing regions, efforts will be made to improve information exchange and alliances with related organizations in Japan, through close coordination with the Japan Forum for International Agricultural Research for
Sustainable Development (J-FARD) and other organizations for sustainable development. JIRCAS will also actively strive to make international contributions, utilizing Japan’s technology in these areas by collaborating with developing and developed nations, international research institutes, private organizations such as NGOs, and international research networks, to effectively promote international collaborative work. Questionnaires on joint research will be sent to related overseas research institutes to further the effective performance of such activities.

b) To ensure the prompt and practical application of research results, JIRCAS will make efforts to encourage the beneficiaries of technologies and research results to participate in research projects from the planning stages, and to conduct such research activities focusing on the utilization, diffusion, and commercialization of research results.

c) At least 525 collaborative researchers and research managers will be invited from agricultural, forestry, and fisheries research organizations in developing regions during the Third Medium-Term Goal period to conduct collaborative research or improve the capability of the researchers concerned. At least 85 effective Memoranda of Understanding (MOUs) will be maintained per year.

d) Collaborative research utilizing research resources owned by respective organizations will be promoted efficiently by further strengthening alliances with other IAAs in the field of agricultural research and development.

e) As a sub-bank in the NIAS Genebank Project implemented by the National Institute of Agrobiological Sciences (which serves as the central bank), JIRCAS will efficiently collect, store and characterize gene resources in close cooperation with the central bank.

2. Collection, analysis and dissemination of information for identifying trends related to international agriculture, forestry and fisheries

a) To help solve global food and environmental problems, JIRCAS will analyze the current situation and make forecasts concerning food supply and demand and the production structure of agriculture, forestry, and fisheries in foreign countries.

b) To contribute to research and other projects related to agricultural, forestry, and fisheries in developing regions, JIRCAS will collect, analyze, and disseminate information and materials related to the international food situation, to the agricultural, forestry, and fishery industries as well as to rural areas. It will be carried out in a regular, institutional, and systematic manner, through collaboration with related organizations in Japan and overseas, and through the long-term dispatch of staff to priority areas. The respective information and materials shall be provided to a broad range of researchers, government agencies, and private companies.

3. Flexible response to government needs

JIRCAS will flexibly respond to government needs that will arise during the Third Medium-Term Goal period, and carry out necessary research and development in a consistent manner.

B) Reinforcement of ties with government departments

1. JIRCAS will appropriately reflect the opinions of the departments of the Ministry of Agriculture, Forestry and Fisheries in its research activities and dissemination of research outcomes. At every stage during development, from research design to dissemination of outcomes and practical applications, JIRCAS will make efforts to seek a common awareness of issues with related governmental departments, through close exchange of information, and will welcome them to participate in annual meetings to examine research results and plans. Alliances with government departments will be assessed on a yearly basis with the respective departments’ participation, and the results will be utilized to further strengthen ties.

2. Keeping in mind the division of roles with other IAAs, JIRCAS will provide technical information and dispatch experts to governmental departments and related committee meetings, including emergency response, and will hold symposiums and other forums.

C) Promotion of the release and dissemination of research results
1. Securing interactive communication with the public

a) To fulfill accountability to the public, JIRCAS and its researchers will make efforts to secure interactive and continuous communication with the public by effectively utilizing various forms of information media.

b) The research staff will actively pursue community outreach activities such as open lectures for citizens, and their efforts will be conscientiously evaluated.

c) JIRCAS will seek the understanding of residents in areas where research is implemented, through cooperation with research partners and local governments concerned.

2. Promotion of utilization of research results

JIRCAS regards PR and the dissemination of new knowledge and technologies, along with their integration into government policy, as important activities. Researchers and related departments will make efforts to promote such activities.

In light of these aims, JIRCAS will first combine research results obtained during the Third Medium-Term Goal period with those already obtained in the previous Medium-Term Goal period, compile them in a database, and create manuals for proper utilization. At the same time, JIRCAS will conduct PR activities in countries where research facilities are located and actively promote the dissemination and utilization of research outcomes in developing regions by conducting collaborative research with international research or cooperation institutions.

3. Public relations and the release of research results

a) Research results will be released at academic meetings in Japan and overseas. At least 560 refereed papers will be published in academic journals and bulletins during the period covered by the Medium-Term Goals. In addition, at least 35 international symposiums and workshops will be held during that period, and the respective research results will be widely released in Japan and overseas.

b) Details of research results and other activities will be released on JIRCAS’s website and through exhibitions. JIRCAS will also issue more than 11 press releases of major research results during the period covered by the Medium-Term Goals.

4. Acquisition of intellectual property rights and promotion of their utilization

a) JIRCAS considers important the generation of results beneficial to the entire world, transcending national and regional borders (global public goods). When promoting practical application and utilization of research results, special attention will be paid to find balance between contributing to the progress of developing regions and promoting Japan’s industries, including agriculture.

b) JIRCAS will implement intellectual property management to promote research and development, with the ultimate aim of promoting practical application and utilization. Obtaining rights to research results and handling licenses will be carried out in an integrated manner, from the design stage of research and development onwards.

c) JIRCAS will aim to win patent rights in a strategic manner, including filing and licensing overseas, for possible patent licensing in the future or for the protection of research results. JIRCAS will file at least 20 patent applications in Japan and abroad during the period covered by the Third Medium-Term Goals.

d) JIRCAS will review its own patents, as needed, in light of licensing and the development of alternative technologies. It will waive rights to less important patents.

e) Bred materials applicable to Japan will be registered in the Registry of Plant Varieties to promote their dissemination and utilization.

f) JIRCAS will grant at least three licenses for domestic or international patents each year within the Third Medium-Term Goal period.

g) JIRCAS will actively provide information related to patent rights to outside parties, and strengthen efforts necessary for technological transfer.

h) JIRCAS will review its own Basic Intellectual Property Policy as necessary, in line with the Strategy for Agricultural, Forestry and Fisheries Intellectual Property (decided by the Agriculture, Forestry and Fisheries Research Council in March 2007).
D) Other social contributions in specialized fields

1. Analyses and appraisals

On request from the government, relevant organizations, or universities, JIRCAS will perform analyses and appraisals that require its highly specialized knowledge and/or are difficult for other organizations to carry out.

2. Training sessions and seminars

a) JIRCAS will hold training sessions and seminars as often as possible, and actively cooperate in events sponsored by the government and other organizations.

b) JIRCAS will actively welcome participants and trainees from other IAAs, universities, national and public institutions, and the private sector, to develop human resources, raise technical standards, and disseminate technical information. JIRCAS will also welcome trainees from abroad.

c) JIRCAS will dispatch young researchers of universities to overseas countries, and promote the development of researchers engaged in international agriculture, forestry, and fisheries research.

3. Cooperation with international organizations and academic societies

a) As an organization that carries out comprehensive research on agriculture, forestry, and fisheries, JIRCAS will dispatch its staff to committee meetings and conferences held by related international organizations and academic associations. It will also provide domestic and overseas technical information on request.

b) JIRCAS will plan and hold international symposiums jointly with international organizations, with the aim of contributing to the development of agriculture, forestry, and fisheries in developing regions.

c) JIRCAS will implement a commendation program for young researchers at agricultural, forestry, and fisheries research organizations in developing regions.
[Attachment] Directions related to research and investigations

1. Development of agricultural technologies based on sustainable management of the environment and natural resources in developing regions

To overcome current global environmental problems, as well as maintain and expand the agricultural, forestry, and fishery industries in developing regions, JIRCAS will aim to develop sustainable resource management and environmental conservation technologies in relevant areas through collaboration with local and international research centers. More specifically, the following priority research projects will be carried out:

a) Projects addressing global warming including (1) the development of global warming mitigation technologies such as those for the reduction of greenhouse gas emissions from livestock and agricultural land and by soil carbon sequestration, (2) the development of adaptation technologies such as nutrient management technology to reduce stresses imposed by climate change, (3) the assessment and analysis of global warming impacts (and its countermeasures) on the food market by employing a global food supply and demand model, and (4) the development of a sustainable rural community model with low GHG emission by employing clean development mechanism (CDM) project activities.

b) JIRCAS will establish a sustainable farming system for dry and semi-dry areas by developing anti-desertification technologies and by optimizing soil and grazing management as well as employing a cropping system that conserves soil in agriculture (conservation agriculture) through the use of non-tilling farming and cultivation of cover crops suitable to the African Savanna. JIRCAS will also develop water-saving cultivation and groundwater resource conservation technologies on islands in developing regions which are highly susceptible to abnormal climate conditions caused by global warming.

c) JIRCAS will strive to develop technologies that will enhance nitrogen use efficiency by utilizing the biological nitrification inhibition function of certain crops, thereby promoting sustainable agricultural systems and resource management.

2. Technology development for increased productivity and stable production of agricultural products in the tropics and other unstable environments

This program seeks to develop technologies to improve and sustain productivity through collaborative research with local institutions and international research centers, in specific research fields wherein Japan has shown predominant comparative advantage, focusing especially on adverse environments such as those found in tropical regions. The program also aims to reduce starvation and malnutrition, which remain serious problems in developing regions, and to contribute to food security in the world and in Japan. More specifically, the following priority research will be carried out:

a) To help fulfill the goal of the Coalition for African Rice Development (CARD) to double rice production in Africa by 2018, JIRCAS, as the implementing institute for the flagship project “Development of rice production technologies in Africa”, will evaluate rice genetic resources, introduce biotic/abiotic stress tolerance into rice strains suitable to African environmental conditions, develop an Asian-type low life-cycle cost paddy infrastructure technology, and establish a cultivation system for low-input rice production in flood plains which have previously been considered unsuitable for rice production.

b) Stable crop productivity shall be attained in unstable environments by overcoming adverse factors such as drought, submergence, salinity, diseases, and pests. This research will be done by (1) establishing genetic engineering technologies to develop crops suitable to developing regions, (2) developing breeding technologies and materials to secure sustainable production against factors that inhibit the production of main upland crops such as soybean, (3) developing technologies for the evaluation and utilization of diverse genetic materials and breeding lines in tropical field crops such as sugarcane, (4) improving Asian-type rice cultivation by utilizing low-input/high-yield cultivation technology and greater genetic diversity, and (5) developing integrated pest management techniques to stabilize agricultural and livestock production in developing regions.
3. Technology development for income and livelihood improvement of the rural population in developing regions

This program aims to improve income in rural areas by (i) promoting their appropriate development in line with the respective natural conditions and cultural background, and (ii) evaluating the multilateral values of various agricultural, forestry, and fishery products. To achieve this objective, JIRCAS will develop key production technologies for sustainable agriculture, forestry, fisheries, and rural development. JIRCAS will also develop modern processing, distribution, and storing technologies through collaborations with local and international research centers to effectively utilize the products. More specifically, the following priority research projects will be carried out:

a) In rural areas in Indochina, JIRCAS will establish stable production systems for rice and field crops, livestock, forest, and fish culture, which can adapt to diverse geographical environments (forests, open fields, rice fields, and rivers), to encourage self-sufficiency, eradicate poverty, and enhance the economic independence of farmers.

b) In East and Southeast Asia, where the structures of food supply/demand and rural communities are changing due to rapid economic growth, JIRCAS will examine and propose measures to support sustainable agriculture, forestry, and fisheries. The project aims to develop food processing technologies by utilizing varied traditional food resources in these areas, as well as biofuel production technologies that do not compete with food production by utilizing the unused biomass resources in Southeast Asia. To help boost the forestry and fisheries industries in Southeast Asia, JIRCAS will develop techniques for the sustainable use of forest resources by taking advantage of forest multi-functionality. JIRCAS will also develop sustainable aquaculture technologies while preserving habitats through co-culture techniques.
FINANCIAL OVERVIEW

Fiscal Year 2013

<table>
<thead>
<tr>
<th>TOTAL BUDGET</th>
<th>3,220,250</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPERATING COSTS</td>
<td></td>
</tr>
<tr>
<td>Personnel (180)</td>
<td>1,719,707</td>
</tr>
<tr>
<td>President (1), Vice-President (1), Executive Advisor & Auditor (2)</td>
<td></td>
</tr>
<tr>
<td>General administrators (40)</td>
<td></td>
</tr>
<tr>
<td>Field management (9)</td>
<td></td>
</tr>
<tr>
<td>Researchers (127)</td>
<td></td>
</tr>
<tr>
<td>* Number of persons shown in ()</td>
<td></td>
</tr>
<tr>
<td>Administrative Costs</td>
<td>333,948</td>
</tr>
</tbody>
</table>

RESEARCH PROMOTION COSTS

<table>
<thead>
<tr>
<th>Research and development</th>
<th>473,297</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overseas dispatches</td>
<td>227,855</td>
</tr>
<tr>
<td>Research exchanges/invitations</td>
<td>13,405</td>
</tr>
<tr>
<td>Collection of research information</td>
<td>74,858</td>
</tr>
<tr>
<td>International collaborative projects</td>
<td>357,423</td>
</tr>
<tr>
<td>Fellowship programs</td>
<td>19,757</td>
</tr>
</tbody>
</table>

Budget FY 2013 (Graph)

- Field management and transportation: 9 persons; 5.0%
- General administrators: 40 persons; 22.2%
- Executives: 4 persons; 2.2%
- Operating Costs: ¥2,053,655; 64%
- Researchers: 127 persons; 70.6%
- Research Promotion Costs: ¥1,166,595; 36%
Members of the JIRCAS External Evaluation Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hiroto ARAKAWA</td>
<td>Former Special Advisor, JICA Research Institute</td>
</tr>
<tr>
<td>Kiyoko IKEGAMI</td>
<td>Professor, Graduate School of Social and Cultural Studies, Nihon University</td>
</tr>
<tr>
<td>Hiroko ISODA</td>
<td>Director, Alliance for Research on North Africa, University of Tsukuba</td>
</tr>
<tr>
<td>Toshihiko KOMARI</td>
<td>Vice President, Corporate Strategy Division, Japan Tobacco Inc.</td>
</tr>
<tr>
<td>Shin-ichi SHOGENJI</td>
<td>Professor, Graduate School of Bioagricultural Sciences, Nagoya University</td>
</tr>
</tbody>
</table>
JIRCAS STAFF in FY 2013

President
Masa Iwanaga

Vice-President
Masami Yasunaka

Executive Advisor & Auditor
Hitoshi Nakagawa
Hitoshi Yonekura

Research Strategy Office
Osamu Koyama, Director

Research Coordinator
Shun-ichi Nakada, Bioenergy Policy

Regional Representative for Southeast Asia or Africa
Tomohide Sugino, Representative of Southeast Asia Office (Thailand)
Haruyuki Dan, Representative of Africa Office (Ghana)

Researcher
Eiichi Kusano, Agricultural Economics

Program Director
Tomoyuki Kawashima, Program A: Environment and Natural Resource Management
Takeshi Kano, Program B: Stable Food Production
Masayoshi Saito, Program C: Rural Livelihood

Research Planning and Coordination Division
Hiroshi Komiyama, Director

Research Planning and Management Office
Yukiyo Yamamoto, Head

Research Planning Section
Mie Kasuga, Head

International Relations Section
Koshun Ishiki, Head

Senior Researcher
Kazuo Ise, Rice Breeding

Field Management Section
Takashi Komatsu, Field Operator
Hiroyuki Ishiyama, Field Operator

Research Support Office
Shigeyoshi Sumita, Head

Research Coordination Section
Takahiro Sato, Head
Kazunari Iwafuchi, Assistant Head
Yoshihiko Sumomozawa, Coordination Subsection Head
Katsunori Kanno, International Relations Subsection Head

Research Support Section
Katsuhide Masumoto, Head
Toshiki Kikuchi, Budget Subsection Head
Takayuki Yamamoto, Support Subsection 1 Head
Gen-ichiro Hanaoka, Support Subsection 2 Officer

Information and Public Relations Office
Hirofumi Iga, Head

Public Relations Section
Yumiko Arai, Head

Technology Promotion Section
Takeshi Matsumoto, Head

Publications and Documentation Section
Minoru Kawaguchi, Head
Hiromi Miura, Network Subsection Head
Akemi Sawata, Managing Subsection Head (Librarian)

Intellectual Property Expert
Akira Hirokawa

Senior Researcher
Yuzo Manpuku, Agricultural Engineering

Safety Management Office
Yasuyuki Nakanishi, Head

Senior Researcher
Kunimasa Kawabe, Plant Pathology

Administration Division
Toshiyuki Kawaura, Director

General Affairs Section
Tamotsu Moriiwa, Head
Masao Yoshimura, General Affairs Assistant Head
Keiji Tanaka, Personnel Management Assistant Head
Tadashi Hayakawa, General Affairs Subsection Head
Kazuyo Kadowaki, Welfare Subsection Head
Midori Yamamura, Welfare Subsection Officer
Gaku Takeda, Personnel Subsection 1 Head
Akemi Nomiya, Personnel Subsection 2 Head
Accounting Section
Toshinori Baba, Head
Kazuo Miyajima, Accounting and Examination Assistant Head
Toru Shimura, Procurement and Asset Managing Assistant Head
Takeshi Usuku, Financial Subsection Head
Jun-ichi Irino, Accounting Subsection Head
Koichi Fuse, Overseas Expenditures Subsection 1 Head
Ryoichi Mise, Overseas Expenditures Subsection 2 Head
Hifumi Takahashi, Audit Subsection Head
Yoshihiko Takahashi, Procurement Subsection 1 Head
Masayoshi Takanashi, Procurement Subsection 2 Head
Tsuneo Sasaki, Supplies/Equipment Subsection Head
Kazu Eji Fujikawa, Facilities Subsection Head

Administration Section (Tropical Agriculture Research Front)
Takao Oga, Head
Tomohiro Yumiza, General Affairs Subsection Head
Hiroe Nagatomo, Accounting Subsection Head

Audit Office
Osamu Inotsuka, Head

Rural Development Division
Kunihiro Doi, Director

Project Leaders
Naoya Fujimoto, Agricultural Water Management
Eiji Matsubara, Rural Development
Kazuhisa Kouda, Agricultural Engineering

Subproject Leaders
Tsutomu Kobayashi, Rural Engineering
Hideki Furihata, Agricultural Engineering

Senior Researchers
Kazumi Yamaoka, Research Coordinator
Kimio Osuga, Rural Development
Takeru Higashimaki, Rural Development
Ryo Miyazaki, Rural Development
Yukio Okuda, Rural Engineering
Shinji Hirouchi, Agricultural Engineering
Michio Naruoka, Agricultural Engineering
Tomohiko Taminato, Civil Engineering
Koichi Takenaka, Rural Development Forestry
Masakazu Yamada, Rural Development
Taro Izumi, Rural Development
Mamoru Watanabe, Rural Development
Keisuke Omori, Soil Salinization in Dryland

Hiroshi Ikeura, Irrigation
Masaki Morishita, Rural Development
Naoko Oka, Agriculture Water Management
Shutaro Shiraki, Rural Development
Ken-ichiro Kimura, Forest Chemistry
Katsumi Hasada, Rural Development

Researchers
Junya Onishi, Irrigation
Chikako Hirose, Agricultural Engineering
Aritsune Uehara, Grassland Science

Social Sciences Division
Masuo Ando, Director

Project Leader
Fumika Chien, Agricultural Economics

Subproject Leader
Jun Furuya, Agricultural Economics

Senior Researchers
Ryuichi Yamada, Agricultural Economics
Satoshi Uchida, Geographic Information Systems
Shigeoki Yokoyama, Agricultural Economics
Kazu Nakamoto, Agricultural Economics
Shunji Oniki, Agricultural Economics
Akira Hirano, Geographic Information Systems
Shintaro Kobayashi, Agricultural Economics

Biological Resources and Post-harvest Division
Kazuhiro Suegawa, Director

Project Leaders
Kazu Nakashima, Plant Molecular Biology
Kazuhiko Nakahara, Food Chemistry
Akihiko Kosugi, Molecular Microbiology

Subproject Leader
Seiji Yanagihara, Rice Breeding

Senior Researchers
Tamao Hatta, Mineralogy and Geology
Xu Donghe, Plant Molecular Genetics
Eizo Tatsumi, Food Chemistry
Satoru Nirasawa, Food Functionality
Yasunari Fujita, Plant Molecular Biology
Yoshinori Murata, Applied Microbiology
Tadashi Yoshihashi, Food Science
Hajime Akamatsu, Plant Pathology
Naoki Yamanaka, Plant Molecular Genetics
Kyonoshin Maruyama, Plant Molecular Biology
Takamitsu Arai, Molecular Microbiology
Norihiro Kanamori, Plant Molecular Biology
Tsutomu Ishimaru, Plant Breeder
Researchers
Mitsuhiro Obara, Plant Physiology and Genetics
Junichiro Marui, Molecular Microbiology

Crop, Livestock and Environment Division
Ryoichi Matsumaga, Director

Project Leaders
Yasuo Ando, Plant Microbiology
Fujio Nagumo, Soil Science
Seishi Yamasaki, Animal Nutrition

Subproject Leaders
Kazuyuki Matsuo, Cropping Systems
Cai Yimin, Animal Science
Naruo Matsumoto, Soil Fertility and Nutrient Cycling
Masato Oda, Crop Management
Keiichi Hayashi, Soil Management

Senior Researchers
Satoshi Tobita, Plant Physiology and Nutrition
Satoshi Nakamura, Insect Ecology
Guntur V. Subbarao, Crop Physiology and Nutrition
Matthias Wissuwa, Physiology and Genetics
Katsuhiro Shimoda, Grassland Management and Plant Ecology
Takeshi Watanabe, Soil Chemistry
Tetsuji Oya, Crop Science
Yoshiko Iizumi, Hydrological Science
Takayuki Ishikawa, Plant Physiology

Researchers
Yasuhiro Tsujimoto, Crop Science
Hidetoshi Asai, Crop Science

Forestry Division
Iwao Noda, Director

Senior Researchers
Naoki Tani, Forest Genetics
Daisuke Hoshino, Silviculture
Reiji Yoneda, Silviculture
Masazumi Kayama, Tree Physiology

Fisheries Division
Hiroyuki Sudo, Director

Senior Researchers
Shinsuke Morioka, Fish Biology
Toru Shimoda, Marine Chemistry
Marcy N. Wilder, Crustacean Biochemistry
Satoshi Watanabe, Marine Ecology
Tatsuya Yurimoto, Aquatic Biology
Tsuyoshi Sugita, Fish Nutrition and Fish Physiology

Researchers
Tomoyuki Okutsu, Aquatic Animal Physiology
Isao Tsutsui, Aquaculture

Tropical Agriculture Research Front
Yoshinobu Egawa, Director
Yoshimichi Fukuta, Rice Breeding
Shotaro Ando, Soil Science

Project Leaders
Hiroko Takagi, Plant Breeding
Yoshimichi Fukuta, Rice Breeding
Shotaro Ando, Soil Science

Senior Researchers
Tatsushi Ogata, Pomology
Mariko Shono, Plant Physiology
Hide Omae, Crop Science
Shinkichi Gotoh, Soil Science
Shinsuke Yamanaka, Molecular Biology
Takuma Ishizaki, Plant Molecular Biology
Yoshifumi Terajima, Sugarcane Breeding
Youichi Kobori, Entomology

Researchers
Naoko Kozai, Pomology
Satoru Muranaka, Plant Physiology
Shin-ichi Tsuruta, Molecular Genetics

Technical Support Section
Yuho Maetsu, Head
Koichi Yamato, Machine Operator
Hirokazu Ikema, Machine Operator
Masato Shimajiri, Machine Operator
Masakazu Hirata, Machine Operator
Yasuteru Shikina, Machine Operator
Masashi Takahashi, Machine Operator
Masahide Maetsu, Machine Operator
The Japanese Fiscal Year and the Annual Report 2013

The Japanese fiscal year is defined as the period of fiscal activity occurring from April 1 through March 31 of the following year. Thus, Fiscal Year (FY) 2013 covers the period from April 1, 2013 through March 31, 2014. The Annual Report 2013 summarizes the full extent of JIRCAS activities that occurred during this period. The subsequent Annual Report will detail events and programs from April 1, 2014 through March 31, 2015 (FY 2014).

Buildings and campus data

<table>
<thead>
<tr>
<th>Land</th>
<th>(units: m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsukuba premises</td>
<td>109,538</td>
</tr>
<tr>
<td>Okinawa Tropical Agriculture Research Front</td>
<td>294,912</td>
</tr>
<tr>
<td>Total</td>
<td>404,450</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Buildings</th>
<th>(units: m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsukuba premises</td>
<td>10,766</td>
</tr>
<tr>
<td>Okinawa Tropical Agriculture Research Front</td>
<td>9,485</td>
</tr>
<tr>
<td>Total</td>
<td>20,251</td>
</tr>
</tbody>
</table>
Annual Report 2013
(April 2013-March 2014) No.20 (December 2014)

Published by
Incorporated Administrative Agency
Japan International Research Center for Agricultural Sciences (JIRCAS)
1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, JAPAN
Website http://www.jircas.affrc.go.jp
Tel. +81-29-838-6313
Fax. +81-29-838-6316

About JIRCAS’ symbol mark (shown on front/back cover): The mark was conceived by Takayuki Ishikawa of the Crop Production and Environment Division, and Toshifumi Murakami, former Senior Researcher in the Research Planning and Coordination Division. The Earth enveloped in a revolving swirl of clouds represents the dynamics of international research and JIRCAS’ aim to target all world areas. The star was added to serve as a polestar for international agricultural research and to represent the importance of cooperation.

2014年(平成26年)12月5日発行
発行者 独立行政法人 国際農林水産業研究センター
理事長 岩永 勝
〒305-8686 茨城県つくば市大わし1番地1
電話:029-838-6313
FAX:029-838-6316

印刷 松枝印刷株式会社
〒303-0034 茨城県常総市水海道天満町2438