INTERNATIONAL RENEWABLE ENERGY AGENCY

International Renewable Energy Agency

Japan Research Center for Agricultural Sciences

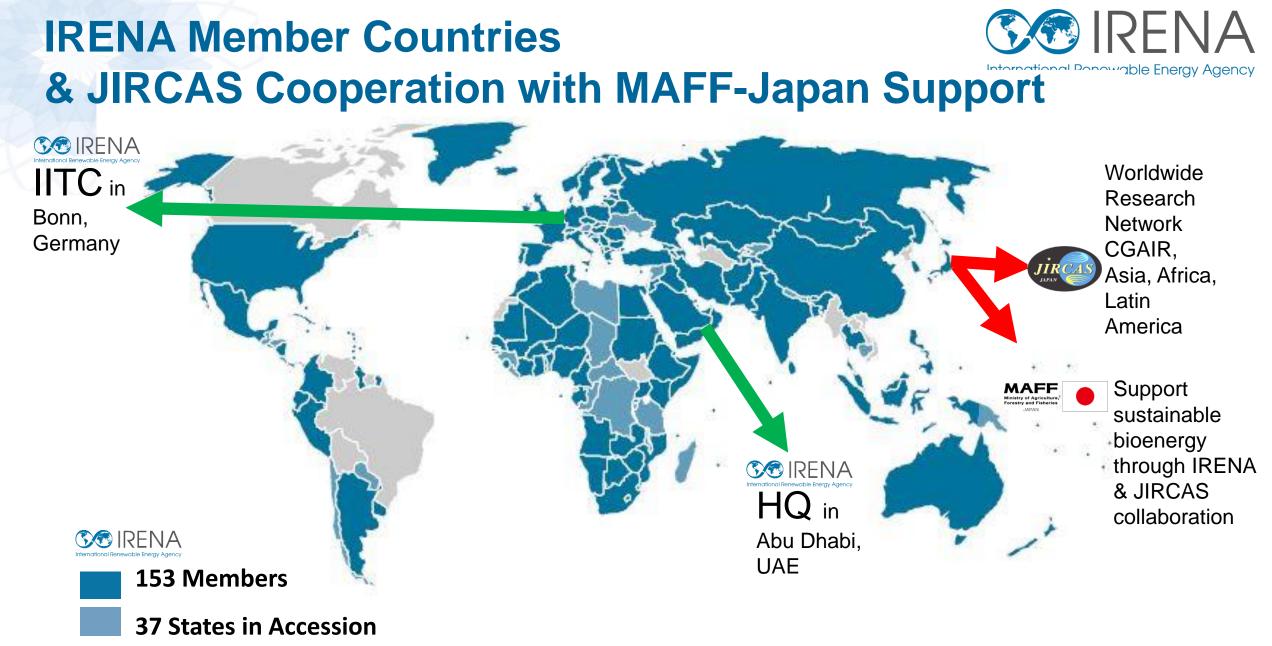
R&D on Waste to Energy Sources

"Effective Use of Agro-Residues - Renewable Energy Solutions for Forest Conservation and REDD+"

UNFCCC COP23 Side Event

Yasuko Inoue, Ph.D.

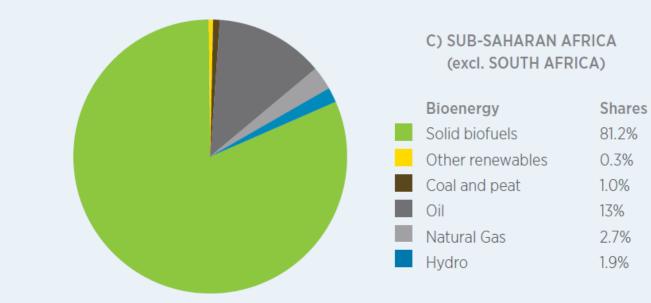
IRENA ITC Bioenergy Analyst


JIRCAS Research Coordinator,

CONTENT

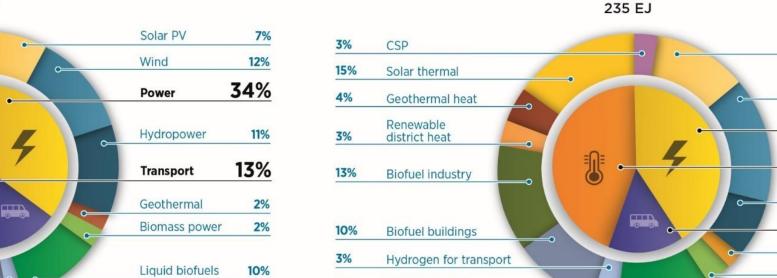
 HOW CAN WE PRODUCE BIOENERGY WITHOUT CAUSING NEGATIVE IMPACTS ?
IS BIOENERGY PRODUCTION TO AVOID DEFORESTATION POSSIBLE?

GENERAL NOTION


BIOENERGY

LAND CONFLICT SACRIFICE LOCAL FOOD SECURITY DEFORESTATION

WE NEED ENERGY Share of Wood Energy in Sub-Sahara Africa (as of 2009)


80% of energy was soil biomass – fuel wood & charcoal in 2009

Forest degradation, respiratory disease, deforestation, time consuming labour

Many countries in Africa are seeking alternative solutions

IRENA (2014) based on IEA (2009)

Liquid biofuels

11%

IRENA analyzed that renewable energy will be increased to 4 hold by 2050 Power 40%, Heat 44%, Transport 16%

CSP Solar PV

-0

Remap 2030, 2050

1%

13%

4%

3%

12%

21%

2%

53%

Solar thermal

Renewable district heat

Geothermal heat

Biofuel industry

Heat and other direct uses

Biofuel buildings

Hydrogen for transport

2050 Bioenergy Share : 37%

Solar PV

Wind

Power

Heat and other

direct uses

Hydropower

Transport

Geothermal

Biomass power

11%

15%

40%

44%

7%

2%

3%

16%

87EJ

REmap 2050

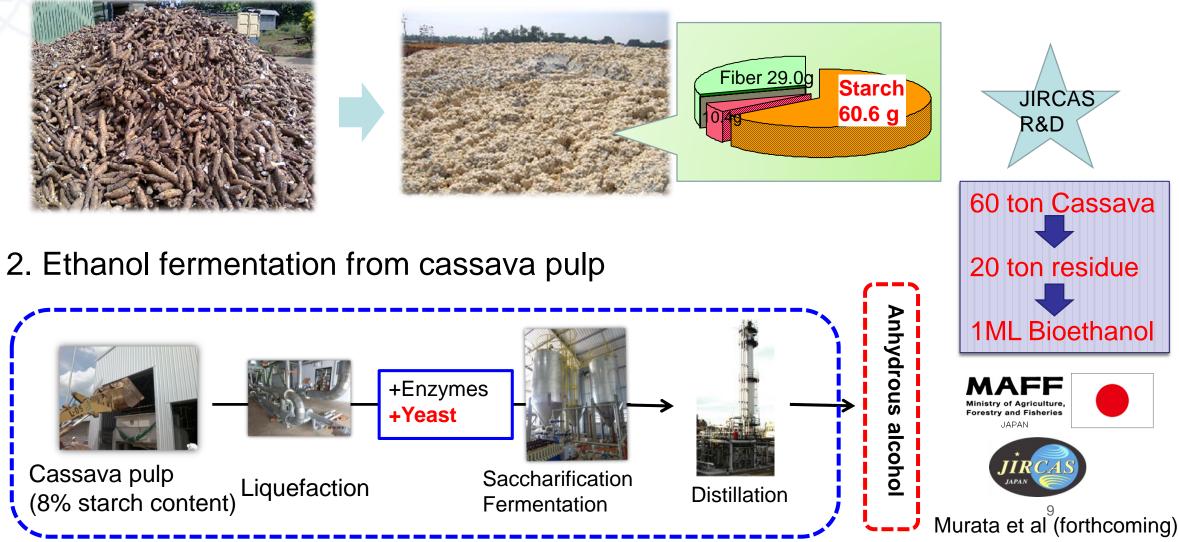
6

HOW CAN WE PRODUCE BIOENERGY WITHOUT CAUSING NEGATIVE IMPACT ?

Survey of Biomass Resources in Ghana

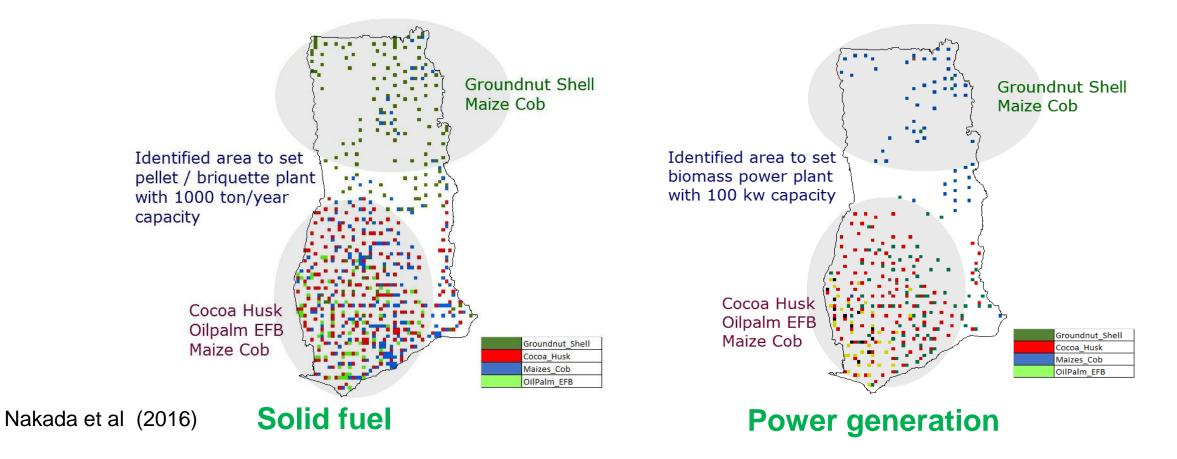
enewable Energy Agency

Murata et al (2016)


Research collaboration with University of Nigeria

1. Utilization of cassava wastes

<Cassava >


Bioenergy plant potential location identification from supply data

Commodity	No. plant
Cocoa husk	233
Oil palm EFB	123
Maize	298
Groundnut	148

GIS based analysis (Ghana) (a) 100kW capacity- Small Scale Power Plant (b) 2500 ton or 1000 ton Pellet factory Collect biomass from 12 km radius

Commodity	No. plant
Cocoa husk	113
Oil palm EFB	60
Maize	132
Groundnut	70

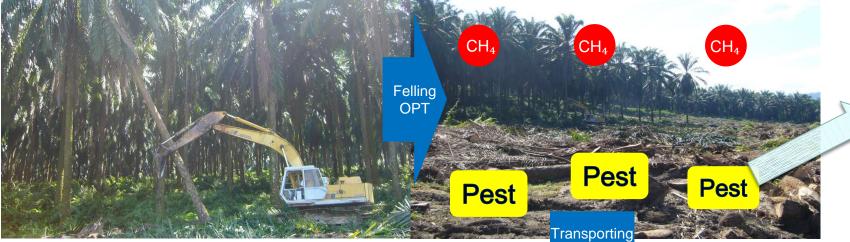
TO AVOID

DEFORESTATION

OIL PALM CASE

After 20 years of production

ON THE SOIL AFTER LOGGING, NEW SEEDINGS CAN NOT BE GROWN WELL BECAUSE OF DECAY & PEST FROM THE OLD OIL PALM STEMS CONTINUOUS **CAUSE BURN NEW FOREST TO OPEN LAND** DEFORESTATIONS **FOR REPLANTING** 12


Old Palm Trunk (OPT) Pellets Manufacturing Solution

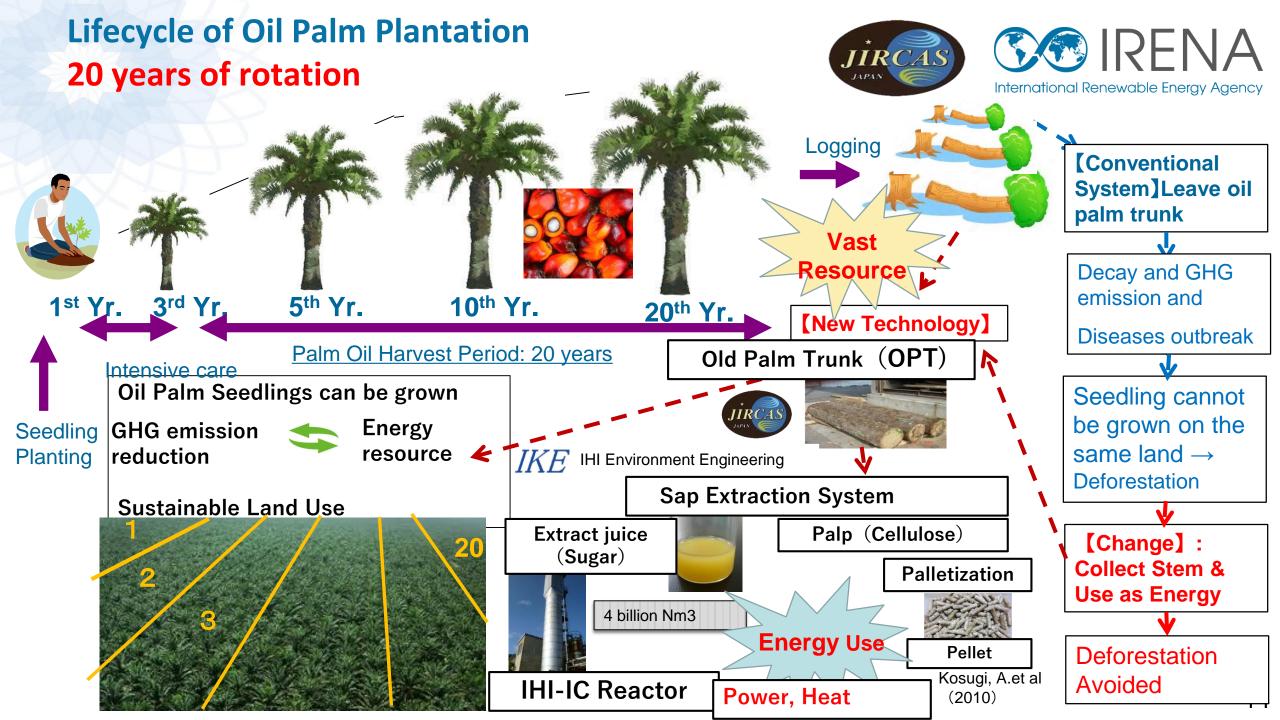
Contact: Japan International Research Center for Agricultural Sciences | JIRCAS | https://www.jircas.go.jp

Environmental Issues of Palm Oil Industry in Southeast Asia

Seedlings cannot grow well ↓ Cut forest

Because the water content is high in OPT, It is difficult to use them as an usable wood, and they are usually left at a plantation.

Green house gas to release · late replantation · pest to well up


Pilot test of the pelletizing technology has been done in Malaysia.

Indonesia and Malaysia in total Stem of Trunks =5,600 ton/year = Same volume with all city waste in Japan

Oil Palm Trunks

Vast Resource Kosugi, A.et al (2010)

Let's develop bioenergy technology which will contribute to conserve forests and REDD+.

16

"When we plat trees, we plant the seeds of peace and hope." Wangari Maathai (1940 - 2011)

Source : Green Belt Movement

A Workshop on

Sustainable Rural Biofuel Solution in Africa

[Call for Good Practice]

Please share your knowledge and good practices in Africa or applicable in Africa on;

- * Agro-forestry and/or Agroecology good practice to increase bioenergy availability, improve nutrition and bring about healthy environment
- Innovative Biomass Residues to Energy Technology to boost energy access and efficiency.
- * Practical Tools to Ensure Positive and Inclusive deployment of bioenergy in a wider range of society
- Selected good practices will be invited to present at the workshop and published in our Cookbook style guidebook.
 - (Some funding availability)
- Experiences from Asia, Latin America or other region applicable to Africa are also welcome!

[A] Agroforestry or Agroecology practices which increase energy availability of communities while ensuring positive impacts on ecosystem, nutrition and calorie intake (examples: microcatchment with fruit trees & animals etc)

Bio to Energy Innovation which enable effective use of 3Rs. (example: efficient bio-ethanol production technology from cassava starch; Biogas for chilling milk at rural market; fuel

efficient cook stoves. etc)

Tools for Enhanced Bioenergy Sustainability to ensure positive and inclusive social, economic and environmental impacts in bioenergy development (example: GHG emission impact assessment tool etc)

[C]

SEE YOU AGAIN SOON

Abstract Submission: 31 August 2017 (200 word summary of [A], [B] or [C] above) Full Paper Submission: 30 September 2017 (Template is on the 2nd Page)

Submission/Inquiry to: Ms Yasuko Inoue, **IRENA Innovation Technology Centre** E-mail: Yinoue@Irena.org Telephone: +49-228-3917-9094

Selected entries: will be invited to prepare a paper and present it at a workshop below. The summaries of the good practices will be included in our publication.

Workshop venue: tbc (in Africa, early 2018)

URL: www.irena.org

CO IRENA

International Renewable Energy Agency

References

- Alexandratos, N. and J. Bruinsma (2012), World agriculture towards 2030/2050: the 2012 revision, Food and Agricultural Organization, Rome
- Apiwatanapiwat, W., Murata, Y., et al (2011) Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases and b-glucosidase. Appl Microbiol Biotechnol 90: 377-384
- FAO (n.d.) FAOSTAT -
- Gustavsson, J. et al. (2011), Global food losses and food waste Extent, causes and prevention, Food and Agricultural -Organization, Rome
- IEA (2009) Energy Balance for Africa -
- IRENA (2014) Biomass Potential in Africa -
- IRENA (2017) Biofuel Potential in Southeast Asia: Raising food yields, reducing food waste and utilizing residues -
- JIRCAS (2016) Study for Climate Change Mitigation by Technology Development of Effective Farm Residue Use -
- Kosugi, A. et al. (2010), "Ethanol and lactic acid production using sap squeezed from old oil palm trunks felled for replanting," -Journal of Bioscience and Bioengineering, 110 (3), pp. 322–325.
- Murata, Y. et al. (2016) Presentation for Steering Committee: Project for effective use of agro-residues in developing countries, -MAFF
- Rugthaworn, P., Murata, Y.*, Machida, M., et al. (2014) Growth Inhibition of Thermotolerant Yeast, Kluyveromyces marxianus in Hydrolysis from Cassava Pulp. Applied Biochemistry and Biotechnology 173(5) 1179-1208) 18

Thank you very much.

International Renewable Energy Agency

THE STATE OF STATE OF

www.irena.org

www.jircas.go.jp

yinoue@irena.org